Displaying publications 1 - 20 of 510 in total

Abstract:
Sort:
  1. Wang J, Mahmood Q, Qiu JP, Li YS, Chang YS, Chi LN, et al.
    Biomed Res Int, 2015;2015:617861.
    PMID: 25685798 DOI: 10.1155/2015/617861
    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.
    Matched MeSH terms: Water Purification/methods*
  2. Alwash AH, Abdullah AZ, Ismail N
    J Hazard Mater, 2012 Sep 30;233-234:184-93.
    PMID: 22831996 DOI: 10.1016/j.jhazmat.2012.07.021
    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
    Matched MeSH terms: Water Purification/methods
  3. Ismail W, Niknejad N, Bahari M, Hendradi R, Zaizi NJM, Zulkifli MZ
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71794-71812.
    PMID: 34609681 DOI: 10.1007/s11356-021-16471-0
    As clean water can be considered among the essentials of human life, there is always a requirement to seek its foremost and high quality. Water primarily becomes polluted due to organic as well as inorganic pollutants, including nutrients, heavy metals, and constant contamination with organic materials. Predicting the quality of water accurately is essential for its better management along with controlling pollution. With stricter laws regarding water treatment to remove organic and biologic materials along with different pollutants, looking for novel technologic procedures will be necessary for improved control of the treatment processes by water utilities. Linear regression-based models with relative simplicity considering water prediction have been typically used as available statistical models. Nevertheless, in a majority of real problems, particularly those associated with modeling of water quality, non-linear patterns will be observed, requiring non-linear models to address them. Thus, artificial intelligence (AI) can be a good candidate in modeling and optimizing the elimination of pollutants from water in empirical settings with the ability to generate ideal operational variables, due to its recent considerable advancements. Management and operation of water treatment procedures are supported technically by these technologies, leading to higher efficiency compared to sole dependence on human operations. Thus, establishing predictive models for water quality and subsequently, more efficient management of water resources would be critically important, serving as a strong tool. A systematic review methodology has been employed in the present work to investigate the previous studies over the time interval of 2010-2020, while analyzing and synthesizing the literature, particularly regarding AI application in water treatment. A total number of 92 articles had addressed the topic under study using AI. Based on the conclusions, the application of AI can obviously facilitate operations, process automation, and management of water resources in significantly volatile contexts.
    Matched MeSH terms: Water Purification*
  4. Ho KC, Teow YH, Sum JY, Ng ZJ, Mohammad AW
    Sci Total Environ, 2021 Mar 15;760:143966.
    PMID: 33341611 DOI: 10.1016/j.scitotenv.2020.143966
    Rapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems. This review bridges the knowledge gap by delineating the feasibility of current technologies in laundry wastewater treatment and the experiences of various countries in adopting different approaches. Besides, the feasible methods for collecting laundry wastewater are elaborated. The development of the treatment technologies is highlighted, in which the integrated-treatment processes (physicochemical, biological, and combination of both) are critically discussed based on their functions and methods. A judicious selection of the technologies not only improves the energy efficiency and quality of the treated wastewater, but also mitigates capitals and operational costs. This is projected to enhance public acceptance towards the reuse of laundry wastewater. Thus, the comprehensive assessment herein is envisioned to insightfully guide national policymakers in exploring the viability of the technologies and water-recycling projects. Future research should focus on the techno-economic aspects of the treatment processes, especially their industrial scale-up.
    Matched MeSH terms: Water Purification
  5. Ayub KR, Zakaria NA, Abdullah R, Ramli R
    Water Sci Technol, 2010;62(8):1931-6.
    PMID: 20962410 DOI: 10.2166/wst.2010.473
    The Bio-ecological Drainage System, or BIOECODS, is an urban drainage system located at the Engineering Campus, Universiti Sains Malaysia. It consists of a constructed wetland as a part of the urban drainage system to carry storm water in a closed system. In this closed system, the constructed wetland was designed particularly for further treatment of storm water. For the purpose of studying the water balance of the constructed wetland, data collection was carried out for two years (2007 and 2009). The results show that the constructed wetland has a consistent volume of water storage compared to the outflow for both years with correlation coefficients (R(2)) of 0.99 in 2007 and 0.86 in 2009.
