Displaying publications 1 - 20 of 283 in total

Abstract:
Sort:
  1. Sadiq AC, Olasupo A, Ngah WSW, Rahim NY, Suah FBM
    Int J Biol Macromol, 2021 Nov 30;191:1151-1163.
    PMID: 34600954 DOI: 10.1016/j.ijbiomac.2021.09.179
    The presence of dyes in the aquatic environment as a result of anthropogenic activities, especially textile industries, is a critical environmental challenge that hinders the availability of potable water. Different wastewater treatment approaches have been used to remediate dyes in aquatic environments; however, most of these approaches are limited by factors ranging from high cost to the incomplete removal of the dyes and contaminants. Thus, the use of adsorption as a water treatment technology to remove dyes and other contaminants has been widely investigated using different adsorbents. This study evaluated the significance of chitosan as a viable adsorbent for removing dyes from water treatment. We summarised the literature and research results obtained between 2009 and 2020 regarding the adsorption of dyes onto chitosan and modified chitosan-based adsorbents prepared through physical and chemical processing, including crosslinking impregnation, grafting, and membrane preparation. Furthermore, we demonstrated the effects of various chitosan-based materials and modifications; they all improve the properties of chitosan by promoting the adsorption of dyes. Hence, the application of chitosan-based materials with various modifications should be considered a cutting-edge approach for the remediation of dyes and other contaminants in aquatic environments toward the global aim of making potable water globally available.
    Matched MeSH terms: Water Purification/methods*
  2. Altowayti WAH, Othman N, Al-Gheethi A, Dzahir NHBM, Asharuddin SM, Alshalif AF, et al.
    Molecules, 2021 Oct 13;26(20).
    PMID: 34684757 DOI: 10.3390/molecules26206176
    Sustainable wastewater treatment is one of the biggest issues of the 21st century. Metals such as Zn2+ have been released into the environment due to rapid industrial development. In this study, dried watermelon rind (D-WMR) is used as a low-cost adsorption material to assess natural adsorbents' ability to remove Zn2+ from synthetic wastewater. D-WMR was characterized using scanning electron microscope (SEM) and X-ray fluorescence (XRF). According to the results of the analysis, the D-WMR has two colours, white and black, and a significant concentration of mesoporous silica (83.70%). Moreover, after three hours of contact time in a synthetic solution with 400 mg/L Zn2+ concentration at pH 8 and 30 to 40 °C, the highest adsorption capacity of Zn2+ onto 1.5 g D-WMR adsorbent dose with 150 μm particle size was 25 mg/g. The experimental equilibrium data of Zn2+ onto D-WMR was utilized to compare nonlinear and linear isotherm and kinetics models for parameter determination. The best models for fitting equilibrium data were nonlinear Langmuir and pseudo-second models with lower error functions. Consequently, the potential use of D-WMR as a natural adsorbent for Zn2+ removal was highlighted, and error analysis indicated that nonlinear models best explain the adsorption data.
    Matched MeSH terms: Water Purification/methods*
  3. Ikram M, Hayat S, Imran M, Haider A, Naz S, Ul-Hamid A, et al.
    Carbohydr Polym, 2021 Oct 01;269:118346.
    PMID: 34294353 DOI: 10.1016/j.carbpol.2021.118346
    In the present study, the novel Ag/cellulose nanocrystal (CNC)-doped CeO2 quantum dots (QDs) with highly efficient catalytic performance were synthesized using one pot co-precipitation technique, which were then applied in the degradation of methylene blue and ciprofloxacin (MBCF) in wastewater. Catalytic activity against MBCF dye was significantly reduced (99.3%) for (4%) Ag dopant concentration in acidic medium. For Ag/CNC-doped CeO2 vast inhibition domain of G-ve was significantly confirmed as (5.25-11.70 mm) and (7.15-13.60 mm), while medium- to high-concentration of CNC levels were calculated for G + ve (0.95 nm, 1.65 mm), respectively. Overall, (4%) Ag/CNC-doped CeO2 revealed significant antimicrobial activity against G-ve relative to G + ve at both concentrations, respectively. Furthermore, in silico molecular docking studies were performed against selected enzyme targets dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and DNA gyrase belonging to folate and nucleic acid biosynthetic pathway, respectively to rationalize possible mechanism behind bactericidal potential of CNC-CeO2 and Ag/CNC-CeO2.
