Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Zulkifli SZ, Mohamat-Yusuff F, Arai T, Ismail A, Miyazaki N
    Environ Monit Assess, 2010 Oct;169(1-4):457-72.
    PMID: 19856123 DOI: 10.1007/s10661-009-1189-x
    Concentrations of 11 trace elements (V, Cr, Co, Ni, Cu, Zn, As, Ag, Cd, Pb, and U) were determined in the intertidal surface sediments of Peninsular Malaysia. The average trace element concentrations are ranked as follows: Zn>V>As>Cr>Pb>Cu>Ni>Co>U>g>Cd. Interim Sediment Quality Guidelines (ISQGs) employed in present study are the Australia and New Zealand joint guideline (ANZECC/ARMCANZ), and the Hong Kong authorities. From the pooled data, none of these trace elements have the average concentration above the ISQG-high values. However, As and Ag average concentrations were over the ISQG-low values. Some elements were found to have the average concentration above the ISQG-high and/or ISQG-low in certain locations, including Kampung Pasir Putih (JPP), Lumut Port (ALP), Kuala Perai (PKP), Port Dickson (NPD), and others. The lowest and highest concentrations in a specific sampling location and maritime area varied among the elements, variations that were greatly affected by natural and anthropogenic activities in a given area. For each trace element, there were various levels of concentration among the sampling locations and maritime areas. These patterns indicated pollutant sources of an element for each area perhaps derived from nearby areas and did not widely distributed to other locations. It is necessary for Malaysia to develop an ISQG for effective quick screening and evaluation of the coastal environment of Peninsular Malaysia.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  2. Zahed MA, Nabi Bidhendi G, Pardakhti A, Esmaili-Sari A, Mohajeri S
    Bull Environ Contam Toxicol, 2009 Dec;83(6):899-902.
    PMID: 19760353 DOI: 10.1007/s00128-009-9874-6
    Polychlorinated biphenyl (PCB) was detected as isomer groups (congener numbers 28, 52, 101, 118, 138, 153 and 180) in the coastal water and sediment of four stations around Shadegan wetland protected area in the northwestern part of the Persian Gulf. Total PCB concentration range was 8-375 ng/L in water and 3.4-50.2 μg/g in sediment. Concentration of different congeners and chromatogram indicates that the source of PCB in this area can be Clophen A60; it used for long time in Iranian electronic industries. Other chlorinated hydrocarbons such as lindane, DDT and their metabolites were also present in the samples.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  3. Yap CK, Shahbazi A, Zakaria MP
    Bull Environ Contam Toxicol, 2012 Dec;89(6):1205-10.
    PMID: 23052577 DOI: 10.1007/s00128-012-0838-x
    In this study, the ranges of pollutants found in the soft tissues of Perna viridis collected from Kg. Masai and Kg. Sg. Melayu, both located in the Straits of Johore, were 0.85-1.58 μg/g dry weight (dw) for Cd, 5.52-12.2 μg/g dw for Cu, 5.66-8.93 μg/g dw for Ni and 63.4-72.3 μg/g dw for Zn, and 36.4-244 ng/g dry weight for ∑PAHs. Significantly (p < 0.05) higher concentrations of Cd, Cu, Ni, Zn and ∑PAHs in the mussels were found in the water of a seaport site at Kg. Masai than a non-seaport site at Kg. Sg. Melayu population. The ratios of low molecular weight/high molecular weight hydrocarbons (2.94-3.42) and fluoranthene/pyrene (0.43-0.45) in mussels from both sites indicated the origin of the PAHs to be mainly petrogenic. This study has demonstrated the utility of using the soft tissues of P. viridis as a biomonitor of PAH contamination and bioavailability in the coastal waters of Peninsular Malaysia.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  4. Wan Abdul Ghani WMH, Abas Kutty A, Mahazar MA, Al-Shami SA, Ab Hamid S
    Environ Monit Assess, 2018 Apr 19;190(5):297.