    Matched MeSH terms: Water Purification/methods*
  6. Leong HY, Chang CK, Khoo KS, Chew KW, Chia SR, Lim JW, et al.
    Biotechnol Biofuels, 2021 Apr 07;14(1):87.
    PMID: 33827663 DOI: 10.1186/s13068-021-01939-5
    Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy-environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery-circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.
    Matched MeSH terms: Water Purification
  7. Rahman ML, Wong ZJ, Sarjadi MS, Joseph CG, Arshad SE, Musta B, et al.
    Polymers (Basel), 2021 May 06;13(9).
    PMID: 34066308 DOI: 10.3390/polym13091486
    Toxic metals in the industrial wastewaters have been liable for drastic pollution hence a powerful and economical treatment technology is needed for water purification. For this reason, some pure cellulosic materials were derived from waste fiber to obtain an economical adsorbent for wastewater treatment. Conversion of cellulose into grafting materials such as poly(methyl acrylate)-grafted cellulose was performed by free radical grafting process. Consequently, poly(hydroxamic acid) ligand was produced from the grafted cellulose. The intermediate products and poly(hydroxamic acid) ligand were analyzed by FT-IR, FE-SEM, TEM, EDX, and XPS spectroscopy. The adsorption capacity (qe) of some toxic metals ions by the polymer ligand was found to be excellent, e.g., copper capacity (qe) was 346.7 mg·g-1 at pH 6. On the other hand, several metal ions such as cobalt chromium and nickel also demonstrated noteworthy sorption capacity at pH 6. The adsorption mechanism obeyed the pseudo second-order rate kinetic model due to the satisfactory correlated experimental sorption values (qe). Langmuir model isotherm study showed the significant correlation coefficient with all metal ions (R2 > 0.99), indicating that the single or monolayer adsorption was the dominant mode on the surface of the adsorbent. This polymer ligand showed good properties on reusability. The result shows that the adsorbent may be recycled for 6 cycles without any dropping of starting sorption capabilities. This polymeric ligand showed outstanding toxic metals removal magnitude, up to 90-99% of toxic metal ions can be removed from industrial wastewater.
    Matched MeSH terms: Water Purification
  8. Sirinupong, T., Tirawat, D., Lau, W. J., Youravong, W.
    MyJurnal
    The experimental water flux of the forward osmosis (FO) process is much lower than the
    theoretical flux due to the existence of the internal concentration polarisation (ICP), external
    concentration polarisation (ECP), and membrane fouling. In the present work, vibration was
    integrated with the FO process to enhance water flux in water and Mao (Antidesma bunius L.
    Spreng) juice concentration. In addition, the capability of the FO process in preserving
    phytochemicals was studied. The use of the vibration assisted technique could enhance the
    water flux up to 23% during the FO process of distilled water due to the reduction of ICP, and
    a much higher water flux enhancement (up to 70%) was attained during the FO of Mao juice
    due to the reduction of ICP, ECP, and fouling. Phytochemicals including total phenolic
    compounds, anthocyanin, and ascorbic acid were preserved up to 82.7, 72.6, and 95.9%,
    respectively. These results suggest that membrane vibration is a promising technique for the
    enhancement of the FO process performance.
    Matched MeSH terms: Water Purification
  9. Choi D, Oh JI, Lee J, Park YK, Lam SS, Kwon EE
    Environ Int, 2019 11;132:105037.
