Displaying publications 1 - 20 of 283 in total

Abstract:
Sort:
  1. Ab Halim MH, Nor Anuar A, Azmi SI, Jamal NS, Wahab NA, Ujang Z, et al.
    Bioresour Technol, 2015 Jun;185:445-9.
    PMID: 25851807 DOI: 10.1016/j.biortech.2015.03.024
    With inoculum sludge from a conventional activated sludge wastewater treatment plant, three sequencing batch reactors (SBRs) fed with synthetic wastewater were operated at different high temperatures (30, 40 and 50±1°C) to study the formation of aerobic granular sludge (AGS) for simultaneous organics and nutrients removal with a complete cycle time of 3h. The AGS were successfully cultivated with influent loading rate of 1.6CODg(Ld)(-1). The COD/N ratio of the influent wastewater was 8. The results revealed that granules developed at 50°C have the highest average diameter, (3.36mm) with 98.17%, 94.45% and 72.46% removal efficiency observed in the system for COD, ammonia and phosphate, respectively. This study also demonstrated the capabilities of AGS formation at high temperatures which is suitable to be applied for hot climate conditions.
    Matched MeSH terms: Water Purification/methods*
  2. Abd Wahid MA, Megat Mohd Noor MJ, Goto M, Sugiura N, Othman N, Zakaria Z, et al.
    Biosci Biotechnol Biochem, 2017 Aug;81(8):1642-1649.
    PMID: 28585494 DOI: 10.1080/09168451.2017.1329617
    The natural coagulant Moringa oleifera lectin (MoL) as cationic protein is a promising candidate in coagulation process of water treatment plant. Introducing the gene encoding MoL into a host, Pichia pastoris, to secrete soluble recombinant protein is assessed in this study. Initial screening using PCR confirmed the insertion of MoL gene, and SDS-PAGE analysis detected the MoL protein at 8 kDa. Cultured optimization showed the highest MoL protein at 520 mg/L was observed at 28 °C for 144 h of culturing by induction in 1% methanol. Approximately, 0.40 mg/mL of recombinant MoL protein showed 95 ± 2% turbidity removal of 1% kaolin suspension. In 0.1% kaolin suspension, the concentration of MoL at 10 μg/mL exhibits the highest turbidity reduction at 68 ± 1%. Thus, recombinant MoL protein from P. pastoris is an effective coagulant for water treatment.
    Matched MeSH terms: Water Purification/methods*
  3. Abdul-Talib S, Hvitved-Jacobsen T, Vollertsen J, Ujang Z
    Water Sci Technol, 2002;45(3):53-60.
    PMID: 11902481
    The sewer is an integral part of the urban wastewater system: the sewer, the wastewater treatment plant and the local receiving waters. The sewer is a reactor for microbial changes of the wastewater during transport, affecting the quality of the wastewater and thereby the successive treatment processes or receiving water impacts during combined sewer overflows. This paper presents the results of studies on anoxic processes, namely denitrification, in the bulk water phase of wastewater as it occurs in sewers. Experiments conducted on 12 different wastewater samples have shown that the denitrification process in the bulk wastewater can be simplified by the reduction of nitrate to nitrogen with significant accumulation of nitrite in the water phase. Utilization of nitrate was observed not to be limited by nitrate for concentrations above 5 gNO3-N/m3. The denitrification rates, under conditions of excess substrate and electron acceptor, were found to be in the range of 0.8-2.0 g NO3-N/(m3h). A discussion on the interaction of the sewer processes and the effects on a downstream located wastewater treatment plant (WWTP) is provided.
    Matched MeSH terms: Water Purification/methods*
  4. Abdullah MP, Yew CH, Ramli MS
    Water Res, 2003 Nov;37(19):4637-44.
