Displaying publications 1 - 20 of 393 in total

Abstract:
Sort:
  1. Idros N, Chu D
    ACS Sens, 2018 09 28;3(9):1756-1764.
    PMID: 30193067 DOI: 10.1021/acssensors.8b00490
    Heavy metals are highly toxic at trace levels and their pollution has shown great threat to the environment and public health worldwide where current detection methods require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Herein, we report a low-cost, paper-based microfluidic analytical device (μPAD) for facile, portable, and disposable monitoring of mercury, lead, chromium, nickel, copper, and iron ions. Triple indicators or ligands that contain ions or molecules are preloaded on the μPADs and upon addition of a metal ion, the colorimetric indicators will elicit color changes observed by the naked eyes. The color features were quantitatively analyzed in a three-dimensional space of red, green, and blue or the RGB-space using digital imaging and color calibration techniques. The sensing platform offers higher accuracy for cross references, and is capable of simultaneous detection and discrimination of different metal ions in even real water samples. It demonstrates great potential for semiquantitative and even qualitative analysis with a sensitivity below the safe limit concentrations, and a controlled error range.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  2. Al-Qaim FF, Mussa ZH, Yuzir A
    Anal Bioanal Chem, 2018 Aug;410(20):4829-4846.
    PMID: 29806068 DOI: 10.1007/s00216-018-1120-9
    The scarcity of data about the occurrence of pharmaceuticals in water bodies in Malaysia prompted us to develop a suitable analytical method to address this issue. We therefore developed a method based on solid-phase extraction combined with liquid chromatography-time of flight/mass spectrometry (SPE-LC-TOF/MS) for the analysis of sixteen prescribed and two nonprescribed pharmaceuticals that are potentially present in water samples. The levels of these pharmaceuticals, which were among the top 50 pharmaceuticals consumed in Malaysia during the period 2011-2014, in influent and effluent of five sewage treatment plants (STPs) in Bangi, Malaysia, were then analyzed using the developed method. All of the pharmaceuticals were separated chromatographically using a 5 μm, 2.1 mm × 250 mm C18 column at a flow rate of 0.3 mL/min. Limits of quantification (LOQs) were 0.3-8.2 ng/L, 6.5-89 ng/L, and 11.1-93.8 ng/L in deionized water (DIW), STP effluent, and STP influent, respectively, for most of the pharmaceuticals. Recoveries were 51-108%, 52-118%, and 80-107% from the STP influent, STP effluent, and DIW, respectively, for most of the pharmaceuticals. The matrix effect was also evaluated. The signals from carbamazepine, diclofenac sodium, and mefenamic acid were found to be completely suppressed in the STP influent. The signals from other compounds were found to be influenced by matrix effects more strongly in STP influent (enhancement or suppression of signal ≤180%) than in effluent (≤94%). The signal from prednisolone was greatly enhanced in the STP influent, indicating a matrix effect of -134%. Twelve pharmaceuticals were frequently detected in all five STPs, and caffeine, prazosin, and theophylline presented the highest concentrations among all the pharmaceuticals monitored: up to 7611, 550, and 319 ng/L in the STP influent, respectively. To the best of our knowledge, this is the first time that prazosin has been detected in a water matrix in Malaysia. Graphical abstract ᅟ.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  3. Azmi NE, Ahmad M, Abdullah J, Sidek H, Heng LY, Karuppiah N
    Anal Biochem, 2009 May 1;388(1):28-32.