    PMID: 31437646 DOI: 10.1016/j.envint.2019.105037
    In an effort to seek a new technical platform for disposal of drinking water treatment sludge (DWTS: alum sludge), pyrolysis of DWTS was mainly investigated in this study. To establish a more sustainable thermolytic platform for DWTS, this study particularly employed CO2 as reactive gas medium. Thus, this study laid great emphasis on elucidating the mechanistic roles of CO2 during the thermolysis of DWTS. A series of the TGA tests of DWTS in CO2 in reference to N2 revealed no occurrence of the heterogeneous reaction between CO2 and the sample surface of DWTS. As such, at the temperature regime before initiating the Boudouard reaction (i.e., ≥700 °C), the mass decay patterns of DWTS in N2 and CO2 were nearly identical. However, the gaseous effluents from lab-scale pyrolysis of DWTS in CO2 in reference to N2 were different. In sum, the homogeneous reactions between CO2 and volatile matters (VMs) evolved from the thermolysis of DWTS led to the enhanced generation of CO. Also, CO2 suppressed dehydrogenation of VMs. Such the genuine mechanistic roles of CO2 in the thermolysis of DWTS subsequently led to the compositional modifications of the chemical species in pyrolytic oil. Furthermore, the biochar composite was obtained as byproduct of pyrolysis of DWTS. Considering that the high content of Al2O3 and Fe-species in the biochar composite imparts a strong affinity for As(V), the practical use of the biochar composite as a sorptive material for arsenic (V) was evaluated at the fundamental levels. This work reported that adsorption of As(V) onto the biochar composite followed the pseudo-second order model and the Freundlich isotherm model.
    Matched MeSH terms: Water Purification
  10. Pandey AK, Reji Kumar R, B K, Laghari IA, Samykano M, Kothari R, et al.
    J Environ Manage, 2021 Nov 01;297:113300.
    PMID: 34293672 DOI: 10.1016/j.jenvman.2021.113300
    This article offers a trend of inventions and implementations of photocatalysis process, desalination technologies and solar disinfection techniques adapted particularly for treatment of industrial and domestic wastewater. Photocatalysis treatment of wastewater using solar energy is a promising renewable solution to reduce stresses on global water crisis. Rendering to the United Nation Environment Programme, 1/3 of world population live in water-stressed countries, while by 2025 about 2/3 of world population will face water scarcity. Major pollutants exhibited from numerous sources are critically discussed with focus on potential environmental impacts & hazards. Treatment of wastewater by photocatalysis technique, solar thermal electrochemical process, solar desalination of brackish water and solar advanced oxidation process have been presented and systematically analysed with challenges. Both heterogenous and homogenous photocatalysis techniques employed for wastewater treatment are critically reviewed. For treating domestic wastewater, solar desalination technologies adopted for purifying brackish water into potable water is presented along with key challenges and remedies. Advanced oxidation process using solar energy for degradation of organic pollutant is an important technique to be reviewed due to their effectiveness in wastewater treatment process. Present article focused on three key issues i.e. major pollutants, wastewater treatment techniques and environmental benefits of using solar power for removal of pollutants. The review also provides close ideas on further research needs and major concerns. Drawbacks associated with conventional wastewater treatment options and direct solar energy-based wastewater treatment with energy storage systems to make it convenient during day and night both listed. Although, energy storage systems increase the overall cost of the wastewater treatment plant it also increases the overall efficiency of the system on environmental cost. Cost-efficient wastewater treatment methods using solar power would significantly ensure effective water source utilization, thereby contributing towards sustainable development goals.
    Matched MeSH terms: Water Purification*
  11. Choy SY, Prasad KM, Wu TY, Raghunandan ME, Ramanan RN
    J Environ Sci (China), 2014 Nov 1;26(11):2178-89.
    PMID: 25458671 DOI: 10.1016/j.jes.2014.09.024
    Rapid industrial developments coupled with surging population growth have complicated issues dealing with water scarcity as the quest for clean and sanitized water intensifies globally. Existing fresh water supplies could be contaminated with organic, inorganic and biological matters that have potential harm to the society. Turbidity in general is a measure of water cloudiness induced by such colloidal and suspended matters and is also one of the major criteria in raw water monitoring to meet the stipulated water quality guidelines. Turbidity reduction is often accomplished using chemical coagulants such as alum. The use of alum is widely associated with potential development of health issues and generation of voluminous sludge. Natural coagulants that are available in abundance can certainly be considered in addressing the drawbacks associated with the use of chemical coagulants. Twenty one types of plant-based natural coagulants categorized as fruit waste and others are identified and presented collectively with their research summary in this review. The barriers and prospects of commercialization of natural coagulants in near future are also discussed.