    PMID: 14568050
    A modeling procedure that predicts trihalomethane (THM) formation from field sampling at the treatment plant and along its distribution system using Tampin district, Negeri Sembilan and Sabak Bernam district, Selangor as sources of data were studied and developed. Using Pearson method of correlation, the organic matter measured as TOC showed a positive correlation with formation of THM (r=0.380,P=0.0001 for Tampin and r=0.478,P=0.0001 for Sabak Bernam). Similar positive correlation was also obtained for pH in both districts with Tampin (r=0.362,P=0.0010) and Sabak Bernam (r=0.215,P=0.0010). Chlorine dosage was also found to have low correlation with formation of THM for the two districts with Tampin (r=0.233,P=0.0230) and Sabak Bernam (r=0.505,P=0.0001). Distance from treatment plant was found to have correlation with formation of THM for Tampin district with r=0.353 and P=0.0010. Other parameters such as turbidity, ammonia, temperature and residue chlorine were found to have no correlation with formation of THM. Linear and non-linear models were developed for these two districts. The results obtained were validated using three different sets of field data obtained from own source and district of Seremban (Pantai and Sg. Terip), Negeri Sembilan. Validation results indicated that there was significant difference in the predictive and determined values of THM when two sets of data from districts of Seremban were used with an exception of field data of Sg. Terip for non-linear model developed for district of Tampin. It was found that a non-linear model is slightly better than linear model in terms of percentage prediction errors. The models developed were site specific and the predictive capabilities in the distribution systems vary with different environmental conditions.
    Matched MeSH terms: Water Purification/methods*
  5. Abdullah N, Yusof N, Abu Shah MH, Wan Ikhsan SN, Ng ZC, Maji S, et al.
    Environ Sci Pollut Res Int, 2019 Jul;26(20):20386-20399.
    PMID: 31102226 DOI: 10.1007/s11356-019-05208-9
    In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
    Matched MeSH terms: Water Purification/methods
  6. Abdulsalam M, Che Man H, Isma Idris A, Zainal Abidin Z, Faezah Yunos K
    PMID: 30304814 DOI: 10.3390/ijerph15102200
    Palm oil mill effluent contains carcinogenic coloured compounds that are difficult to separate due to their aromatic structure. Though colour treatment using adsorption processes at lower pH (<4) have been reported effectual, due to its acidity the remediated effluent poses an environmental hazard as a result. Thus, the current study focused on achieving decolourization at neutral pH by enhancing the morphology of the coconut shell activated carbon (CSAC) using N₂ as activating-agent with microwave irradiation heating. The microwave pretreated and non-pretreated CSAC were characterized using scanned electron microscopy (SEM), energy dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) analysis. A significant modification in the porous structure with a 66.62% increase in the specific surface area was achieved after the pretreatment. The adsorption experimental matrix was developed using the central composite design to investigate the colour adsorption performance under varied pH (6⁻7), dosage (2⁻6 g) and contact time (10⁻100 min). At optimum conditions of neutral pH (7), 3.208 g dosage and contact time of 35 min, the percentage of colour removal was 96.29% with negligible differences compared with the predicted value, 95.855%. The adsorption equilibrium capacity of 1430.1 ADMI × mL/g was attained at the initial colour concentration of 2025 ADMI at 27 °C. The experimental data fitted better with the Freundlich isotherm model with R² 0.9851.
    Matched MeSH terms: Water Purification/methods*
  7. Abidin ZZ, Ismail N, Yunus R, Ahamad IS, Idris A
    Environ Technol, 2011 Jul;32(9-10):971-7.
    PMID: 21882550
    Many coagulants, mainly inorganic, are widely used in conventional water and wastewater treatment. Recent studies reported the occurrence of some chronic diseases associated with residual coagulant in treated wastewater. The use of alternative coagulants which are biodegradable and environmentally friendly could alleviate the problem associated with these diseases. This work investigates the capability of Jatropha curcas seed and presscake (the residue left after oil extraction) to reduce the turbidity of wastewater through coagulation. The coagulant was prepared by dissolving Jatropha curcas seed and presscake powder into solution. Then jar tests were conducted on kaolin solution as the model wastewater. The Jatropha seed was found to be an effective coagulant with more than 96% of turbidity removal at pH 1-3 and pH 11-12. The highest turbidity removal was recorded at pH 3 using a dosage of 120 mg/L. The flocs formed using Jatropha were observed to be bigger and to sediment faster when compared with flocs formed using alum. The turbidity removal was high (>98%) at all turbidities (100 NTU to 8000 NTU), suggesting its suitability for a wide range of industrial wastewater. The performance of Jatropha presscake after extraction of oil was also comparable to the fresh seed and alum at highly acidic and highly alkaline conditions. The addition of Jatropha did not significantly affect the pH of the kaolin samples after treatment and the sludge volume produced was less in comparison to alum. These results strongly support the use of Jatropha curcas seed and presscake as a potential coagulant agent.
    Matched MeSH terms: Water Purification/methods*
  8. Abu Amr SS, Aziz HA, Adlan MN
    Waste Manag, 2013 Jun;33(6):1434-41.