    PMID: 19454217 DOI: 10.1016/j.ab.2009.02.005
    An optical biosensor based on glutamate dehydrogenase (GLDH) immobilized in a chitosan film for the determination of ammonium in water samples is described. The biosensor film was deposited on a glass slide via a spin-coating method. The ammonium was measured based on beta-nicotinamide adenine dinucleotide (NADH) oxidation in the presence of alpha-ketoglutaric acid at a wavelength of 340 nm. The biosensor showed optimum activity at pH 8. The optimum chitosan concentrations and enzyme loading were found to be at 2% (w/v) and 0.08 mg, respectively. Optimum concentrations of NADH and alpha-ketoglutaric acid both were obtained at 0.15 mM. A linear response of the biosensor was obtained in the ammonium concentration range of 0.005 to 0.5 mM with a detection limit of 0.005 mM. The reproducibility of the biosensor was good, with an observed relative standard deviation of 5.9% (n=8). The biosensor was found to be stable for at least 1 month when stored dry at 4 degrees C.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  4. Razak CN, Salam F, Ampon K, Basri M, Salleh AB
    Ann N Y Acad Sci, 1998 Dec 13;864:479-84.
    PMID: 9928128
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  5. Shukor MY, Masdor N, Baharom NA, Jamal JA, Abdullah MP, Shamaan NA, et al.
    Appl Biochem Biotechnol, 2008 Mar;144(3):283-91.
    PMID: 18556817
    A heavy-metal assay has been developed using bromelain, a protease. The enzyme is assayed using casein as a substrate with Coomassie dye to track completion of hydrolysis of casein. In the absence of inhibitors, casein is hydrolysed to completion, and the solution is brown. In the presence of metal ions such as Hg2+ and Cu2+, the hydrolysis of casein is inhibited, and the solution remains blue. Exclusion of sulfhydryl protective agent and ethylenediaminetetraacetic in the original assay improved sensitivity to heavy metals several fold. The assay is sensitive to Hg2+ and Cu2+, exhibiting a dose-response curve with an IC50 of 0.15 mg 1(-1) for Hg2+ and a one-phase binding curve with an IC50 of 0.23 mg 1(-1) for Cu2+. The IC50 value for Hg2+ is found to be lower to several other assays such as immobilized urease and papain assay, whilst the IC50 value for Cu2+ is lower than immobilized urease, 15-min Microtox, and rainbow trout.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  6. Tan YH, Lim PE, Beardall J, Poong SW, Phang SM
    Aquat Toxicol, 2019 Dec;217:105349.
    PMID: 31734626 DOI: 10.1016/j.aquatox.2019.105349
    Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  7. Hashim SA, Samsudin FN, Wong CS, Abu Bakar K, Yap SL, Mohd Zin MF
    Arch Biochem Biophys, 2016 09 01;605:34-40.
    PMID: 27056469 DOI: 10.1016/j.abb.2016.03.032
    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  8. Leong YH, Gan CY, Majid MI
    Arch Environ Contam Toxicol, 2014 Jul;67(1):21-8.
    PMID: 24651928 DOI: 10.1007/s00244-014-0019-5
    A total of 127 and 177 seafood samples from Malaysia were analyzed for polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs), respectively. The World Health Organization-toxic-equivalency quotients (WHO-TEQ) of PCDD/Fs varied from 0.13 to 1.03 pg TEQ g(-1), whereas dl-PCBs ranged from 0.33 to 1.32 pg TEQ g(-1). Based on food-consumption data from the global environment monitoring system-food contamination monitoring and assessment programme, calculated dietary exposures to PCDD/Fs and dl-PCBs from seafood for the general population in Malaysia were 0.042 and 0.098 pg TEQ kg(-1) body weight day(-1), respectively. These estimations were quite different from the values calculated using the Malaysian food-consumption statistics (average of 0.313 and 0.676 pg TEQ kg(-1) body weight day(-1) for PCDD/Fs and PCBs, respectively). However, both of the dietary exposure estimations were lower than the tolerable daily intake recommended by WHO. Thus, it is suggested that seafood from Malaysia does not pose a notable risk to the health of the average consumer.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  9. Murakami M, Adachi N, Saha M, Morita C, Takada H
    Arch Environ Contam Toxicol, 2011 Nov;61(4):631-41.
