Displaying publications 1 - 20 of 233 in total

Abstract:
Sort:
  1. Zhi LL, Zaini MA
    Water Sci Technol, 2017 02;75(3-4):864-880.
    PMID: 28234287 DOI: 10.2166/wst.2016.568
    This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m(2)/g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  2. Zakaria ZA, Aruleswaran N, Kaur S, Ahmad WA
    Water Sci Technol, 2007;56(8):117-23.
    PMID: 17978439
    Cr(VI) biosorption and bioreduction ability of locally isolated Cr-resistant bacteria was investigated using the shake-flask technique. A mixture of S. epidermidis and B. cereus showed the highest minimum inhibitory concentration (MIC) level at 750 mg/L Cr(VI) followed by S. aureus and Bacillus sp. of 250 mg/L, and A. haemolyticus of 70 mg/L. From the Langmuir adsorption isotherm, the treatment of cells with heat-acid resulted in the highest amount of Cr(VI) adsorped (78.25 mg/g dry wt. for S. epidermidis) compared to heat-acetone (67.93 mg/g dry wt. Bacillus sp.), heat only (36.05 mg/g dry wt. S. epidermidis) or untreated cells (45.40 mg/g dry wt. S. epidermidis and B. cereus). FTIR analysis showed the involvement of amine groups in Cr(VI) adsorption. In the bioreduction study, A. haemolyticus was able to completely reduce Cr(VI) up to 50 mg/L.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  3. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2007 Jul 19;146(1-2):73-80.
    PMID: 17196740
    Mixed dye consists of six commercial dyes and textile effluents from cotton dyeing process were treated by electrochemical-assisted photodegradation under halogen lamp illumination. Two types of effluents were collected which are samples before and after undergone pre-treatment at the factory wastewater treatment plant. The photodegradation process was studied by evaluating the changes in concentration employing UV-vis spectrophotometer (UV-vis) and total organic carbon (TOC) analysis. The photoelectrochemical degradation of mixed dye was found to follow the Langmuir Hinshelwood pseudo-first order kinetic while pseudo-second order kinetic model for effluents by using TOC analyses. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) values of mixed dye and raw effluents were reported. Photoelectrochemical characteristic of pollutants was studied using the cyclic voltammetry technique. Raw effluent was found to exhibit stronger reduction behaviour at cathodic bias potential but slightly less photoresponse at anodic bias than mixed dye.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  4. Zahrim AY, Hilal N, Tizaoui C
    Water Sci Technol, 2013;67(4):901-6.
    PMID: 23306271 DOI: 10.2166/wst.2012.638
    Tubular nanofiltration membrane performance to treat water for reuse was carried out by choosing C.I. Acid Black 210 dye as a model dye. It has been shown that increasing pH causes reduction in irreversible fouling factor (IFF) and the dye removal is also affected by solution pH. The total organic carbon removal for pH 4, pH 7, pH 8 and pH 10 is 97.9, 92.3, 94.5 and 94.6%, respectively. The conductivity removal for pH 4, pH 7, pH 8 and pH 10 is 85.1, 88.3, 87.8 and 90.7% respectively. The increase in the initial dye concentration causes rapid increase in fouling until 100 mg/l. Then the fouling increases gradually as it reaches a maximum IFF around 13%. This study also shows that the colour of permeate changes from colourless to light greenish/yellowish (initial concentration of 2,000 and 4,000 mg/l) as the initial dye concentration increases. The conductivity removal was also reduced as the initial dye concentration increased due to screening of the Donnan effect with the presence of salt.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  5. Yusof NH, Foo KY, Hameed BH, Hussin MH, Lee HK, Sabar S
    Int J Biol Macromol, 2020 Aug 15;157:648-658.
    PMID: 31790734 DOI: 10.1016/j.ijbiomac.2019.11.218
    Chitosan-polyethyleneimine with calcium chloride as ionic cross-linker (CsPC) was synthesized as a new kind of adsorbent using a simple, green and cost-effective technique. The adsorption properties of the adsorbent for Acid Red 88 (AR88) dye, as a model analyte, were investigated in a batch system as the function of solution pH (pH 3-12), initial AR88 concentration (50-500 mg L-1), contact time (0-24 h), and temperature (30-50 °C). Results showed that the adsorption process obeyed the pseudo-first order kinetic model and the adsorption rate was governed by both intra-particle and liquid-film mechanism. Equilibrium data were well correlated with the Freundlich isotherm model, with the calculated maximum adsorption capacity (qm) of 1000 mg g-1 at 30 °C. The findings underlined CsPC to be an effective and efficient adsorbent, which can be easily synthesized via one-step process with promising prospects for the removal of AR88 or any other similar dyes from the aqueous solutions.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  6. Yusof AM, Malek NA, Kamaruzaman NA, Adil M
    Environ Technol, 2010 Jan;31(1):41-6.