    Matched MeSH terms: Water Purification/methods
  4. Fan S, Ji B, Abu Hasan H, Fan J, Guo S, Wang J, et al.
    Bioprocess Biosyst Eng, 2021 Aug;44(8):1733-1739.
    PMID: 33772637 DOI: 10.1007/s00449-021-02556-0
    Microalgal-bacterial granular sludge (MBGS) process has become a focal point in treating municipal wastewater. However, it remains elusive whether the emerging process can be applied for the treatment of aquaculture wastewater, which contains considerable concentrations of nitrate and nitrite. This study evaluated the feasibility of MBGS process for aquaculture wastewater treatment. Result showed that the MBGS process was competent to remove respective 64.8%, 84.9%, 70.8%, 50.0% and 84.2% of chemical oxygen demand, ammonia-nitrogen, nitrate-nitrogen, nitrite-nitrogen and phosphate-phosphorus under non-aerated conditions within 8 h. The dominant microalgae and bacteria were identified to be Coelastrella and Rhodobacteraceae, respectively. Further metagenomics analysis implied that microbial assimilation was the main contributor in organics, nitrogen and phosphorus removal. Specifically, considerable nitrate and nitrite removals were also obtained with the synergy between microalgae and bacteria. Consequently, this work demonstrated that the MBGS process showed a prospect of becoming an environmentally friendly and efficient alternative in aquaculture wastewater treatment.
    Matched MeSH terms: Water Purification/methods*
  5. Tuan DD, Hung C, Da Oh W, Ghanbari F, Lin JY, Lin KA
    Chemosphere, 2020 Dec;261:127552.
    PMID: 32731015 DOI: 10.1016/j.chemosphere.2020.127552
    As cobalt (Co) represents an effective transition metal for activating Oxone to degrade contaminants, tricobalt tetraoxide (Co3O4) is extensively employed as a heterogeneous phase of Co for Oxone activation. Since Co3O4 can be manipulated to exhibit various shapes, 2-dimensional plate-like morphology of Co3O4 can offer large contact surfaces. If the large plate-like surfaces can be even porous, forming porous nanoplate Co3O4 (PNC), such a PNC should be a promising catalyst for Oxone activation. Therefore, a facile but straightforward method is proposed to prepare such a PNC for activating Oxone to degrade pollutants. In particular, a cobaltic coordination polymer with a morphology of hexagonal nanoplate, which is synthesized through coordination between Co2+ and thiocyanuric acid (TCA), is adopted as a precursor. Through calcination, CoTCA could be transformed into hexagonal nanoplate-like Co3O4 with pores to become PNC. This PNC also shows different characteristics from the commercial Co3O4 nanoparticle (NP) in terms of surficial reactivity and textural properties. Thus, PNC exhibits a much higher catalytic activity than the commercial Co3O4 NP towards activation of Oxone to degrade a model contaminant, salicylic acid (SA). Specifically, SA was 100% degraded by PNC activating Oxone within 120 min, and the Ea of SA degradation by PNC-activated Oxone is 70.2 kJ/mol. PNC can also remain stable and effective for SA degradation even in the presence of other anions, and PNC could be reused over multiple cycles without significant loss of catalytic activity. These features validate that PNC is a promising and useful Co-based catalyst for Oxone activation.
    Matched MeSH terms: Water Purification/methods*
  6. Mohammed IA, Jawad AH, Abdulhameed AS, Mastuli MS
    Int J Biol Macromol, 2020 Oct 15;161:503-513.
    PMID: 32534088 DOI: 10.1016/j.ijbiomac.2020.06.069
    Chitosan (CS) was physically modified with fly ash (FA) powder and subjected to chemical cross-linking reaction with tripolyphosphate (TPP) to produce a cross-linked CS-TPP/FA composite as adsorbent for removal of reactive orange 120 (RR120) dye. Different ratios of FA such as 25% FA particles (CS-TPP/FA-25) and 50% FA particles (CS-TPP/FA-50) were loaded into the molecular structure of CS-TPP. Box-Behnken design (BBD) was applied to optimize the input variables that affected the synthesis of the adsorbent and the adsorption of RR120 dye. These variables included FA loading (A: 0-50%), adsorbent dose (B: 0.04-0.1 g), solution pH (C: 4-10), temperature (D: 30 °C-60 °C), and time (E: 30-90 min). Results revealed that the highest removal (88.8%) of RR120 dye was achieved by CS-TPP/FA-50 at adsorbent dosage of 0.07 g, solution of pH 4, temperature of 45 °C, and time of 60 min. The adsorption equilibrium was described by the Freundlich model, with 165.8 mg/g at 45 °C as the maximum adsorption capacity of CS-TPP/FA-50 for RR120 dye. This work introduces CS-TPP/FA-50 as an ideal composite adsorbent for removal of textile dyes from the aqueous environment.