    PMID: 21424221 DOI: 10.1007/s00244-011-9660-4
    Perfluorinated surfactants (PFSs) in Asian freshwater fish species were analyzed to investigate tissue distribution, temporal trends, extent of pollution, and level of PFS exposure through food intake. Freshwater fish species, namely carp, snakehead, and catfish, were collected in Japan, Vietnam, India, Malaysia, and Thailand, and 10 PFSs, including perfluorooctanesulfonate (PFOS) and perfluorooctanoate, were analyzed by liquid chromatography-tandem mass spectrometry. PFSs in carp in Tokyo were more concentrated in kidneys (Σ10 PFSs = 257 ± 95 ng/g wet weight [ww]) and livers (119 ± 36 ng/g ww) than in ovaries (43 ± 2 ng/g ww) and muscles (24 ± 17 ng/g ww). Concentrations of PFOS and its precursor, perfluorooctane sulfonamide, in livers of carp and in waters in Tokyo showed a dramatic decrease during the last decade, probably because of 3 M's phasing-out of the manufacture of perfluorooctanesulfonyl-fluoride-based products in 2000. In contrast, continuing contamination by long-chain perfluorocarboxylates (PFCAs) with ≥ 9 fluorinated carbons was seen in multiple media, suggesting that these compounds continue to be emitted. PFS concentrations in freshwater fish species in tropical Asian countries were generally lower than those in developed countries, such as Japan, e.g., for PFOS in muscle, Vietnam < 0.05-0.3 ng/g ww; India < 0.05-0.2 ng/g ww; Malaysia < 0.05-0.2 ng/g ww; Thailand < 0.05 ng/g ww; and Japan (Tokyo) = 5.1-22 ng/g ww. Daily intake of short-chain PFCAs with ≤ 8 fluorinated carbons from freshwater fish species in Japan was approximately one order of magnitude lower than that from drinking water, whereas daily intake of PFOS and long-chain PFCAs with ≥ 9 fluorinated carbons from freshwater fish species was comparable with or greater than that from drinking water. Because the risk posed by exposure to these compounds through intake of fish species is a matter of concern, we recommend the continued monitoring of PFS levels in Asian developing countries.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  10. Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N
    Arch Environ Contam Toxicol, 2009 Apr;56(3):468-78.
    PMID: 18979060 DOI: 10.1007/s00244-008-9252-0
    The concentrations of butyltins (BTs) in sediment from Peninsular Malaysia along the Strait of Malacca and their spatial distribution are discussed. The concentrations of BTs were high in the southern part of Peninsular Malaysia where there is a lot of ship traffic, because trade is prosperous. The concentrations of monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) in sediment from the coastal waters of Peninsular Malaysia were in the range 4.1-242 microg/kg dry weight (dw), 1.1-186 microg/kg dw, and 0.7-228 microg/kg dw, respectively. A higher percentage of TBT was observed in the area where TBT concentrations were high. The concentrations of monophenyltin (MPT), diphenyltin (DPT), and triphenyltin (TPT) were in the range <0.1-121 microg/kg dw, 0.4-27 microg/kg dw, and 0.1-34 microg/kg dw in sediment from Peninsular Malaysia, respectively. MPT was the dominant phenyltin species. MBT, DBT, and TBT in green mussel (Perna viridis) samples were detected in the range 41-102 microg/kg, 3-5 microg/kg, and 8-32 microg/kg, respectively. A tolerable average residue level (TARL) was estimated at 20.4 microg/kg from a tolerable daily intake (TDI) of 0.25 microg TBTO/kg body weight/day. The maximum value of TBT detected in green mussel samples was the value near the TARL. TPTs were not detected in green mussel samples. The concentrations of Diuron and Irgarol 1051 in sediment from Peninsular Malaysia were in the range <0.1-5 microg/kg dw and <0.1-14 microg/kg dw, respectively. High concentrations of these compounds were observed in locations where the concentrations of TBT were high. Sea Nine 211, Dichlofluanid, and Pyrithiones were not detected in sediment. The concentrations of antifouling biocides in Melaka and the Strait of Johor were investigated in detail. BTs were found in similar concentrations among all sampling sites from Melaka, indicating that BT contamination spread off the coast. However, Sea Nine 211, Diuron, and Irgarol 1051 in the sediment from Melaka were high at the mouth of the river. BT concentrations at the Strait of Johor were higher than those in Peninsular Malaysia and Melaka and were high at the narrowest locations with poor flushing of water. The concentrations of antifouling biocides were compared among Malaysia, Thailand, and Vietnam. A higher concentration and wide variations of TBT and TPT in sediment from Malaysia were observed among these countries. The Irgarol 1051 concentrations in sediment from Malaysia were higher than those in Thailand and Vietnam.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  11. Chandrasekar T, Keesari T, Gopalakrishnan G, Karuppannan S, Senapathi V, Sabarathinam C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):183-207.