    PMID: 29675764 DOI: 10.1007/s10661-018-6675-6
    In order to evaluate the water quality of one of the most polluted urban river in Malaysia, the Penchala River, performance of eight biotic indices, Biomonitoring Working Party (BMWP), BMWPThai, BMWPViet, Average Score Per Taxon (ASPT), ASPTThai, BMWPViet, Family Biotic Index (FBI), and Singapore Biotic Index (SingScore), was compared. The water quality categorization based on these biotic indices was then compared with the categorization of Malaysian Water Quality Index (WQI) derived from measurements of six water physicochemical parameters (pH, BOD, COD, NH3-N, DO, and TSS). The river was divided into four sections: upstream section (recreational area), middle stream 1 (residential area), middle stream 2 (commercial area), and downstream. Abundance and diversity of the macroinvertebrates were the highest in the upstream section (407 individual and H' = 1.56, respectively), followed by the middle stream 1 (356 individual and H' = 0.82). The least abundance was recorded in the downstream section (214 individual). Among all biotic indices, BMWP was the most reliable in evaluating the water quality of this urban river as their classifications were comparable to the WQI. BMWPs in this study have strong relationships with dissolved oxygen (DO) content. Our results demonstrated that the biotic indices were more sensitive towards organic pollution than the WQI. BMWP indices especially BMWPViet were the most reliable and could be adopted along with the WQI for assessment of water quality in urban rivers.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
  5. Ting YF, Praveena SM
    Environ Monit Assess, 2017 Apr;189(4):178.
    PMID: 28342046 DOI: 10.1007/s10661-017-5890-x
    Steroid estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2), are natural and synthetic hormones released into the environment through incomplete sewage discharge. This review focuses on the sources of steroid estrogens in wastewater treatment plants (WWTPs). The mechanisms and fate of steroid estrogens throughout the entire wastewater treatment system are also discussed, and relevant information on regulatory aspects is given. Municipal, pharmaceutical industry, and hospitals are the main sources of steroid estrogens that enter WWTPs. A typical WWTP comprises primary, secondary, and tertiary treatment units. Sorption and biodegradation are the main mechanisms for removal of steroid estrogens from WWTPs. The fate of steroid estrogens in WWTPs depends on the types of wastewater treatment systems. Steroid estrogens in the primary treatment unit are removed by sorption onto primary sludge, followed by sorption onto micro-flocs and biodegradation by microbes in the secondary treatment unit. Tertiary treatment employs nitrification, chlorination, or UV disinfection to improve the quality of the secondary effluent. Activated sludge treatment systems for steroid estrogens exhibit a removal efficiency of up to 100%, which is higher than that of the trickling filter treatment system (up to 75%). Moreover, the removal efficiency of advance treatment systems exceeds 90%. Regulatory aspects related to steroid estrogens are established, especially in the European Union. Japan is the only Asian country that implements a screening program and is actively involved in endocrine disruptor testing and assessment. This review improves our understanding of steroid estrogens in WWTPs, proposes main areas to be improved, and provides current knowledge on steroid estrogens in WWTPs for sustainable development.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
  6. Suratman S, Tahir NM, Latif MT
    Bull Environ Contam Toxicol, 2012 May;88(5):755-8.
    PMID: 22392007 DOI: 10.1007/s00128-012-0574-2
    The distribution of total petrogenic hydrocarbon was investigated in the subsurface water of Setiu Wetland from July to October 2008. The concentration was quantified by UV-fluorescence spectroscopy and ranged from 4 to 121 μg/L (mean 60 ± 41 μg/L). Higher total petrogenic hydrocarbon concentrations were found in area with high boating activities suggesting that the contribution is likely related to fossil fuel combustion. The present study also revealed that the total petrogenic hydrocarbon values are still lower that those reported in Malaysian coastal waters.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  7. Sharifinia M, Mahmoudifard A, Imanpour Namin J, Ramezanpour Z, Yap CK
    Chemosphere, 2016 Sep;159:584-594.