    Matched MeSH terms: Water Purification/methods
  7. Nordin NA, Abdul Rahman N, Abdullah AH
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640766 DOI: 10.3390/molecules25133081
    Heavy metal pollution, such as lead, can cause contamination of water resources and harm human life. Many techniques have been explored and utilized to overcome this problem, with adsorption technology being the most common strategies for water treatment. In this study, carbon nanofibers, polyacrylonitrile (PAN)/sago lignin (SL) carbon nanofibers (PAN/SL CNF) and PAN/SL activated carbon nanofibers (PAN/SL ACNF), with a diameter approximately 300 nm, were produced by electrospinning blends of polyacrylonitrile and sago lignin followed by thermal and acid treatments and used as adsorbents for the removal of Pb(II) ions from aqueous solutions. The incorporation of biodegradable and renewable SL in PAN/SL blends fibers produces the CNF with a smaller diameter than PAN only but preserves the structure of CNF. The adsorption of Pb(II) ions on PAN/SL ACNF was three times higher than that of PAN/SL CNF. The enhanced removal was due to the nitric acid treatment that resulted in the formation of surface oxygenated functional groups that promoted the Pb(II) ions adsorption. The best-suited adsorption conditions that gave the highest percentage removal of 67%, with an adsorption capacity of 524 mg/g, were 40 mg of adsorbent dosage, 125 ppm of Pb(II) solution, pH 5, and a contact time of 240 min. The adsorption data fitted the Langmuir isotherm and the pseudo-second-order kinetic models, indicating that the adsorption is a monolayer, and is governed by the availability of the adsorption sites. With the adsorption capacity of 588 mg/g, determined via the Langmuir isotherm model, the study demonstrated the potential of PAN/SL ACNFs as the adsorbent for the removal of Pb(II) ions from aqueous solution.
    Matched MeSH terms: Water Purification/methods*
  8. Adeyi AA, Jamil SNAM, Abdullah LC, Choong TSY, Lau KL, Alias NH
    Molecules, 2020 Jun 07;25(11).
    PMID: 32517324 DOI: 10.3390/molecules25112650
    Proper remediation of aquatic environments contaminated by toxic organic dyes has become a research focus globally for environmental and chemical engineers. This study evaluates the adsorption potential of a polymer-based adsorbent, thiourea-modified poly(acrylonitrile-co-acrylic acid) (T-PAA) adsorbent, for the simultaneous uptake of malachite green (MG) and methylene blue (MB) dye ions from binary system in a continuous flow adsorption column. The influence of inlet dye concentrations, pH, flow rate, and adsorbent bed depth on adsorption process were investigated, and the breakthrough curves obtained experimentally. Results revealed that the sorption capacity of the T-PAA for MG and MB increase at high pH, concentration and bed-depth. Thomas, Bohart-Adams, and Yoon-Nelson models constants were calculated to describe MG and MB adsorption. It was found that the three dynamic models perfectly simulate the adsorption rate and behavior of cationic dyes entrapment. Finally, T-PAA adsorbent demonstrated good cyclic stability. It can be regenerated seven times (or cycles) with no significant loss in adsorption potential. Overall, the excellent sorption capacity and multiple usage make T-PAA polymer an attractive adsorbent materials for treatment of multicomponent dye bearing effluent in a fixed-bed column system.
    Matched MeSH terms: Water Purification/methods*
  9. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
    Matched MeSH terms: Water Purification/methods*
  10. Choong CE, Wong KT, Jang SB, Nah IW, Choi J, Ibrahim S, et al.
    Chemosphere, 2020 Jan;239:124765.