    PMID: 20232677 DOI: 10.1080/09593330903313794
    Zeolites P in sodium (NaP) and potassium (KP) forms were used as adsorbents for the removal of calcium (Ca2+) and zinc (Zn2+) cations from aqueous solutions. Zeolite KP was prepared by ion exchange of K+ with Na+ which neutralizes the negative charge of the zeolite P framework structure. The ion exchange capacity of K+ on zeolite NaP was determined through the Freundlich isotherm equilibrium study. Characterization of zeolite KP was determined using infrared spectroscopy and X-ray diffraction (XRD) techniques. From the characterization, the structure of zeolite KP was found to remain stable after the ion exchange process. Zeolites KP and NaP were used for the removal of Ca and Zn from solution. The amount of Ca2+ and Zn2+ in aqueous solution before and after the adsorption by zeolites was analysed using the flame atomic absorption spectroscopy method. The removal of Ca2+ and Zn2+ followed the Freundlich isotherm rather than the Langmuir isotherm model. This result also revealed that zeolite KP adsorbs Ca2+ and Zn2+ more than zeolite NaP and proved that modification of zeolite NaP with potassium leads to an increase in the adsorption efficiency of the zeolite. Therefore, the zeolites NaP and KP can be used for water softening (Ca removal) and reducing water pollution/toxicity (Zn removal).
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  7. Yong SK, Skinner WM, Bolan NS, Lombi E, Kunhikrishnan A, Ok YS
    Environ Sci Pollut Res Int, 2016 Jan;23(2):1050-9.
    PMID: 26538256 DOI: 10.1007/s11356-015-5654-5
    Pristine chitosan beads were modified with sulfur (S)-containing functional groups to produce thiolated chitosan beads (ETB), thereby increasing S donor ligands and crosslinks. The effect of temperature, heating time, carbon disulfide (CS2)/chitosan ratio, and pH on total S content of ETB was examined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The total S content of ETB increased with increasing CS2/chitosan ratio and decreased with decreasing pH and increasing temperature (>60 °C) and heating time (at 60 °C). Spectroscopic analyses revealed the presence of thiol (-SH)/thione, disulfide (-S-S-), and sulfonate groups in ETB. The thiolation mechanism involves decomposition of dithiocarbamate groups, thereby forming thiourea crosslinks and trithiocarbonate, resulting in -SH oxidation to produce -S-S- crosslinks. The partially formed ETB crosslinks contribute to its acid stability and are thermodynamically feasible in adsorbing Cd and Cu. The S-containing functional groups added to chitinous wastes act as sorbents for metal remediation from acidic environments.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  8. Yanyan L, Kurniawan TA, Zhu M, Ouyang T, Avtar R, Dzarfan Othman MH, et al.
    J Environ Manage, 2018 Nov 15;226:365-376.
    PMID: 30138836 DOI: 10.1016/j.jenvman.2018.08.032
    Acetaminophen (Ace) is a trace pollutant widely found in sewage treatment plant (STP) wastewater. We test the feasibility of coconut shell waste, a low cost adsorbent from coconut industry, for removing Ace from synthetic solution in a fixed-bed column adsorption. To enhance its performance, the surface of granular activated carbon (GAC) was pre-treated with NaOH, HNO3, ozone, and/or chitosan respectively. The results show that the chemical modification of the GAC's surface with various chemicals has enhanced its Ace removal during the column operations. Among the modified adsorbents, the ozone-treated GAC stands out for the highest Ace adsorption capacity (38.2 mg/g) under the following conditions: 40 mg/L of Ace concentration, 2 mL/min of flow rate, 45 cm of bed depth. Both the Thomas and the Yoon-Nelson models are applicable to simulate the experimental results of the column operations with their adsorption capacities: ozone-treated GAC (20.88 mg/g) > chitosan-coated GAC (16.67 mg/g) > HNO3-treated GAC (11.09 mg/g) > NaOH-treated GAC (7.57 mg/g) > as-received GAC (2.84 mg/g). This suggests that the ozone-treated GAC is promising and suitable for Ace removal in a fixed-bed reactor.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  9. Yahya SK, Zakaria ZA, Samin J, Raj AS, Ahmad WA
    Colloids Surf B Biointerfaces, 2012 Jun 1;94:362-8.