    Matched MeSH terms: Water Purification/methods*
  12. Razak NA, Nasir R, Azmi N, Mukhtar H, Mohsim DF, Mustafa MRU
    Water Environ Res, 2023 Jun;95(6):e10900.
    PMID: 37264766 DOI: 10.1002/wer.10900
    Produced water (PW) has been generated in a huge amount representing the largest volume waste stream. Membrane technology has found a leading ability in treating PW due to its significant advantages, such as lower cost, easy installation, and being environmentally friendly. Mixed matrix membranes (MMMs) have received significant research interest due to their flexibility, multifunctionality enhances the membrane performance with increasing selectivity, permeability, robustness, mechanical strength, and resistance to fouling. This mini-review paper identifies the utilization of different membranes for treating PW. It also gives a review of different types of MMMs with specific fillers for the application of PW treatment. Lastly, some methods to enhance the performance of mixed matrix membranes have been highlighted. The issues and challenges in membranes are also discussed. PRACTITIONER POINTS: Mixed matrix membranes (MMMs) are a potential membrane type for PW treatment. This mini-review paper identifies the use of several membranes to treat PW. It also examined various types of MMMs containing specific fillers for the application of PW treatment. Methods for improving the performance of mixed matrix membranes have been highlighted, including the use of novel materials, surface modification, and cross-linking. The issues and challenges in membranes are also discussed.
    Matched MeSH terms: Water Purification*
  13. Kumar M, RaoT S, Isloor AM, Ibrahim GPS, Inamuddin, Ismail N, et al.
    Int J Biol Macromol, 2019 May 15;129:715-727.
    PMID: 30738161 DOI: 10.1016/j.ijbiomac.2019.02.017
    Cellulose acetate (CA) and cellulose acetate phthalate (CAP) were used as additives (1 wt%, 3 wt%, and 5 wt%) to prepare polyphenylsulfone (PPSU) hollow fiber membranes. Prepared hollow fiber membranes were characterized by surface morphology using scanning electron microscopy (SEM), surface roughness by atomic force microscopy (AFM), the surface charge of the membrane was analyzed by zeta potential measurement, hydrophilicity by contact angle measurement and the functional groups by fourier transform infrared spectroscopy (FTIR). Fouling resistant nature of the prepared hollow fiber membranes was evaluated by bovine serum albumin (BSA) and molecular weight cutoff was investigated using polyethylene glycol (PEG). By total organic carbon (TOC), the percentage rejection of PEG was found to be 14,489 Da. It was found that the hollow fiber membrane prepared by the addition of 5 wt% of CAP in PPSU confirmed increased arsenic removal from water as compared to hollow fiber membrane prepared by 5 wt% of CA in PPSU. The removal percentages of arsenic with CA-5 and CAP-5 hollow fiber membrane was 34% and 41% with arsenic removal permeability was 44.42 L/m2h bar and 40.11 L/m2h bar respectively. The increased pure water permeability for CA-5 and CAP-5 hollow fiber membrane was 61.47 L/m2h bar and 69.60 L/m2 h bar, respectively.
    Matched MeSH terms: Water Purification/methods*
  14. Lim SL, Chu WL, Phang SM
    Bioresour Technol, 2010 Oct;101(19):7314-22.
    PMID: 20547057 DOI: 10.1016/j.biortech.2010.04.092
    The potential application of Chlorella vulgaris UMACC 001 for bioremediation of textile wastewater (TW) was investigated using four batches of cultures in high rate algae ponds (HRAP) containing textile dye (Supranol Red 3BW) or TW. The biomass attained ranged from 0.17 to 2.26 mg chlorophyll a/L while colour removal ranged from 41.8% to 50.0%. There was also reduction of NH(4)-N (44.4-45.1%), PO(4)-P (33.1-33.3%) and COD (38.3-62.3%) in the TW. Supplementation of the TW with nutrients of Bold's Basal Medium (BBM) increased biomass production but did not improve colour removal or reduction of pollutants. The mechanism of colour removal by C. vulgaris is biosorption, in accordance with both the Langmuir and Freundlich models. The HRAP using C. vulgaris offers a good system for the polishing of TW before final discharge.