    PMID: 31520981 DOI: 10.1016/j.chemosphere.2019.124765
    In this study, palm shell activated carbon powder (PSAC) and magnesium silicate (MgSiO3) modified PSAC (MPSAC) were thoroughly investigated for fluoride (F-) adsorption. F- adsorption isotherms showed that PSAC and MPSAC over-performed some other reported F- adsorbents with adsorption capacities of 116 mg g-1 and 150 mg g-1, respectively. Interestingly, the MgSiO3 impregnated layer changed the adsorption behavior of F- from monolayer to heterogeneous multilayer based on the Langmuir and Freundlich isotherm models verified by chi-square test (X2). Thermodynamic parameters indicated that the F- adsorption on PSAC and MPSAC was spontaneous and exothermic. PSAC and MPSAC were characterized using FESEM-EDX, XRD, FTIR and XPS to investigate the F- adsorption mechanism. Based on the regeneration tests using NaOH (0.01 M), PSAC exhibited poor regeneration (<20%) while MPSAC had steady adsorption efficiencies (∼70%) even after 5 regeneration cycles. This is due to highly polarized C-F bond was found on PSAC while Mg-F bond was distinguished on MPSAC, evidently denoting that the F- adsorption is mainly resulted from the exchange of hydroxyl (-OH) group. It was concluded that PSAC would be a potential adsorbent for in-situ F- groundwater remediation due to its capability to retain F- without leaching out in a wide range pH. MPSAC would be an alternative adsorbent for ex-situ F- water remediation because it can easily regenerate with NaOH solution. With the excellent F- adsorption properties, both PSAC and MPSAC offer as promising adsorbents for F- remediation in the aqueous phase.
    Matched MeSH terms: Water Purification/methods
  11. Daffalla SB, Mukhtar H, Shaharun MS
    PLoS One, 2020;15(12):e0243540.
    PMID: 33275643 DOI: 10.1371/journal.pone.0243540
    Rice husk is a base adsorbent for pollutant removal. It is a cost-effective material and a renewable resource. This study provides the physicochemical characterization of chemically and thermally treated rice husk adsorbents for phenol removal from aqueous solutions. We revealed new functional groups on rice husk adsorbents by Fourier transform infrared spectroscopy, and observed major changes in the pore structure (from macro-mesopores to micro-mesopores) of the developed rice husk adsorbents using scanning electron microscopy. Additionally, we studied their surface area and pore size distribution, and found a greater enhancement of the morphological structure of the thermally treated rice husk compared with that chemically treated. Thermally treated adsorbents presented a higher surface area (24-201 m2.g-1) than those chemically treated (3.2 m2.g-1). The thermal and chemical modifications of rice husk resulted in phenol removal efficiencies of 36%-64% and 28%, respectively. Thus, we recommend using thermally treated rice husk as a promising adsorbent for phenol removal from aqueous solutions.
    Matched MeSH terms: Water Purification/methods*
  12. Yau XH, Khe CS, Mohamed Saheed MS, Lai CW, You KY, Tan WK
    PLoS One, 2020;15(4):e0232490.
    PMID: 32353051 DOI: 10.1371/journal.pone.0232490
    Oily wastewater, especially water-oil emulsion has become serious environmental issue and received global attention. Chemical demulsifiers are widely used to treat oil-water emulsion, but the toxicity, non-recyclable and non-environmental friendly characteristic of chemical demulsifiers had limited their practical application in oil-water separation. Therefore, it is imperative to develop an efficient, simple, eco-friendly and recyclable demulsifiers for breaking up the emulsions from the oily wastewater. In this study, a magnetic demulsifier, magnetite-reduced graphene oxide (M-rGO) nanocomposites were proposed as a recyclable demulsifier to break up the surfactant stabilized crude oil-in-water (O/W) emulsion. M-rGO nanocomposites were prepared via in situ chemical synthesis by using only one type Fe salt and GO solid as precursor at room temperature. The prepared composites were fully characterized by various techniques. The effect of demulsifier dosage and pH of emulsion on demulsification efficiency (ED) has been studied in detailed. The demulsification mechanism was also proposed in this study. Results showed that M-rGO nanocomposites were able to demulsify crude O/W emulsion. The ED reaches 99.48% when 0.050 wt.% of M-rGO nanocomposites were added to crude O/W emulsion (pH = 4). Besides, M-rGO nanocomposites can be recycled up to 7 cycles without showing a significant change in terms of ED. Thus, M-rGO nanocomposite is a promising demulsifier for surfactant stabilized crude O/W emulsion.