    PMID: 22398363 DOI: 10.1016/j.colsurfb.2012.02.016
    The potential use of non-viable biomass of a Gram negative bacterium i.e. Acinetobacter haemolyticus to remove Cr(III) species from aqueous environment was investigated. Highest Cr(III) removal of 198.80 mg g(-1) was obtained at pH 5, biomass dosage of 15 mg cell dry weight, initial Cr(III) of 100 mg L(-1) and 30 min of contact time. The Langmuir and Freundlich models fit the experimental data (R(2)>0.95) while the kinetic data was best described using the pseudo second-order kinetic model (R(2)>0.99). Cr(III) was successfully recovered from the bacterial biomass using either 1M of CH(3)COOH, HNO(3) or H(2)SO(4) with 90% recovery. TEM and FTIR suggested the involvement of amine, carboxyl, hydroxyl and phosphate groups during the biosorption of Cr(III) onto the cell surface of A. haemolyticus. A. haemolyticus was also capable to remove 79.87 mg g(-1) Cr(III) (around 22.75%) from raw leather tanning wastewater. This study demonstrates the potential of using A. haemolyticus as biosorbent to remove Cr(III) from both synthetic and industrial wastewater.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  10. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC
    J Biosci Bioeng, 2019 Feb;127(2):150-159.
    PMID: 30224189 DOI: 10.1016/j.jbiosc.2018.07.012
    Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  11. Veerasingam SA, Ali Mohd M
    J Water Health, 2013 Jun;11(2):311-23.
    PMID: 23708578 DOI: 10.2166/wh.2013.151
    The presence of endocrine disruptors in source water is of great concern because of their suspected adverse effects on humans, even when present at very low levels. As the main source of potable water supply, rivers in Malaysia are highly susceptible to contamination by various endocrine disruptors originating from anthropogenic activities. In this study, the contamination levels of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) and its metabolites and di-(2-ethylhexyl) phthalate (DEHP) in rivers of Selangor were examined using gas chromatography-mass spectrometry. Samples were collected from sites representing source water for 18 drinking water treatment plants in Selangor between July 2008 and July 2009. DDT and its metabolites were detected in only 14% of the 192 samples analysed at levels ranging from 0.6 to 14.6 ng/L. Meanwhile DEHP was detected in 96.8% of the samples at levels ranging from below quantitation level (18 ng/L) to 970 ng/L. The detected levels of DDTs and DEHP were lower than the WHO and Malaysian Guidelines for Drinking Water Quality. Data obtained from this study should also serve as a reference point for future surveillance on these endocrine disruptors.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  12. Van Tran T, Nguyen DTC, Nguyen HT, Nanda S, Vo DN, Do ST, et al.
    Environ Sci Pollut Res Int, 2019 Sep;26(27):28106-28126.
    PMID: 31363978 DOI: 10.1007/s11356-019-06011-2
    The occurrence and fate of antibiotic compounds in water can adversely affect human and animal health; hence, the removal of such substrates from soil and water is indispensable. Herein, we described the synthesis method of mesoporous carbon (MPC) via the pyrolysis route from a coordination polymer Fe-based MIL-53 (or MIL-53, shortly). The MPC structure was analyzed by several physical techniques such as SEM, TEM, BET, FT-IR, VSM, and XRD. The response surface methodology (RSM) was applied to find out the effects of initial concentration, MPC dosage, and pH on the removal efficiency of trimethoprim (TMP) and sulfamethoxazole (SMX) antibiotics in water. Under the optimized conditions, the removal efficiencies of TMP and SMX were found to be 87% and 99%, respectively. Moreover, the adsorption kinetic and isotherm studies showed that chemisorption and the monolayer adsorption controlled the adsorption process. The leaching test and recyclability studies indicated that the MPC structure was stable and can be reused for at least four times without any considerable change in the removal efficiency. Plausible adsorption mechanisms were also addressed in this study. Because of high maximum adsorption capacity (85.5 mg/g and 131.6 mg/g for TMP and SMX, respectively) and efficient reusability, MPC is recommended to be a potential adsorbent for TMP and SMX from water media.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  13. Umbreen N, Sohni S, Ahmad I, Khattak NU, Gul K
    J Colloid Interface Sci, 2018 Oct 01;527:356-367.