    Matched MeSH terms: Water Purification*
  15. Kato M, Azimi MD, Fayaz SH, Shah MD, Hoque MZ, Hamajima N, et al.
    Chemosphere, 2016 Dec;165:27-32.
    PMID: 27619645 DOI: 10.1016/j.chemosphere.2016.08.124
    Toxic elements in drinking water have great effects on human health. However, there is very limited information about toxic elements in drinking water in Afghanistan. In this study, levels of 10 elements (chromium, nickel, copper, arsenic, cadmium, antimony, barium, mercury, lead and uranium) in 227 well drinking water samples in Kabul, Afghanistan were examined for the first time. Chromium (in 0.9% of the 227 samples), arsenic (7.0%) and uranium (19.4%) exceeded the values in WHO health-based guidelines for drinking-water quality. Maximum chromium, arsenic and uranium levels in the water samples were 1.3-, 10.4- and 17.2-fold higher than the values in the guidelines, respectively. We next focused on uranium, which is the most seriously polluted element among the 10 elements. Mean ± SD (138.0 ± 1.4) of the (238)U/(235)U isotopic ratio in the water samples was in the range of previously reported ratios for natural source uranium. We then examined the effect of our originally developed magnesium (Mg)-iron (Fe)-based hydrotalcite-like compounds (MF-HT) on adsorption for uranium. All of the uranium-polluted well water samples from Kabul (mean ± SD = 190.4 ± 113.9 μg/L; n = 11) could be remediated up to 1.2 ± 1.7 μg/L by 1% weight of our MF-HT within 60 s at very low cost (<0.001 cents/day/family) in theory. Thus, we demonstrated not only elevated levels of some toxic elements including natural source uranium but also an effective depurative for uranium in well drinking water from Kabul. Since our depurative is effective for remediation of arsenic as shown in our previous studies, its practical use in Kabul may be encouraged.
    Matched MeSH terms: Water Purification/economics; Water Purification/methods
  16. Ang WL, Mohammad AW, Johnson D, Hilal N
    Sci Total Environ, 2020 Mar 01;706:136047.
    PMID: 31864996 DOI: 10.1016/j.scitotenv.2019.136047
    Study of forward osmosis (FO) has been increasing steadily over recent years with applications mainly focusing on desalination and wastewater treatment processes. The working mechanism of FO lies in the natural movement of water between two streams with different osmotic pressure, which makes it useful in concentrating or diluting solutions. FO has rarely been operated as a stand-alone process. Instead, FO processes often appear in a hybrid or integrated form where FO is combined with other treatment technologies to achieve better overall process performance and cost savings. This article aims to provide a comprehensive review on the need for hybridization/integration for FO membrane processes, with emphasis given to process enhancement, draw solution regeneration, and pretreatment for FO fouling mitigation. In general, integrated/hybrid FO processes can reduce the membrane fouling propensity; prepare the solution suitable for subsequent value-added uses and production of renewable energy; lower the costs associated with energy consumption; enhance the quality of treated water; and enable the continuous operation of FO through the regeneration of draw solution. The future potential of FO lies in the success of how it can be hybridized or integrated with other technologies to minimize its own shortcomings, while enhancing the overall performance.
    Matched MeSH terms: Water Purification
  17. Umar M, Aziz HA, Yusoff MS
    Waste Manag, 2010 Nov;30(11):2113-21.
    PMID: 20675113 DOI: 10.1016/j.wasman.2010.07.003
    Advanced oxidation processes (AOPs) such as Fenton, electro-Fenton and photo-Fenton have been applied effectively to remove refractory organics from landfill leachate. The Fenton reaction is based on the addition of hydrogen peroxide to the wastewater or leachate in the presence of ferrous salt as a catalyst. The use of this technique has proved to be one of the best compromises for landfill leachate treatment because of its environmental and economical advantages. Fenton process has been used successfully to mineralize wide range of organic constituents present in landfill leachate particularly those recalcitrant to biological degradation. The present study reviews the use of Fenton and related processes in terms of their increased application to landfill leachate. The effects of various operating parameters and their optimum ranges for maximum COD and color removal are reviewed with the conclusion that the Fenton and related processes are effective and competitive with other technologies for degradation of both raw and pre-treated landfill leachate.