    Matched MeSH terms: Water Purification/methods*
  13. Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113182.
    PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182
    Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
    Matched MeSH terms: Water Purification/methods*
  14. Mohd Hanafiah Z, Wan Mohtar WHM, Abu Hasan H, Jensen HS, Klaus A, Wan-Mohtar WAAQI
    Sci Rep, 2019 11 06;9(1):16109.
    PMID: 31695087 DOI: 10.1038/s41598-019-52493-y
    The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia-nitrogen (NH3-N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3-N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3-N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3-N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.
    Matched MeSH terms: Water Purification/methods*
  15. Danial R, Sobri S, Abdullah LC, Mobarekeh MN
    Chemosphere, 2019 Oct;233:559-569.
    PMID: 31195261 DOI: 10.1016/j.chemosphere.2019.06.010
    In this study, the performance of glyphosate removal in an electrocoagulation batch with two electrodes formed by the same metal type, consisting of aluminum, iron, steel and copper have been compared. The aim of this study intends to remove glyphosate from an aqueous solution by an electrocoagulation process using metal electrode plates, which involves electrogeneration of metal cations as coagulant agents. The production of metal cations showed an ability to bind together to form aggregates of flocs composed of a combination of glyphosate and metal oxide. Electrocoagulation using aluminum electrodes indicated a high percentage removal of glyphosate, 94.25%; followed by iron electrodes, 88.37%; steel electrodes, 62.82%; and copper electrodes, 46.69%. The treated aqueous solution was then analyzed by Fourier Transform Infrared Spectroscopy. Percentages of Carbon, Hydrogen, Nitrogen, Sulfur remaining in the treated aqueous solution after the electrocoagulation process have been determined. The treated water and sludge were characterized and the mechanism of the overall process was concluded as an outcome. An X-Ray Diffraction analysis of dried sludge confirmed that new polymeric compounds were formed during the treatment. The sludge composed of new compounds were also verified the removals. This study revealed that an electrocoagulation process using metal electrodes is reliable and efficient.
    Matched MeSH terms: Water Purification/methods
  16. Nasir AM, Goh PS, Abdullah MS, Ng BC, Ismail AF
    Chemosphere, 2019 Oct;232:96-112.
    PMID: 31152909 DOI: 10.1016/j.chemosphere.2019.05.174
    Heavy metal contamination in aqueous system has attracted global attention due to the toxicity and carcinogenicity effects towards living bodies. Among available removal techniques, adsorptive removal by nanosized materials such as metal oxide, metal organic frameworks, zeolite and carbon-based materials has attracted much attention due to the large active surface area, large number of functional groups, high chemical and thermal stability which led to outstanding adsorption performance. However, the usage of nanosized materials is restricted by the difficulty in separating the spent adsorbent from aqueous solution. The shift towards the use of adsorptive composite membrane for heavy metal ions removal has attracted much attention due to the synergistic properties of adsorption and filtration approaches in a same chamber. Thus, this review critically discusses the development of nanoadsorbents and adsorptive nanocomposite membranes for heavy metal removal over the last decade. The adsorption mechanism of heavy metal ions by the advanced nanoadsorbents is also discussed using kinetic and isotherm models. The challenges and future prospect of adsorptive membrane technology for heavy metal removal is presented at the end of this review.
    Matched MeSH terms: Water Purification/methods
  17. Altowayti WAH, Allozy HGA, Shahir S, Goh PS, Yunus MAM
    Environ Sci Pollut Res Int, 2019 Oct;26(28):28737-28748.