    PMID: 27343865 DOI: 10.1016/j.chemosphere.2016.06.064
    This study evaluates the impact of anthropogenic activities on the Shahrood River using water physico-chemical variables and macroinvertebrates data sets obtained over a period of 12 months between February 2012 and February 2013 at 8 sampling sites. Biotic indices i.e. FBI and BMWP based on macroinvertebrates and physico-chemical indices (MPI, HPI and NSF-WQI) were employed to evaluate the water quality status in connection with natural- and human-induced pressures. Based on physico-chemical indices, water quality was categorized as low polluted level and it is suitable for drinking purposes. The water quality based on biotic indices was related to the anthropic activities; a clear deterioration of the water quality was observed from upstream to downstream sites. The water quality along the river changed from very good (class I; reference sites) to good (class II; midstream sites) and turned into moderate (class III) and poor (class IV) quality (downstream sites). These findings indicate that biotic indices are more powerful indicators in assessing water quality than physico-chemical indices. Allocapnia, Glossosoma and Hesperoperla were exclusively related to least disturbed sites, and Naididae, Orthocladiinae and Ecdyonurus were found in sites showing notable degradation. Our results recommended that the use of macroinvertebrates could be employed as a cost-effective tool for biomonitoring and controlling of polluted riverine ecosystems in the Middle East. Finally, the results from this study may be useful not only for developing countries, but also for any organization struggling to use macroinvertebrate based indices with restricted financial resources and knowledge.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  8. Serrano O, Davis G, Lavery PS, Duarte CM, Martinez-Cortizas A, Mateo MA, et al.
    Sci Total Environ, 2016 Jan 15;541:883-894.
    PMID: 26437357 DOI: 10.1016/j.scitotenv.2015.09.017
    The study of a Posidonia australis sedimentary archive has provided a record of changes in element concentrations (Al, Fe, Mn, Pb, Zn, Cr, Cd, Co, As, Cu, Ni and S) over the last 3000 years in the Australian marine environment. Human-derived contamination in Oyster Harbor (SW Australia) started ~100 years ago (AD ~1900) and exponentially increased until present. This appears to be related to European colonization of Australia and the subsequent impact of human activities, namely mining, coal and metal production, and extensive agriculture. Two contamination periods of different magnitude have been identified: Expansion period (EXP, AD ~1900-1970) and Establishment period (EST, AD ~1970 to present). Enrichments of chemical elements with respect to baseline concentrations (in samples older than ~115 cal years BP) were found for all elements studied in both periods, except for Ni, As and S. The highest enrichment factors were obtained for the EST period (ranging from 1.3-fold increase in Cu to 7.2-fold in Zn concentrations) compared to the EXP period (1.1-fold increase for Cu and Cr to 2.4-fold increase for Pb). Zinc, Pb, Mn and Co concentrations during both periods were 2- to 7-fold higher than baseline levels. This study demonstrates the value of Posidonia mats as long-term archives of element concentrations and trends in coastal ecosystems. We also provide preliminary evidence on the potential for Posidonia meadows to act as significant long-term biogeochemical sinks of chemical elements.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
  9. Sapari P, Ismail BS
    Environ Monit Assess, 2012 Oct;184(10):6347-56.