    Matched MeSH terms: Water Purification/methods
  18. Yavari S, Malakahmad A, Sapari NB, Yavari S
    Water Sci Technol, 2017 Apr;75(7-8):1684-1692.
    PMID: 28402310 DOI: 10.2166/wst.2017.043
    Phytoremediation is an environmentally friendly and sustainable alternative for treatment of nitrogen-enriched wastewaters. In this study, Ta-khian (Hopea odorata) and Lagos mahogany (Khaya ivorensis), two tropical timber plants, were investigated for their performances in treatment of urea manufacturing factory effluent with high nitrogen (N) content. Plant seedlings received four concentrations of N (190, 240, 290 and 340 mg/L N) in laboratory-scale constructed wetlands every 4 days for a duration of 8 weeks. The solution volumes supplied to each container, amount of N recovered by plants and plant growth characteristics were measured throughout the experiment. Results showed that Ta-khian plants were highly effective at reducing N concentration and volume of water. A maximum of 63.05% N recovery was obtained by Ta-khian plants grown in 290 mg/L N, which was assimilated in the chlorophyll molecule structure and shoot biomass. Significant positive correlations have been shown between N recovery percentages and plant growth parameters. Ta-Khian plants can be applied as suitable phytoremediators for mitigating N pollution in water sources.
    Matched MeSH terms: Water Purification/instrumentation; Water Purification/methods*
  19. Alkarkhi AFM, Amr SSA, Alqaraghuli WAA, Özdemir Y, Zulkifli M, Mahmud MN
    Data Brief, 2021 Feb;34:106685.
    PMID: 33409347 DOI: 10.1016/j.dib.2020.106685
    This article provides data regarding the performance of zinc sulphate as a coagulant for treating rubber industry wastewater. The effect of four factors on removal efficiency of nine parameters is investigated, namely: pH, mixing speed, dosage of coagulant (zinc sulphate) and retention time. Response surface methodology was used to investigate the effect of selected variables. The data obtained from face centered composite design (FCCD) were analyzed by using analysis of variance (ANOVA) and regression model to find the optimum operating conditions for the selected factors.
    Matched MeSH terms: Water Purification
  20. Lee KM, Lim PE
    Water Sci Technol, 2003;47(10):41-7.
    PMID: 12862215
    The objective of this study is to investigate the potential of the activated rice husk to be used as an alternative adsorbent to powdered activated carbon (PAC) in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol. The rice husk (PRH) was activated by pyrolysis at 600 degrees C for 5 hours in a nitrogen atmosphere. Using the Langmuir model, the limiting adsorption capacities of PRH for the phenols were found to vary from 0.015-0.05 of those of PAC. The SBR reactors with and without adsorbent addition were operated with fill, react, settle, draw and idle periods in the ratio of 4:6:1:0.76:0.25 for a cycle time of 12 hours. For phenolic wastewater containing, 1,200 mg/L phenol, 1,200 mg/L p-methylphenol, 800 mg/L p-ethylphenol and 660 mg/L p-isopropylphenol, it was found that the biodegradation process alone was unable to produce effluent of quality which would satisfy the discharge standards of COD < or = 100 mg/L and phenol concentration < or = 1 mg/L. The addition of PAC in the ratio of PAC/phenolic compound at 0.095 g/g for phenol, 0.119 g/g for p-methylpheol, 0.179 g/g for p-ethylphenol and 0.220 g/g for p-isopropylphenol, can improve the effluent quality to satisfy the discharge standards. Equivalent treatment performance was achieved with the use of PRH at dosages of 2-3 times higher than those of PAC for all the phenolic wastewater studied. The increased adsorption capacity of PRH shown in the treatment indicates bioregeneration of the adsorbed surface during the treatment process.
    Matched MeSH terms: Water Purification/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links