    PMID: 33392777 DOI: 10.1007/s00244-020-00803-1
    Evaluation of the hydrogeochemical processes governing the heavy metal distribution and the associated health risk is important in managing and protecting the health of freshwater resources. This study mainly focused on the health impacts due to the heavy metals pollution in a known Cretaceous-Tertiary (K/T) contact region (Tiruchinopoly, Tamilnadu) of peninsular India, using various pollution indices, statistical, and geochemical analyses. A total of 63 samples were collected from the hard rock aquifers and sedimentary formations during southwest monsoon and analysed for heavy metals, such as Li, Be, Al, Rb, Sr, Cs, Ba, pb, Mn, Fe, Cr, Zn, Ga, Cu, As, Ni, and Co. Ba was the dominant element that ranged from 441 to 42,638 μg/l in hard rock aquifers, whereas Zn was the major element in sedimentary formations, with concentrations that ranged from 44 to 118,281 μg/l. The concentrations of Fe, Ni, Cr, Al, Cr, and Ni fell above the permissible limit in both of the formations. However, the calculated heavy metal evaluation index (HEI), heavy metal pollution index (HPI), and the degree of contamination (Cd) parameters were higher in the sedimentary formation along the contact zone of the K/T boundary. Excessive health risks from consumption of contaminated groundwater were mostly confined to populations in the northern and southwestern regions of the study area. Carcinogenic risk assessment suggests that there are elevated risks of cancer due to prolonged consumption of untreated groundwater. Ba, Sr, and Zn were found to be geochemically highly mobile due to the partitioning between the rock matrix and groundwater, aided by the formation of soluble carbonato-complexes. Factor analysis indicates that the metals are mainly derived from the host rocks and anthropogenic inputs are relatively insignificant. Overall, this study indicated that groundwater in K/T contact zones is vulnerable to contamination because of the favorable geochemical factors. Long-term monitoring of such contact zones is required to avert the potential health hazards associated with consumption of the contaminated groundwater.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  12. Keshavarzifard M, Zakaria MP, Sharifi R
    Arch Environ Contam Toxicol, 2017 Oct;73(3):474-487.
    PMID: 28497299 DOI: 10.1007/s00244-017-0410-0
    The distribution, sources, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface sediment and the edible tissue of short-neck clam (Paphia undulata) from mudflat ecosystem in the west coast of Malaysia were investigated. The concentrations of ∑16 PAHs varied from 347.05 to 6207.5 and 179.32 to 1657.5 ng g-1 in sediment and short-neck clam samples, respectively. The calculations of mean PEL quotients (mean-PELQs) showed that the ecological risk of PAHs in the sediment samples was low to moderate-high level, whereas the total health risk through ingestion and dermal contact was considerably high. The PAHs biota sediment accumulation factors data for short-neck clam were obtained in this study, indicating a preferential accumulation of lower molecular weight PAHs. The source apportionment of PAHs in sediment using positive matrix factorization model indicated that the highest contribution to the PAHs was from diesel emissions (30.38%) followed by oil and oil derivate and incomplete coal combustion (23.06%), vehicular emissions (16.43%), wood combustion (15.93%), and natural gas combustion (14.2%). A preliminary evaluation of human health risk using chronic daily intake, hazard index, benzo[a]pyrene-equivalent (BaPeq) concentration, and the incremental lifetime cancer risk indicated that PAHs in short-neck clam would induce potential carcinogenic effects in the consumers.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  13. Tan BL, Mustafa AM
    Asia Pac J Public Health, 2004;16(1):54-63.