    PMID: 22089624 DOI: 10.1007/s10661-011-2424-9
    The purpose of this study was to investigate the potential risk of pretilachlor, thiobencarb, and propanil pollutants in the water system of the rice fields of the Muda area. The study included two areas that used different irrigation systems namely non-recycled (N-RCL) and recycled (RCL) water. Regular water sampling was carried out at the drainage canals during the weeding period from September to October 2006 in the main season of 2006/2007 and April-May 2007 in off season of 2007. The herbicides were extracted by the solid-phase extraction method and identified using a GC-ECD. Results showed that the procedure for identification of the three herbicides was acceptable based on the recovery test values, which ranged from 84.1% to 96.9%. A wide distribution pattern where more than 79% of the water samples contained the herbicide pollutants was observed at both the areas where N-RCL and RCL water was supplied for the two seasons. During September to October 2006, high weedicide residue concentration was observed at the N-RCL area and it ranged from 0.05 to 1.00 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. In the case of the area with RCL water, the weedicide residue ranged from 1 to 5 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. The highest residue level reached was 25-50, 50-100, and 100-200 μg/L for pretilachlor, propanil, and thiobencarb, respectively. During April to May 2007, high residue concentration frequently occurred at the area supplied with N-RCL irrigation water and it ranged from 0.05 to 1.00, 10 to 25, and 25 to 50 μg/L for pretilachlor, propanil, and thiobencarb, respectively. The highest residue level reached was 25-50 μg/L for pretilachlor and 100-200 μg/L for propanil and thiobencarb. There was an accelerated increase in the concentration of the herbicide residues, with the maximum levels reached at the early period of weedicide application, followed by a sharp decrease after the rice fields were completely covered with the rice crop. During the main season of 2006/2007, the concentration of propanil residue gradually rose, although that of the other herbicides declined.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  10. Santhi VA, Mustafa AM
    Environ Monit Assess, 2013 Feb;185(2):1541-54.
    PMID: 22552495 DOI: 10.1007/s10661-012-2649-2
    A study on the quality of water abstracted for potable use was conducted in the Selangor River basin from November 2008 to July 2009. Seven sampling sites representing the intake points of water treatment plants in the basin were selected to determine the occurrence and level of 15 organochlorine pesticides (OCPs), six phthalate esters (PAEs) and bisphenol A (BPA). Results indicated OCPs were still detected regularly in 66.1 % of the samples with the Σ(15)OCPs ranging from 0.6-25.2 ng/L. The first data on PAEs contamination in the basin revealed Σ(6)PAEs concentrations were between 39.0 and 1,096.6 ng/L with a median concentration of 186.0 ng/L while BPA concentration ranged from <1.2 to 120.0 ng/L. Although di-n-butyl phthalate was detected in all the samples, concentrations of di-ethyl(hexyl)phthalate were higher. Sampling sites located downstream recorded the highest concentrations, together with samples collected during the dry season. Comparison of the detected contaminants with the Department of Environment Water Quality Index (DOE-WQI) showed some agreement between the concentration and the current classification of stream water. While the results suggest that the sites were only slightly polluted and suitable to be used as drinking water source, its presence is cause for concern especially to the fragile firefly "Pteroptyx tener" ecosystem located further downstream.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  11. Retnam A, Zakaria MP, Juahir H, Aris AZ, Zali MA, Kasim MF
    Mar Pollut Bull, 2013 Apr 15;69(1-2):55-66.
    PMID: 23452623 DOI: 10.1016/j.marpolbul.2013.01.009
    This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  12. Praveena SM, Aris AZ
    Mar Pollut Bull, 2013 Feb 15;67(1-2):196-9.
    PMID: 23260650 DOI: 10.1016/j.marpolbul.2012.11.037
    Tidal variation in tropical coastal water plays an important role on physicochemical characteristics and nutrients concentration. Baseline measurements were made for nutrients concentration and physicochemical properties of coastal water, Port Dickson, Malaysia. pH, temperature, oxidation reduction potential, salinity and electrical conductivity have high values at high tides. Principal Components Analysis (PCA) was used to understand spatial variation of nutrients and physicochemical pattern of Port Dickson coastal water at high and low tide. Four principal components of PCA were extracted at low and high tides. Positively loaded nutrients with negative loadings of DO, pH and ORP in PCA outputs indicated nutrients contribution related with pollution sources. This study output will be a baseline frame for future studies in Port Dickson involving water and sediment samples. Water and sediment samples of future monitoring studies in Port Dickson coastal water will help in understanding of coastal water chemistry and pollution sources.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  13. Prasanna MV, Chidambaram S, Shahul Hameed A, Srinivasamoorthy K
    Environ Monit Assess, 2010 Sep;168(1-4):63-90.