    PMID: 23498721 DOI: 10.1016/j.wasman.2013.01.039
    The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH3-N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m(3) ozone, 1g/1g COD0/S2O8(2-) ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH3-N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O3/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S2O8(2-) only, to evaluate its effectiveness. The combined method (i.e., O3/S2O8(2-)) achieved higher removal efficiencies for COD, color, and NH3-N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.
    Matched MeSH terms: Water Purification/methods*
  9. Abu Amr SS, Aziz HA, Adlan MN, Bashir MJ
    PMID: 23445415 DOI: 10.1080/10934529.2013.744611
    The objective of this study was to investigate the performance of employing Fenton's reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and Fenton dosage, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD), color, NH-N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 90 min, 30 g/m³ ozone, 0.01 mol/L₂H₂O,0.02 mol/L Fe²⁺, and pH 5. COD, color, and NH₃-N removal rates of 79%, 100%, and 20%, respectively, and 0.18 kg O₃/kg COD OC were obtained. The predictions correspond well with experimental results (COD, color, and NH-N removal rates of 78%, 98.5%, and 19%, respectively, and 0.29 kg O₃/kg COD OC). This method reduces the treatment time and improves the treatment efficiency relative to a previously published method that used Fenton's reagent prior to ozonation.
    Matched MeSH terms: Water Purification/methods*
  10. Abu Tawila ZM, Ismail S, Dadrasnia A, Usman MM
    Molecules, 2018 Oct 18;23(10).
    PMID: 30340415 DOI: 10.3390/molecules23102689
    The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 10⁵ Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH₂) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.
    Matched MeSH terms: Water Purification/methods*
  11. Adam F, Muniandy L, Thankappan R
    J Colloid Interface Sci, 2013 Sep 15;406:209-16.
    PMID: 23800370 DOI: 10.1016/j.jcis.2013.05.066
    Titania and ceria incorporated rice husk silica based catalyst was synthesized via sol-gel method using CTAB and glycerol as surface directing agents at room temperature and labeled as RHS-50Ti10Ce. The catalyst was used to study the adsorption and photodegradation of methylene blue (MB) under UV irradiation. The powder XRD pattern of RHS-50Ti10Ce was much broader (2θ=25-30°) than that of the parent RHS (2θ=22°). The catalyst exhibited type IV isotherm with H3 hysteresis loop, and the TEM images showed partially ordered pore arrangements. The TGA-DTG thermograms confirmed the complete removal of the templates after calcination at 500°C. RHS-50Ti10Ce exhibited excellent adsorption capability with more than 99% removal of MB from a 40 mg L(-1) solution in just 15 min. It also decolorized an 80 mg L(-1) MB solution under UV irradiation in 210 min, which was comparable with the commercialized pure anatase TiO2.
    Matched MeSH terms: Water Purification/methods*
  12. Adeleke AO, Latiff AAA, Al-Gheethi AA, Daud Z
    Chemosphere, 2017 May;174:232-242.
    PMID: 28171839 DOI: 10.1016/j.chemosphere.2017.01.110
    The present work aimed to develop a novel composite material made up of activated cow bone powder (CBP) as a starting material for reducing chemical oxygen demand (COD) and ammonia-nitrogen (NH3N) from palm oil mill effluent (POME). The optimization of the reduction efficiency was investigated using response surface methodology (RSM). Six independent variables used in the optimization experiments include pH (4-10), speed (0.27-9.66 rcf), contact time (2-24 h), particle size (1-4.35 mm), dilution factor (100-500) and adsorbent dosage (65-125 g/L). The chemical functional groups were determined using Fourier transform irradiation (FTIR). The elemental composition were detected using SEM-EDX, while thermal decomposition was investigated using thermo gravimetric analysis (TGA) in order to determine the effects of carbonization temperature on the adsorbent. The results revealed that the optimal reduction of COD and NH3N from raw POME was observed at pH 10, 50 rpm, within 2 h and 3 mm of particle size as well as at dilution factor of 500 and 125 g L-1 of adsorbent dosage, the observed and predicted reduction were 89.60 vs. 85.01 and 75.61 vs. 74.04%, respectively for COD and NH3N. The main functional groups in the adsorbent were OH, NH, CO, CC, COC, COH, and CH. The SEM-EDX analysis revealed that the CBP-composite has a smooth surface with high contents of carbon. The activated CBP has very stable temperature profile with no significant weight loss (9.85%). In conclusion, the CBP-composite investigated here has characteristics high potential for the remediation of COD and NH3N from raw POME.