    PMID: 31376124 DOI: 10.1007/s11356-019-06059-0
    Several parts of the world have been facing the problem of nitrite and nitrate contamination in ground and surface water. The acute toxicity of nitrite has been shown to be 10-fold higher than that of nitrate. In the present study, aminated silica carbon nanotube (ASCNT) was synthesised and tested for nitrite removal. The synergistic effects rendered by both amine and silica in ASCNT have significantly improved the nitrite removal efficiency. The IEP increased from 2.91 for pristine carbon nanotube (CNT) to 8.15 for ASCNT, and the surface area also increased from 178.86 to 548.21 m2 g-1. These properties have promoted ASCNT a novel adsorbent to remove nitrite. At optimum conditions of 700 ppm of nitrite concentration at pH 7 and 5 h of contact with 15 mg of adsorbent, the ASCNT achieved the maximal loading capacity of 396 mg/g (85% nitrite removal). The removal data of nitrite onto ASCNT fitted the Langmuir isotherm model better than the Freundlich isotherm model with the highest regression value of 0.98415, and also, the nonlinear analysis of kinetics data showed that the removal of nitrite followed pseudo-second-order kinetic. The positive values of both ΔS° and ΔH° suggested an endothermic reaction and an increase in randomness at the solid-liquid interface. The negative ΔG° values indicated a spontaneous adsorption process. The ASCNT was characterised using FESEM-EDX and FTIR, and the results obtained confirmed the removal of nitrite. Based on the findings, ASCNT can be considered as a novel and promising candidate for the removal of nitrite ions from wastewater.
    Matched MeSH terms: Water Purification/methods
  18. Fiyadh SS, AlOmar MK, Binti Jaafar WZ, AlSaadi MA, Fayaed SS, Binti Koting S, et al.
    Int J Mol Sci, 2019 Aug 28;20(17).
    PMID: 31466219 DOI: 10.3390/ijms20174206
    Multi-walled carbon nanotubes (CNTs) functionalized with a deep eutectic solvent (DES) were utilized to remove mercury ions from water. An artificial neural network (ANN) technique was used for modelling the functionalized CNTs adsorption capacity. The amount of adsorbent dosage, contact time, mercury ions concentration and pH were varied, and the effect of parameters on the functionalized CNT adsorption capacity is observed. The (NARX) network, (FFNN) network and layer recurrent (LR) neural network were used. The model performance was compared using different indicators, including the root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute percentage error (MAPE), mean square error (MSE), correlation coefficient (R2) and relative error (RE). Three kinetic models were applied to the experimental and predicted data; the pseudo second-order model was the best at describing the data. The maximum RE, R2 and MSE were 9.79%, 0.9701 and 1.15 × 10-3, respectively, for the NARX model; 15.02%, 0.9304 and 2.2 × 10-3 for the LR model; and 16.4%, 0.9313 and 2.27 × 10-3 for the FFNN model. The NARX model accurately predicted the adsorption capacity with better performance than the FFNN and LR models.
    Matched MeSH terms: Water Purification/methods*
  19. Hassandoost R, Pouran SR, Khataee A, Orooji Y, Joo SW
    J Hazard Mater, 2019 08 15;376:200-211.
    PMID: 31128399 DOI: 10.1016/j.jhazmat.2019.05.035
    The main prerequisite of an active visible-light-driven photocatalyst is to effectively utilize the visible light to induce electron-hole (e-/h+) pairs of expanded lifetime. To this end, for the first time, the ternary heterojunctions of CeO2/Fe3O4 /Graphene oxide and Ce3+/ Fe3O4 /Graphene oxide (CeO2/Fe3O4/GO and Fe2.8Ce0.2O4/GO) were prepared via facile ultrasonic-assisted procedures and employed for destruction of oxytetracycline (OTC) under visible light irradiation. The changes in the relative crystal structure, morphology, atomic and surface functional group composition, magnetic, and optic properties of magnetite were uncovered by various techniques. The substantial degradation and mineralization of OTC via visible light/Fe2.8Ce0.2O4/GO system were thoroughly discussed in terms of narrowed band gap energy, the principal function of Ce3+/Ce4+ and Fe2+/Fe3+ redox pairs and GO platelets, enhanced charge separation and transfer, and enlarged active surface area. Furthermore, the performance of visible light/Fe2.8Ce0.2O4/GO system was evaluated for treating real wastewater and its efficiency was investigated using a number of enhancers and scavengers. Finally, the generated byproducts in the course of photodegradation were determined and the oxidation pathway, photocatalytic kinetics, and plausible mechanism were proposed. The results confirmed that the introduced Ce ions and graphene oxide sheets boost the photo-catalytic efficiency of magnetite for photodegradation of OTC.
    Matched MeSH terms: Water Purification/methods*
  20. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
    Matched MeSH terms: Water Purification/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links