Displaying publications 1 - 20 of 393 in total

Abstract:
Sort:
  1. Meier PG, Fook DC, Lagler KF
    Bull Environ Contam Toxicol, 1983 Mar;30(3):351-7.
    PMID: 6850121
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  2. Tan GH
    Analyst, 1992 Jul;117(7):1129-32.
    PMID: 1524230
    Solid-phase extraction (SPE) of organochlorine pesticide residues from environmental water samples was evaluated using octadecyl (C18)-bonded porous silica. The efficiency of SPE of these pesticide residues from reagent water samples at 1-5 micrograms dm-3 levels was compared with those obtained by solvent extraction with hexane and Freon TF (trichlorotrifluoroethane). Average recoveries exceeding 80% for these organochlorine pesticides were obtained via the SPE method using small cartridges containing 100 mg of 40 microns C18-bonded porous silica. The average recovery by solvent extraction with hexane and Freon TF exceeded 90% in both instances. It was concluded that the recoveries and precision for the SPE of organochlorine pesticides were poorer than those for the solvent extraction method. Organochlorine pesticide residue levels in environmental water samples from two major rivers flowing through predominantly rice-growing areas were monitored by gas chromatography using the solvent extraction method with hexane. Exceptionally high levels of organochlorine pesticide residues such as BHC, DDT, heptachlor, endosulfan and dieldrin were found in these water samples.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  3. Tan GH, Vijayaletchumy K
    Bull Environ Contam Toxicol, 1994 Sep;53(3):351-6.
    PMID: 7919710
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  4. Yusof AM, Rahman NA, Wood AK
    Biol Trace Elem Res, 1994;43-45:239-49.
    PMID: 7710833
    Trace elements, such as As, Co, Cr, Hg, Sb, and Zn, were determined by neutron activation analysis (NAA), whereas Cd, Cu, and Pb were determined by graphite furnace atomic absorption spectroscopy (GFAAS) in clam, crab, prawn, swamp cerith, and mussel samples after digestion by microwave heating under controlled conditions before eluting the solutions through a column of a chelating resin, Chelex-100. The standard used in the determination of percentage volatile elements retained by microwave digestion and also in the activation process was Lobster Hepatopancreas TORT-1, whereas known mixed standards were prepared from nitrate salts to determine the efficiency of the separation procedure at a controlled pH. Mercury and lead detected in crabs exceeded the maximum permissible level. Some species also showed a high affinity toward certain elements, and their levels of accumulation in the tissues of these species corresponded with the concentration of these elements in sediments, especially at sites in the vicinity of an industrial zone.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  5. Maah MJ, Mat I, Johari A
    Bull Environ Contam Toxicol, 1995 Feb;54(2):191-7.
    PMID: 7742626
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  6. Razak CN, Salam F, Ampon K, Basri M, Salleh AB
    Ann N Y Acad Sci, 1998 Dec 13;864:479-84.
    PMID: 9928128
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  7. Low KS, Lee CK, Koo WH
    Bull Environ Contam Toxicol, 1999 Apr;62(4):428-33.
    PMID: 10094725
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  8. Yusof AM, Salleh S, Wood AK
    Biol Trace Elem Res, 1999;71-72:139-48.
    PMID: 10676488
    Speciation of arsenic and selenium was carried out on water samples taken from rivers used as water intake points in the vicinity of landfill areas used for land-based waste disposal system. Leachates from these landfill areas may contaminate the river water through underground seepage or overflowing, especially after a heavy downpour. Preconcentration of the chemical species was done using a mixture of ammonium pyrrolidinethiocarbamate-chloroform (APDTC-CHCl3). Because only the reduced forms of both arsenic and selenium species could be extracted by the preconcentrating mixture, suitable reducing agents such as 25% sodium thiosulfate for As(III) and 6M HCl for Se(IV) were used throughout the studies. Care was taken to exclude the interfering elements such as the alkali and alkali earth metals from the inorganic arsenic and selenium species by introducing 12% EDTA solution as the masking agent. The extracted mixture was irradiated in a thermal neutron flux of 4 x 10(12)/cm/s from a TRIGA Mk.II reactor at the Malaysia Institute of Nuclear Technology Research (MINT). Gamma rays of 559 keV and 297 keV from 76As and 75Se, respectively, were used in the quantitative determination of the inorganic species. Mixed standards of As(III) and Se(IV) used in the percentage efficiency procedure were prepared from salts of Analar grade. The water quality evaluation was viewed from the ratio of the inorganic species present.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  9. Ahmed AM, Sulaiman WN
    Environ Manage, 2001 Nov;28(5):655-63.
    PMID: 11568845
    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  10. Zakaria MP, Okuda T, Takada H
    Mar Pollut Bull, 2001 Dec;42(12):1357-66.