    Matched MeSH terms: Water Purification/methods
  13. Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Alias NH
    Molecules, 2020 Jun 07;25(11).
    PMID: 32517324 DOI: 10.3390/molecules25112650
    Proper remediation of aquatic environments contaminated by toxic organic dyes has become a research focus globally for environmental and chemical engineers. This study evaluates the adsorption potential of a polymer-based adsorbent, thiourea-modified poly(acrylonitrile-co-acrylic acid) (T-PAA) adsorbent, for the simultaneous uptake of malachite green (MG) and methylene blue (MB) dye ions from binary system in a continuous flow adsorption column. The influence of inlet dye concentrations, pH, flow rate, and adsorbent bed depth on adsorption process were investigated, and the breakthrough curves obtained experimentally. Results revealed that the sorption capacity of the T-PAA for MG and MB increase at high pH, concentration and bed-depth. Thomas, Bohart-Adams, and Yoon-Nelson models constants were calculated to describe MG and MB adsorption. It was found that the three dynamic models perfectly simulate the adsorption rate and behavior of cationic dyes entrapment. Finally, T-PAA adsorbent demonstrated good cyclic stability. It can be regenerated seven times (or cycles) with no significant loss in adsorption potential. Overall, the excellent sorption capacity and multiple usage make T-PAA polymer an attractive adsorbent materials for treatment of multicomponent dye bearing effluent in a fixed-bed column system.
    Matched MeSH terms: Water Purification/methods*
  14. Adira Wan Khalit WN, Tay KS
    Environ Sci Process Impacts, 2016 May 18;18(5):555-61.
    PMID: 27062128 DOI: 10.1039/c6em00017g
    Mefenamic acid (Mfe) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the environment. This study investigated the kinetics and the transformation by-products of Mfe during aqueous chlorination. The potential ecotoxicity of the transformation by-products was also evaluated. In the kinetic study, the second-order rate constant (kapp) for the reaction between Mfe and free available chlorine (FAC) was determined at 25 ± 0.1 °C. The result indicated that the degradation of Mfe by FAC is highly pH-dependent. When the pH was increased from 6 to 8, it was found that the kapp for the reaction between Mfe and FAC was decreased from 16.44 to 4.4 M(-1) s(-1). Characterization of the transformation by-products formed during the chlorination of Mfe was carried out using liquid chromatography-quadrupole time-of-flight accurate mass spectrometry. Four major transformation by-products were identified. These transformation by-products were mainly formed through hydroxylation, chlorination and oxidation reactions. Ecotoxicity assessment revealed that transformation by-products, particularly monohydroxylated Mfe which is more toxic than Mfe, can be formed during aqueous chlorination.
    Matched MeSH terms: Water Purification/methods*
  15. Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R
    J Hazard Mater, 2009 Oct 15;170(1):357-65.
    PMID: 19464117 DOI: 10.1016/j.jhazmat.2009.04.087
    Meranti (Philippine mahogany) sawdust, an inexpensive material, showed strong scavenging behaviour through adsorption for the removal of methylene blue (MB) from aqueous solution. Batch studies were performed to evaluate and optimize the effects of various parameters such as contact time, pH, initial dye concentrations and adsorbent dosage. Langmuir, Freundlich and Temkin isotherms were used to analyze the equilibrium data at different temperatures. The experimental data fitted well with the Langmuir adsorption isotherm, indicating thereby the mono layer adsorption of the dye. The monolayer sorption capacity of meranti sawdust for MB was found to be 120.48, 117.64, 149.25 and 158.73 mg/g at 30, 40, 50 and 60 degrees C, respectively. Thermodynamic calculations showed that the MB adsorption process is endothermic and spontaneous in nature. Kinetic studies showed that the adsorption followed a pseudo-second-order kinetic model. The results indicated that the meranti sawdust could be an alternative material in place of more costly adsorbents used for dye removal.
    Matched MeSH terms: Water Purification/methods*
  16. Ahmad AA, Hameed BH
    J Hazard Mater, 2010 Mar 15;175(1-3):298-303.