    PMID: 19609693 DOI: 10.1007/s10661-009-1092-5
    Gadilam river basin has gained its importance due to the presence of Neyveli Lignite open cast mines and other industrial complexes. It is also due to extensive depressurization of Cuddalore aquifer, and bore wells for New Veeranam Scheme are constructed downstream of the basin. Geochemical indicators of groundwater were used to identify the chemical processes that control hydrogeochemistry. Chemical parameters of groundwater such as pH, electrical conductivity, total dissolved solids, sodium (Na(+)), potassium (K(+)), calcium (Ca(+)), magnesium (Mg(+)), bicarbonate (HCO(-)(3)), sulfate (SO(-)(4)), phosphate (PO(-)(4)), and silica (H(4)SiO(4)) were determined. Interpretation of hydrogeochemical data suggests that leaching of ions followed by weathering and anthropogenic impact controls the chemistry of the groundwater. Isotopic study reveals that recharge from meteoric source in sedimentary terrain and rock-water interaction with significant evaporation prevails in hard rock region.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  14. Prabakaran K, Eswaramoorthi S, Nagarajan R, Anandkumar A, Franco FM
    Chemosphere, 2020 Aug;252:126430.
    PMID: 32200178 DOI: 10.1016/j.chemosphere.2020.126430
    By convention, dissolved trace elements in the river water are considered to be the fraction that passes through a 0.45 μm filter. However, several researchers have considered filtration cut-off other than 0.45 μm for the separation of dissolved trace elements from particulate fraction. Recent research indicated that trace elements could exist in particulate form as colloids and natural nanoparticles. Moreover, the trace elements in the continental dust (aerosols) constitute a significant component in their geochemical cycling. Due to their high mobility, the trace elements in the micron and sub-micron scale have biogeochemical significance in the coastal zone. In this context, this study focuses on the highly mobile fraction of trace elements in particulates (<11 μm) and dissolved form in the Lower Baram River. A factor model utilizing trace elements in the dissolved and mobile phase in the particulates (<11 μm) along with water column characteristics and the partition coefficient (Kd) of the trace elements indicated a more significant role for manganese oxyhydroxides in trace element transport. Perhaps, iron oxyhydroxides play a secondary role. The factor model further illustrated the dissolution of aluminium and authigenic clay formation. Except for Fe and Al, the contamination risk of mobile trace elements in particulates (<11 μm) together with dissolved form are within the permissible limits of the Malaysian water quality standards during monsoon (MON) and postmonsoon (POM) seasons.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
  15. Othman F, M E AE, Mohamed I
    J Environ Monit, 2012 Dec;14(12):3164-73.
    PMID: 23128415 DOI: 10.1039/c2em30676j
    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
  16. Osman R, Saim N, Juahir H, Abdullah MP
    Environ Monit Assess, 2012 Jan;184(2):1001-14.
    PMID: 21494831 DOI: 10.1007/s10661-011-2016-8
    Increasing urbanization and changes in land use in Langat river basin lead to adverse impacts on the environment compartment. One of the major challenges is in identifying sources of organic contaminants. This study presented the application of selected chemometric techniques: cluster analysis (CA), discriminant analysis (DA), and principal component analysis (PCA) to classify the pollution sources in Langat river basin based on the analysis of water and sediment samples collected from 24 stations, monitored for 14 organic contaminants from polycyclic aromatic hydrocarbons (PAHs), sterols, and pesticides groups. The CA and DA enabled to group 24 monitoring sites into three groups of pollution source (industry and urban socioeconomic, agricultural activity, and urban/domestic sewage) with five major discriminating variables: naphthalene, pyrene, benzo[a]pyrene, coprostanol, and cholesterol. PCA analysis, applied to water data sets, resulted in four latent factors explaining 79.0% of the total variance while sediment samples gave five latent factors with 77.6% explained variance. The varifactors (VFs) obtained from PCA indicated that sterols (coprostanol, cholesterol, stigmasterol, β-sitosterol, and stigmastanol) are strongly correlated to domestic and urban sewage, PAHs (naphthalene, acenaphthene, pyrene, benzo[a]anthracene, and benzo[a]pyrene) from industrial and urban activities and chlorpyrifos correlated to samples nearby agricultural sites. The results demonstrated that chemometric techniques can be used for rapid assessment of water and sediment contaminations.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
  17. Nakata H, Shinohara R, Nakazawa Y, Isobe T, Sudaryanto A, Subramanian A, et al.
    Mar Pollut Bull, 2012 Oct;64(10):2211-8.