    PMID: 11827123
    Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and off-shore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analyzed for hopanes and polycyclic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east coast seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have been originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photooxidation.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  11. Hussein MZ, Zainal Z, Yaziz I, Beng TC
    PMID: 11413839
    Layered double hydroxide of Mg-Al-carbonate system (MACH) was prepared and its heat-treated product (MACHT) was obtained by calcination at 500 degrees C. The resulting materials were used as an adsorbent for removal of color from synthetic textile wastewater (STW) and textile wastewater (TWW). Batch kinetic study showed that these materials are an efficient adsorbent for textile dye. The maximum adsorption capacities between 16 to 32 mg of dyes per g of adsorbent was obtained by fitting the adsorption data to the Langmuir adsorption Isotherm. It was found that the adsorption capacity of MACHT is higher than MACH.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  12. Yap CK, Ismail A, Tan SG, Omar H
    Environ Int, 2002 Apr;28(1-2):117-26.
    PMID: 12046948
    Total concentrations and speciation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in surface sediment samples were correlated with the respective metal measured in the total soft tissue of the green-lipped mussel Perna viridis, collected from water off the west coast of Peninsular Malaysia. The aim of this study is to relate the possible differences in the accumulation patterns of the heavy metals in P. viridis to those in the surface sediment. The sequential extraction technique was employed to fractionate the sediment into 'freely leachable and exchangeable' (EFLE), 'acid-reducible,' 'oxidisable-organic' and 'resistant' fractions. The results showed that significant (P .05) was found between Zn in P viridis and all the sediment geochemical fractions of Zn and total Zn in the sediment. This indicated that Zn was possibly regulated from the soft tissue of P. viridis. The present results supported the use of P viridis as a suitable biomonitoring agent for Cd, Cu and Pb.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  13. Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E, et al.
    Environ Sci Technol, 2002 May 1;36(9):1907-18.
    PMID: 12026970
    This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  14. Sudaryanto A, Takahashi S, Monirith I, Ismail A, Muchtar M, Zheng J, et al.
    Environ. Toxicol. Chem., 2002 Oct;21(10):2119-30.
    PMID: 12371488
    Butyltin compounds (BTs) including mono-, di-, and tributyltin and total tin (sigmaSn), were determined in green mussels (Perna viridis) from various Asian developing countries, such as Cambodia, China (Hong Kong and southern China), Malaysia, India, Indonesia, the Philippines, and Vietnam, to elucidate the contamination status, distribution, and possible sources and to assess the risks on aquatic organisms and humans. Butyltin compounds were detected in green mussels collected from all the sampling location investigated, suggesting widespread contamination of BTs along the coastal waters of Asian developing countries. Among butyltin derivatives, tributyltin (TBT) was the predominant compound, indicating its ongoing usage and recent exposures in Asian coastal waters. Higher concentrations of BTs were found in mussels collected at locations with intensive maritime activities, implying that the usage of TBT as a biocide in antifouling paints was a major source of BTs. In addition, relatively high concentrations of BTs were observed in mussels from aquaculture areas in Hong Kong and Malaysia, as it has been reported in Thailand. With the recent improvement in economic status in Asia, it is probable that an increase in TBT usage will occur in aquaculture. Although contamination levels were generally low in mussel samples from most of the Asian developing countries, some of those from polluted areas in Hong Kong, India, Malaysia, the Philippines, and Thailand revealed levels comparable to those in developed nations. Furthermore, the concentrations of TBT in some mussels from polluted areas exceeded the threshold for toxic effects on organisms and estimated tolerable average residue levels as seafoods for human consumption. A significant correlation was observed between the concentrations of sigmaBTs and sigmaSn in mussels, and sigmaBTs were made up mostly 100% of sigmaSn in mussels taken from locations having intensive maritime/human activities. This suggests that anthropogenic BTs represent the major source of tin accumulation in mussels. To our knowledge, this is a first comprehensive report on butyltin pollution monitoring in developing countries in the Asia-Pacific region.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  15. Wong KK, Lee CK, Low KS, Haron MJ
    Chemosphere, 2003 Jan;50(1):23-8.
    PMID: 12656225
    A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series of batch experiments using TARH as the sorbent for the removal of Cu and Pb showed that the sorption process was pH dependent, rapid and exothermic. The sorption process conformed to the Langmuir isotherm with maximum sorption capacities of 29 and 108 mg/g at 27 +/- 2 degrees C for Cu and Pb, respectively. The uptake increased with agitation rate. Decrease in sorbent particle size led to an increase in the sorption of metal ions and this could be explained by an increase in surface area and hence binding sites. Metal uptake was reduced in the presence of competitive cations and chelators. The affinity of TARH for Pb is greater than Cu.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  16. Halimah M, Tan YA, Aini K, Ismail BS
    J Environ Sci Health B, 2003 Jul;38(4):429-40.