    PMID: 29843021 DOI: 10.1016/j.jcis.2018.05.010
    Herein, self-assembled three-dimensional reduced graphene oxide (RGO)-based hydrogels were synthesized and characterized in detail. A thorough investigation on the uptake of three widely used pharmaceutical drugs, viz. Naproxen (NPX), Ibuprofen (IBP) and Diclofenac (DFC) was carried out from aqueous solutions. To ensure the sustainability of developed hydrogel assembly, practically important parameters such as desorption, recyclability and applicability to real samples were also evaluated. Using the developed 3D hydrogels as adsorptive platforms, excellent decontamination for the above mentioned persistent pharmaceutical drugs was achieved in acidic pH with a removal efficiency in the range of 70-80%. These hydrogels showed fast adsorption kinetics and experimental findings were fitted to different kinetic models, such as pseudo-first order, pseudo-second order, intra-particle and the Elovich models in an attempt to better understand the adsorption kinetics. Furthermore, equilibrium adsorption data was fitted to the Langmuir and Freundlich models, where relatively higher R2 values obtained in case of former one suggested that monolayer adsorption played an important part in drug uptake. Thermodynamic aspects were also studied and negative ΔG0 values obtained indicated the spontaneous nature of adsorption process. The study was also extended to check practical utility of as-prepared hydrogels by spiking real aqueous samples with drug solution, where high % recoveries obtained for NPX, IBP and DFC were of particular importance with regard to prospective application in wastewater treatment systems. We advocate RGO-based hydrogels as environmentally benign, readily recoverable/recyclable material with excellent adsorption capacity for application in wastewater purification.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  14. Udechukwu BE, Ismail A, Zulkifli SZ, Omar H
    Environ Sci Pollut Res Int, 2015 Mar;22(6):4242-55.
    PMID: 25292304 DOI: 10.1007/s11356-014-3663-4
    Sungai Puloh mangrove estuary supports a large diversity of macrobenthic organisms and provides social benefits to the local community. Recently, it became a major recipient of heavy metals originating from industries in the hinterland as a result of industrialization and urbanization. This study was conducted to evaluate mobility and pollution status of heavy metals (Cd, Cu, Ni, Pb, Zn, and Fe) in intertidal surface sediments of this area. Surface sediment samples were collected based on four different anthropogenic sources. Metals concentrations were analyzed using an atomic absorption spectrophotometer (AAS). Results revealed that the mean concentrations were Zn (1023.68 ± 762.93 μg/g), Pb (78.8 ± 49.61 μg/g), Cu (46.89 ± 43.79 μg/g), Ni (35.54 ± 10.75 μg/g), Cd (0.94 ± 0.29 μg/g), and Fe (7.14 ± 0.94%). Most of the mean values of analyzed metals were below both the interim sediment quality guidelines (ISQG-low and ISQG-high), except for Pb concentration (above ISQG-low) and Zn concentration (above ISQG-high), thus suggesting that Pb and Zn may pose some environmental concern. Cadmium, Pb, and Zn concentrations were above the threshold effect level (TEL), indicating seldom adverse effect of these metals on macrobenthic organisms. Pollution load index (PLI) indicated deterioration and other indices revealed the intertidal surface sediment is moderately polluted with Cd, Pb, and Zn. Therefore, this mangrove area requires urgent attention to mitigate further contamination. Finally, this study will contribute to data sources for Malaysia in establishing her own ISQG since it is a baseline study with detailed contamination assessment indices for surface sediment of intertidal mangrove area.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  15. Tisa F, Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:348974.
    PMID: 25309949 DOI: 10.1155/2014/348974
    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  16. Tee HC, Lim PE, Seng CE, Nawi MA
    Bioresour Technol, 2012 Jan;104:235-42.
    PMID: 22130081 DOI: 10.1016/j.biortech.2011.11.032
    The objectives of this study are to compare the performance of newly developed baffled and conventional horizontal subsurface-flow (HSF) constructed wetlands in the removal of nitrogen at the hydraulic retention times (HRT) of 2, 3 and 5 days and to evaluate the potential of rice husk as wetland media for wastewater treatment. The results show that the planted baffled unit achieved 74%, 84% and 99% ammonia nitrogen (NH(4)(+)-N) removal versus 55%, 70% and 96% for the conventional unit at HRT of 2, 3 and 5 days, respectively. The better performance of the baffled unit was explained by the longer pathway due to the up-flow and down-flow conditions sequentially thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones. Near complete total oxidized nitrogen was observed due to the use of rice husk as wetland media which provided the COD as the electron donor in the denitrification process.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  17. Tee HC, Seng CE, Noor AM, Lim PE
    Sci Total Environ, 2009 May 15;407(11):3563-71.