    PMID: 18839869
    Alkylphenols and most pesticides, especially organochlorine pesticides are endocrine-disrupting chemicals and they usually mimic the female hormone, estrogen. Using these chemicals in our environment would eventually lead us to consume them somehow in the food web. Several rivers in the State of Selangor, Malaysia were selected to monitor the level of alkylphenols and pesticides contamination for several months. The compounds were extracted from the water samples using liquid-liquid extraction method with dichloromethane and ethyl acetate as the extracting solvents. The alkylphenols and pesticides were analyzed by selected ion monitoring (SIM) mode using the quadrapole detector in Shimadzu QP-5000 gas chromatograph-mass spectrometer (GCMS). Recovery of most alkylphenols and pesticides were in the range of 50% to 120%. Trace amounts of the compounds were detected in the river water samples, mainly in the range of parts per trillion. This technique of monitoring the levels of endocrine-disruptors in river water is consistent and cost effective.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  14. Dadrasnia A, Azirun MS, Ismail SB
    BMC Biotechnol, 2017 Nov 28;17(1):85.
    PMID: 29179747 DOI: 10.1186/s12896-017-0395-9
    BACKGROUND: When the unavoidable waste generation is considered as damaging to our environment, it becomes crucial to develop a sustainable technology to remediate the pollutant source towards an environmental protection and safety. The development of a bioengineering technology for highly efficient pollutant removal is this regard. Given the high ammonia nitrogen content and chemical oxygen demand of landfill leachate, Bacillus salmalaya strain 139SI, a novel resident strain microbe that can survive in high ammonia nitrogen concentrations, was investigated for the bioremoval of ammonia nitrogen from landfill leachate. The treatability of landfill leachate was evaluated under different treatment parameters, such as temperature, inoculum dosage, and pH.

    RESULTS: Results demonstrated that bioaugmentation with the novel strain can potentially improve the biodegradability of landfill leachate. B. salmalaya strain 139SI showed high potential to enhance biological treatment given its maximum NH3-N and COD removal efficiencies. The response surface plot pattern indicated that within 11 days and under optimum conditions (10% v/v inoculant, pH 6, and 35 °C), B. salmalaya strain139SI removed 78% of ammonia nitrogen. At the end of the study, biological and chemical oxygen demands remarkably decreased by 88% and 91.4%, respectively. Scanning electron microscopy images revealed that ammonia ions covered the cell surface of B. salmalaya strain139SI.

    CONCLUSIONS: Therefore, novel resistant Bacillus salmalaya strain139SI significantly reduces the chemical oxygen demand and NH3-N content of landfill leachate. Leachate treatment by B. salmalaya strain 139SI within 11 days.

    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  15. Sow AY, Ismail A, Zulkifli SZ, Amal MN, Hambali K
    BMC Pharmacol Toxicol, 2019 Jan 29;20(1):8.
    PMID: 30696486 DOI: 10.1186/s40360-019-0286-x
    BACKGROUND: Levels of toxic metal exposure in indigenous inhabitants are key bioindicators of the severity of environmental contamination. This study measured the seasonal variation of heavy metals and metallothionein (MT) contents in Asian swamp eels (Monopterus albus) from a paddy field situated in Tumpat, Kelantan, Malaysia, to identify prevalence, patterns and associations and togain insight on the suitability of MT as a biomarker for metal exposure.