    PMID: 12856925
    Improved methods for extraction and clean up of fluroxypyr residue in water have been established. Two methods of fluroxypyr extraction were used, namely, Direct Measurement of fluroxypyr and Concentration of fluroxypyr onto A Solid Phase Extraction (SPE) Adsorbent, followed by elution with solvent before determination of fluroxypyr. The recovery for Direct Measurement of fluroxypyr in water containing 8-100 microg L(-1), ranged from 86 to 110% with relative standard deviation of 0.7 to 2.15%. For the second method, three types of SPE were used, viz. C18, C18 end-capped and polyvinyl dibenzene (ISOLUTE ENV+). The procedure involved concentrating the analyte from fluroxypyr-spiked water at pH 3, followed by elution of the analyte with 4 mL of acentonitrile. The recovery of fluroxypyr from the spiked sample at 1 to 50 microg L(-1) after eluting through either C18 or C18 end-capped ranged from 40-64% (with relative standard deviation of 0.7 to 2.15) and 41-65% (with standard deviation of 1.52 to 11.9). The use of ISOLUTE ENV+, gave better results than the C18, C18 end-capped or the Direct Measurement Methods. The recovery and standard deviation of fluroxypyr from spiked water using ISOLUTE ENV+ ranged from 91-102% and 2.5 to 5.3, respectively.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  17. Abdullah MP, Yew CH, Ramli MS
    Water Res, 2003 Nov;37(19):4637-44.
    PMID: 14568050
    A modeling procedure that predicts trihalomethane (THM) formation from field sampling at the treatment plant and along its distribution system using Tampin district, Negeri Sembilan and Sabak Bernam district, Selangor as sources of data were studied and developed. Using Pearson method of correlation, the organic matter measured as TOC showed a positive correlation with formation of THM (r=0.380,P=0.0001 for Tampin and r=0.478,P=0.0001 for Sabak Bernam). Similar positive correlation was also obtained for pH in both districts with Tampin (r=0.362,P=0.0010) and Sabak Bernam (r=0.215,P=0.0010). Chlorine dosage was also found to have low correlation with formation of THM for the two districts with Tampin (r=0.233,P=0.0230) and Sabak Bernam (r=0.505,P=0.0001). Distance from treatment plant was found to have correlation with formation of THM for Tampin district with r=0.353 and P=0.0010. Other parameters such as turbidity, ammonia, temperature and residue chlorine were found to have no correlation with formation of THM. Linear and non-linear models were developed for these two districts. The results obtained were validated using three different sets of field data obtained from own source and district of Seremban (Pantai and Sg. Terip), Negeri Sembilan. Validation results indicated that there was significant difference in the predictive and determined values of THM when two sets of data from districts of Seremban were used with an exception of field data of Sg. Terip for non-linear model developed for district of Tampin. It was found that a non-linear model is slightly better than linear model in terms of percentage prediction errors. The models developed were site specific and the predictive capabilities in the distribution systems vary with different environmental conditions.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  18. Yap CK, Tan SG, Ismail A, Omar H
    Environ Int, 2004 Mar;30(1):39-46.
    PMID: 14664863
    It has been widely reported that heavy metal contamination in coastal waters can modify the allozyme profiles of marine organisms. Previous studies have recorded elevated metal concentrations in sediments and mussel tissues off Peninsular Malaysia. In the present study, horizontal starch gel electrophoresis was carried out to estimate the levels of allelic variation of the green-lipped mussel, Perna viridis, collected from one contaminated and three relatively uncontaminated sites off Peninsular Malaysia. Fourteen polymorphic loci were observed. In addition, the concentrations of cadmium, copper, lead, mercury and zinc were determined in the sediments and in the soft tissues of the mussels. Mussels from contaminated site, evidenced by high metal pollution indices (MPI) of the sediment and the mussel tissues, showed the highest percentage of polymorphic loci (78.6%), while those collected from the uncontaminated sites had lower MPI of the sediment and mussel tissue, and exhibited lower percentages of polymorphic loci (35.7-57.1%). The population from the contaminated site showed the highest excess of heterozygosity (0.289) when compared to that of the populations from the three uncontaminated sites (0.108-0.149). Allozyme frequencies at the phosphoglucomutase (PGM; E.C. 2.7.5.1) locus also differed between the contaminated and uncontaminated populations. Previous studies have shown that exposure to heavy metals can select or counter-select for particular alleles at this locus. The present results suggest that allozyme polymorphism in P. viridis is a potential biomonitoring tool for heavy metal contamination but further validation is required.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links