    PMID: 19272632 DOI: 10.1016/j.scitotenv.2009.02.017
    This study aims to compare the performance of planted and unplanted constructed wetlands with gravel- and raw rice husk-based media for phenol and nitrogen removal. Four laboratory-scale horizontal subsurface-flow constructed wetland units, two of which planted with cattail (Typha latifolia) were operated outdoors. The units were operated at a nominal hydraulic retention time of 7 days and fed with domestic wastewater spiked with phenol concentration at 300 mg/L for 74 days and then at 500 mg/L for 198 days. The results show that planted wetland units performed better than the unplanted ones in the removal and mineralization of phenol. This was explained by the creation of more micro-aerobic zones in the root zone of the wetland plants which allow a faster rate of phenol biodegradation, and the phenol uptake by plants. The better performance of the rice husk-based planted wetland compared to that of the gravel-based planted wetland in phenol removal could be explained by the observation that more rhizomes were established in the rice husk-based wetland unit thus creating more micro-aerobic zones for phenol degradation. The role of rice husk as an adsorbent in phenol removal was considered not of importance.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry
  18. Tay KS, Rahman NA, Abas MR
    Water Environ Res, 2011 Aug;83(8):684-91.
    PMID: 21905405
    This study investigated the removal of parabens, N,N-diethyl-m-toluamide (DEET), and phthalates by ozonation. The second-order rate constants for the reaction between selected compounds with ozone at pH 7 were of (2.2 +/-0.2) X 10(6) to (2.9 +/-0.3) X 10(6) M 1/s for parabens, (2.1+/- 0.3) to (3.9 +/-0.5) M-1/s for phthalates, and (5.2 +/-0.3) M-1/s for DEET. The rate constants for the reaction between selected compounds with hydroxyl radical ranged from (2.49 +/-0.06) x 10(9) to (8.5 +/-0.2) x 10(9) M-1/s. Ozonation of selected compounds in secondary wastewater and surface waters revealed that ozone dose of 1 and 3 mg/L yielded greater than 99% depletion of parabens and greater than 92% DEET and phthalates, respectively. In addition, parabens were found to transform almost exclusively through the reaction with ozone, while DEET and phthalates were transformed almost entirely by hydroxyl radicals (.OH).
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  19. Tay KS, Rahman NA, Abas MR
    Chemosphere, 2010 Dec;81(11):1446-53.
    PMID: 20875662 DOI: 10.1016/j.chemosphere.2010.09.004
    This study investigated the reaction kinetics and degradation mechanism of parabens (methylparaben, ethylparaben, propylparaben and butylparaben) during ozonation. Experiments were performed at pH 2, 6 and 12 to determine the rate constants for the reaction of protonated, undissociated and dissociated paraben with ozone. The rate constants for the reaction of ozone with dissociated parabens (3.3 × 10(9)-4.2 × 10(9)M(-1)s(-1)) were found to be 10(4) times higher than the undissociated parabens (2.5 × 10(5)-4.4 × 10(5)M(-1)s(-1)) and 10(7) times higher than with the protonated parabens (1.02 × 10(2)-1.38 × 10(2)M(-1)s(-1)). The second-order rate constants for the reaction between parabens with hydroxyl radicals were found to vary from 6.8 × 10(9) to 9.2 × 10(9)M(-1)s(-1). Characterization of degradation by-products (DBPs) formed during the ozonation of each selected parabens has been carried out using GCMS after silylation. Twenty DBPs formed during ozonation of selected parabens have been identified. Hydroxylation has been found to be the major reaction for the formation of the identified DBPs. Through the hydroxylation reaction, a variety of hydroxylated parabens was formed.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  20. Tay KS, Madehi N
    Sci Total Environ, 2015 Jul 1;520:23-31.
    PMID: 25791053 DOI: 10.1016/j.scitotenv.2015.03.033
    Application of ozonation in water treatment involves complex oxidation pathways that could lead to the formation of various by-products, some of which may be harmful to living organisms. In this work, ozonation by-products of ofloxacin (OFX), a frequently detected pharmaceutical pollutant in the environment, were identified and their ecotoxicity was estimated using the Ecological Structure Activity Relationships (ECOSAR) computer program. In order to examine the role of ozone (O3) and hydroxyl radicals (∙OH) in the degradation of ofloxacin, ozonation was performed at pH2, 7 and 12. In this study, 12 new structures have been proposed for the ozonation by-products detected during the ozonation of ofloxacin. According to the identified ozonation by-products, O3 and ∙OH were found to react with ofloxacin during ozonation. The reaction between ofloxacin and O3 proceeded via hydroxylation and breakdown of heterocyclic ring with unsaturated double-bond. The reaction between ofloxacin and ·OH generated various by-products derived from the breakdown of heterocyclic ring. Ecotoxicity assessment indicated that ozonation of OFX could yield by-products of greater toxicity compared with parent compounds.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links