    METHODS: Gill, muscle and liver tissues of M. albus (n = 50) sampled during the ploughing, seedling, growing and harvesting phases of rice growing were collected. The concentrations of copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and cadmium (Cd) in these tissues were determined by flame atomic absorption spectrometry. MT from each sample was isolated and purified, and subsequently quantitated using UV spectrophotometry. Associations between metal and MT concentrations, season and tissue type were evaluated using Pearson correlation and ANOVA with post-hoc Tukey HSD analysis.

    RESULTS: Zn was present in higher quantities in gill and liver tissues, while Cu levels were elevated solely in liver. Patterns of non-essential metal accumulation were varied: Cd was detected in low concentrations in all tissues, while Pb and Ni were abundant in gill tissues across all seasons. MT concentration in liver tissue was consistently higher than that found in muscle or gill tissue, except during the growing phase. Moreover, significant correlations (P 

    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  16. Yusof AM, Salleh S, Wood AK
    Biol Trace Elem Res, 1999;71-72:139-48.
    PMID: 10676488
    Speciation of arsenic and selenium was carried out on water samples taken from rivers used as water intake points in the vicinity of landfill areas used for land-based waste disposal system. Leachates from these landfill areas may contaminate the river water through underground seepage or overflowing, especially after a heavy downpour. Preconcentration of the chemical species was done using a mixture of ammonium pyrrolidinethiocarbamate-chloroform (APDTC-CHCl3). Because only the reduced forms of both arsenic and selenium species could be extracted by the preconcentrating mixture, suitable reducing agents such as 25% sodium thiosulfate for As(III) and 6M HCl for Se(IV) were used throughout the studies. Care was taken to exclude the interfering elements such as the alkali and alkali earth metals from the inorganic arsenic and selenium species by introducing 12% EDTA solution as the masking agent. The extracted mixture was irradiated in a thermal neutron flux of 4 x 10(12)/cm/s from a TRIGA Mk.II reactor at the Malaysia Institute of Nuclear Technology Research (MINT). Gamma rays of 559 keV and 297 keV from 76As and 75Se, respectively, were used in the quantitative determination of the inorganic species. Mixed standards of As(III) and Se(IV) used in the percentage efficiency procedure were prepared from salts of Analar grade. The water quality evaluation was viewed from the ratio of the inorganic species present.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  17. Yusof AM, Rahman NA, Wood AK
    Biol Trace Elem Res, 1994;43-45:239-49.
    PMID: 7710833
    Trace elements, such as As, Co, Cr, Hg, Sb, and Zn, were determined by neutron activation analysis (NAA), whereas Cd, Cu, and Pb were determined by graphite furnace atomic absorption spectroscopy (GFAAS) in clam, crab, prawn, swamp cerith, and mussel samples after digestion by microwave heating under controlled conditions before eluting the solutions through a column of a chelating resin, Chelex-100. The standard used in the determination of percentage volatile elements retained by microwave digestion and also in the activation process was Lobster Hepatopancreas TORT-1, whereas known mixed standards were prepared from nitrate salts to determine the efficiency of the separation procedure at a controlled pH. Mercury and lead detected in crabs exceeded the maximum permissible level. Some species also showed a high affinity toward certain elements, and their levels of accumulation in the tissues of these species corresponded with the concentration of these elements in sediments, especially at sites in the vicinity of an industrial zone.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  18. Le DQ, Satyanarayana B, Fui SY, Shirai K
    Biol Trace Elem Res, 2018 Dec;186(2):538-545.