    PMID: 22910332 DOI: 10.1016/j.marpolbul.2012.07.049
    We analyzed 68 green and blue mussels collected from Cambodia, China, Hong Kong, India, Indonesia, Japan, Korea, Malaysia, Philippines, Vietnam and the USA during 2003 and 2007, to elucidate the occurrence and widespread distributions of emerging pollutants, synthetic musks and benzotriazole UV stabilizers (BUVSs) in Asia-Pacific coastal waters. Synthetic musks and BUVSs were detected in mussels from all countries, suggesting their ubiquitous contamination and widespread distribution. High concentrations of musks and BUVSs were detected in mussels from Japan and Korea, where the levels were comparable or greater than those of PCBs, DDTs and PBDEs. Significant correlations were found between the concentrations of HHCB and AHTN, and also between the concentrations of UV-327 and UV-328, which suggest similar sources and compositions of these compounds in commercial and industrial products. To our knowledge, this is the first study of large-scale monitoring of synthetic musks and BUVSs in Asia-Pacific coastal waters.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  18. Najah A, El-Shafie A, Karim OA, El-Shafie AH
    Environ Sci Pollut Res Int, 2014 Feb;21(3):1658-1670.
    PMID: 23949111 DOI: 10.1007/s11356-013-2048-4
    We discuss the accuracy and performance of the adaptive neuro-fuzzy inference system (ANFIS) in training and prediction of dissolved oxygen (DO) concentrations. The model was used to analyze historical data generated through continuous monitoring of water quality parameters at several stations on the Johor River to predict DO concentrations. Four water quality parameters were selected for ANFIS modeling, including temperature, pH, nitrate (NO3) concentration, and ammoniacal nitrogen concentration (NH3-NL). Sensitivity analysis was performed to evaluate the effects of the input parameters. The inputs with the greatest effect were those related to oxygen content (NO3) or oxygen demand (NH3-NL). Temperature was the parameter with the least effect, whereas pH provided the lowest contribution to the proposed model. To evaluate the performance of the model, three statistical indices were used: the coefficient of determination (R (2)), the mean absolute prediction error, and the correlation coefficient. The performance of the ANFIS model was compared with an artificial neural network model. The ANFIS model was capable of providing greater accuracy, particularly in the case of extreme events.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
  19. Mokhtar MB, Praveena SM, Aris AZ, Yong OC, Lim AP
    Mar Pollut Bull, 2012 Nov;64(11):2556-63.
    PMID: 22901962 DOI: 10.1016/j.marpolbul.2012.07.030
    This study was designed as the first to assess the trace metal (Cd, Cu, Fe, Mn, Ni and Zn) in coral skeleton in relation to metal availabilities and sampling locations in Sabah. The study also aims to determine the differential abilities of Scleractinian coral species as a bioindicator of environmental conditions. Skeletons of Scleractinian coral (Hydnophora microconos, Favia speciosa and Porites lobata) showed concentrations of Fe, Mn and Ni relatively higher than Cd and Zn in the skeletons. Statistical analyses outputs showed significant relationships between trace metal concentrations in coral species and those in seawater and sediment. The highest bioaccumulation factors among three Scleractinian coral species investigated was for Zn followed by Mn, Ni, Fe, Cd and Cu can provide a sign about pollution levels. However, metal tolerance, coral structure and morphology as well as multispecies monitoring are factors that need to be a focus in future studies.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data
  20. Mohamed I, Othman F, Ibrahim AI, Alaa-Eldin ME, Yunus RM
    Environ Monit Assess, 2015 Jan;187(1):4182.
    PMID: 25433545 DOI: 10.1007/s10661-014-4182-y
    This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.
    Matched MeSH terms: Water Pollution, Chemical/statistics & numerical data*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links