    PMID: 19883979 DOI: 10.1016/j.jhazmat.2009.10.003
    In this work, the adsorption potential of bamboo waste based granular activated carbon (BGAC) to remove C.I. Reactive Black (RB5) from aqueous solution was investigated using fixed-bed adsorption column. The effects of inlet RB5 concentration (50-200mg/L), feed flow rate (10-30 mL/min) and activated carbon bed height (40-80 mm) on the breakthrough characteristics of the adsorption system were determined. The highest bed capacity of 39.02 mg/g was obtained using 100mg/L inlet dye concentration, 80 mm bed height and 10 mL/min flow rate. The adsorption data were fitted to three well-established fixed-bed adsorption models namely, Adam's-Bohart, Thomas and Yoon-Nelson models. The results fitted well to the Thomas and Yoon-Nelson models with coefficients of correlation R(2)>or=0.93 at different conditions. The BGAC was shown to be suitable adsorbent for adsorption of RB5 using fixed-bed adsorption column.
    Matched MeSH terms: Water Purification/methods*
  17. Ahmad AA, Hameed BH
    J Hazard Mater, 2010 Jan 15;173(1-3):487-93.
    PMID: 19765899 DOI: 10.1016/j.jhazmat.2009.08.111
    This study deals with the use of activated carbon prepared from bamboo waste (BMAC), as an adsorbent for the removal of chemical oxygen demand (COD) and color of cotton textile mill wastewater. Bamboo waste was used to prepare activated carbon by chemical activation using phosphoric acid (H(3)PO(4)) as chemical agent. The effects of three preparation variables activation temperature, activation time and H(3)PO(4):precursor (wt%) impregnation ratio on the color and COD removal were investigated. Based on the central composite design (CCD) and quadratic models were developed to correlate the preparation variables to the color and COD. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum condition was obtained by using temperature of 556 degrees C, activation time of 2.33 h and chemical impregnation ratio of 5.24, which resulted in 93.08% of color and 73.98% of COD.
    Matched MeSH terms: Water Purification/methods*
  18. Ahmad AL, Chong MF, Bhatia S
    J Hazard Mater, 2009 Nov 15;171(1-3):166-74.
    PMID: 19573986 DOI: 10.1016/j.jhazmat.2009.05.114
    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost.
    Matched MeSH terms: Water Purification/methods*
  19. Ahmad AL, Wong SS, Teng TT, Zuhairi A
    J Hazard Mater, 2007 Jun 25;145(1-2):162-8.
    PMID: 17161910
    Coagulation-flocculation is a proven technique for the treatment of high suspended solids wastewater. In this study, the central composite face-centered design (CCFD) and response surface methodology (RSM) have been applied to optimize two most important operating variables: coagulant dosage and pH, in the coagulation-flocculation process of pulp and paper mill wastewater treatment. The treated wastewater with high total suspended solids (TSS) removal, low SVI (sludge volume index) and high water recovery are the main objectives to be achieved through the coagulation-flocculation process. The effect of interactions between coagulant dosage and pH on the TSS removal and SVI are significant, whereas there is no interaction between coagulant dosage and water recovery. Quadratic models have been developed for the response variables, i.e. TSS removal, SVI and water recovery based on the high coefficient of determination (R(2)) value of >0.99 obtained from the analysis of variances (ANOVA). The optimum conditions for coagulant dosage and pH are 1045mgL(-1) and 6.75, respectively, where 99% of TSS removal, SVI of 37mLg(-1) and 82% of water recovery can be obtained.
    Matched MeSH terms: Water Purification/methods*
  20. Ahmad AL, Ismail S, Bhatia S
    Environ Sci Technol, 2005 Apr 15;39(8):2828-34.
    PMID: 15884382
    The coagulation-flocculation process incorporated with membrane separation technology will become a new approach for palm oil mill effluent (POME) treatment as well as water reclamation and reuse. In our current research, a membrane pilot plant has been used for POME treatment where the coagulation-flocculation process plays an important role as a pretreatment process for the mitigation of membrane fouling problems. The pretreated POME with low turbidity values and high water recovery are the main objectives to be achieved through the coagulation-flocculation process. Therefore, treatment optimization to serve these purposes was performed using jar tests and applying a response surface methodology (RSM) to the results. A 2(3) full-factorial central composite design (CCD) was chosen to explain the effect and interaction of three factors: coagulant dosage, flocculent dosage, and pH. The CCD is successfully demonstrated to efficiently determine the optimized parameters, where 78% of water recovery with a 20 NTU turbidity value can be obtained at the optimum value of coagulant dosage, flocculent dosage, and pH at 15 000 mg/L, 300 mg/L, and 6, respectively.
    Matched MeSH terms: Water Purification/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links