    PMID: 29577182 DOI: 10.1007/s12011-018-1313-2
    The present study, aimed at observing the total concentration of mercury (Hg) in edible finfish species with an implication to human health risk, was carried out from the Setiu mangrove wetlands on the east coast of Peninsular Malaysia. Out of 20 species observed, the highest Hg concentrations were found among carnivores-fish/invertebrate-feeders, followed by omnivores and carnivores-invertebrate-feeders, while the lowest concentrations in herbivores. The Hg concentrations varied widely with fish species and body size, from 0.12 to 2.10 mg/kg dry weight. A positive relationship between body weight and Hg concentration was observed in particular for Toxotes jaculatrix and Tetraodon nigroviridis. Besides the permissible range of Hg concentration up to 0.3 mg/kg (cf. United States Environmental Protection Agency (USEPA)) in majority of species, the carnivore feeders such as Acanthopagrus pacificus, Gerres filamentosus, and Caranx ignobilis have shown excess amounts (> 0.40 mg/kg flesh weight) that raising concerns over the consumption by local people. However, the weekly intake of mercury-estimated through the fish consumption in all three trophic levels-suggests that the present Hg concentrations are still within the range of Provisional Tolerable Weekly Intake (PTWI) reported by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Perhaps, a multi-species design for Hg monitoring at Setiu wetlands would be able to provide further insights into the level of toxicity transfer among other aquatic organisms and thereby a strong health risk assessment for the local communities.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  19. Ghafari S, Hasan M, Aroua MK
    Bioresour Technol, 2008 Jul;99(10):3965-74.
    PMID: 17600700
    Nitrates in different water and wastewater streams raised concerns due to severe impacts on human and animal health. Diverse methods are reported to remove nitrate from water streams which almost fail to entirely treat nitrate, except biological denitrification which is capable of reducing inorganic nitrate compounds to harmless nitrogen gas. Review of numerous studies in biological denitrification of nitrate containing water resources, aquaculture wastewaters and industrial wastewater confirmed the potential of this method and its flexibility towards the remediation of different concentrations of nitrate. The denitrifiers could be fed with organic and inorganic substrates which have different performances and subsequent advantages or disadvantages. Review of heterotrophic and autotrophic denitrifications with different food and energy sources concluded that autotrophic denitrifiers are more effective in denitrification. Autotrophs utilize carbon dioxide and hydrogen as the source of carbon substrate and electron donors, respectively. The application of this method in bio-electro reactors (BERs) has many advantages and is promising. However, this method is not so well established and documented. BERs provide proper environment for simultaneous hydrogen production on cathodes and appropriate consumption by immobilized autotrophs on these cathodes. This survey covers various designs and aspects of BERs and their performances.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  20. Pradit S, Shazili NA, Towatana P, Saengmanee W
    Bull Environ Contam Toxicol, 2016 Apr;96(4):472-7.
    PMID: 26725081 DOI: 10.1007/s00128-015-1717-z
    This study was undertaken to assess the levels of trace metals (As, Cd, Cu, Pb, and Zn) in two common species of cockles (Anadara granosa and Anadara inaequivalvis) from two coastal areas in Thailand (Pattani Bay) and Malaysia (the Setiu Wetlands). A total of 350 cockles were collected in February and September 2014. Trace metals were determined by Inductively Coupled Plasma Mass Spectrometry. We observed that cockles in both areas had a higher accumulation of metals in September. Notably, the biota-sediment accumulation (BSAF) of Cd was highest in both areas. A strong positive correlation of Cd with the length of the cockles at Pattani Bay (r(2) = 0.597) and the Setiu Wetlands (r(2) = 0.675) was noted. It was suggested that As could be a limiting element (BSAF < 1) of cockles obtained from Pattani Bay. In comparison with the permissible limits set by the Thailand Ministry of Public Health and the Malaysia Food Regulations, mean values of As, Cd, Cu, Pb, and Zn were within acceptable limits, but the maximum values of Cd and Pb exceeded the limits for both areas. Regular monitoring of trace metals in cockles from both areas is suggested for more definitive contamination determination.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links