Displaying publications 1 - 20 of 283 in total

Abstract:
Sort:
  1. Zulkeflee Z, Sánchez A
    Water Sci Technol, 2014;70(6):1032-9.
    PMID: 25259492 DOI: 10.2166/wst.2014.329
    An innovative approach using soybean residues for the production of bioflocculants through solid-state fermentation was carried out in 4.5 L near-to-adiabatic bioreactors at pilot-scale level. An added inoculum of the strain Bacillus subtilis UPMB13 was tested in comparison with control reactors without any inoculation after the thermophilic phase of the fermentation. The flocculating performances of the extracted bioflocculants were tested on kaolin suspensions, and crude bioflocculants were obtained from 20 g of fermented substrate through ethanol precipitation. The production of bioflocculants was observed to be higher during the death phase of microbial growth. The bioflocculants were observed to be granular in nature and consisted of hydroxyl, carboxyl and methoxyl groups that aid in their flocculating performance. The results show the vast potential of the idea of using wastes to produce bioactive materials that can replace the current dependence on chemicals, for future prospect in water treatment applications.
    Matched MeSH terms: Water Purification/methods*
  2. Jong VS, Tang FE
    Water Sci Technol, 2014;70(2):352-60.
    PMID: 25051484 DOI: 10.2166/wst.2014.237
    A two-staged engineered wetland-based system was designed and constructed to treat raw domestic septage. Hydraulic loading rates (HLRs) of 8.75 and 17.5 cm/d were studied with four and eight daily dosings at the second stage of the system to investigate the influence of the regimes on septage treatment. Removal of organic matter (OM) was found to be HLR dependent, where the results indicated that the increase of HLR from 8.75 to 17.5 cm/d impaired the overall level of treatment in the wetland units. Effluent of wetland fed at HLR 17.5 cm/d presented significantly lower oxygen reduction potential and dissolved oxygen values than wetland fed at 8.75 cm/d, indicative of the occurrence of less aerobic and reductive conditions in the bed. The reoxygenation capability of the wetland units was found to be heavily affected by the dosing frequency especially under high hydraulic load (17.5 cm/d). NH3-N degradation was found to decrease with statistical importance when the wetland was flushed two times more frequently with smaller batches of influent. The number of hydraulic load fractionings did not seem to affect the level of treatments of OM and ammonia for both the wetlands fed under the lower HLR of 8.75 cm/d. Prediction of hydraulic limits and management of the feeding strategies are important in the vertical type of engineered wetlands to guarantee the treatment performance and minimize the chances of filter clogging.
    Matched MeSH terms: Water Purification/methods
  3. Mohajeri S, Aziz HA, Zahed MA, Mohajeri L, Bashir MJ, Aziz SQ, et al.
    Water Sci Technol, 2011;64(8):1652-60.
    PMID: 22335108
    Landfill leachate is one of the most recalcitrant wastes for biotreatment and can be considered a potential source of contamination to surface and groundwater ecosystems. In the present study, Fenton oxidation was employed for degradation of stabilized landfill leachate. Response surface methodology was applied to analyze, model and optimize the process parameters, i.e. pH and reaction time as well as the initial concentrations of hydrogen peroxide and ferrous ion. Analysis of variance showed that good coefficients of determination were obtained (R2 > 0.99), thus ensuring satisfactory agreement of the second-order regression model with the experimental data. The results indicated that, pH and its quadratic effects were the main factors influencing Fenton oxidation. Furthermore, antagonistic effects between pH and other variables were observed. The optimum H2O2 concentration, Fe(II) concentration, pH and reaction time were 0.033 mol/L, 0.011 mol/L, 3 and 145 min, respectively, with 58.3% COD, 79.0% color and 82.1% iron removals.
    Matched MeSH terms: Water Purification/methods
  4. Al-Amri A, Salim MR, Aris A
    Water Sci Technol, 2011;64(7):1398-405.
    PMID: 22179635 DOI: 10.2166/wst.2011.421
    A study has been carried out to define the effect of drastic temperature changes on the performance of lab-scale hollow-fibre MBR in treating municipal wastewater at a flux of 10 L m(-2) h(-1) (LMH). The objectives of the study were to estimate the activated sludge properties, the removal efficiencies of COD and NH(3)-N and the membrane fouling tendency under critical conditions of drastic temperature changes (23, 33, 42 & 33 °C) and MLSS concentration ranged between 6,382 and 8,680 mg/L. The study exhibited that the biomass reduction, the low sludge settleability and the supernatant turbidity were results of temperature increase. The temperature increase led to increase in SMP carbohydrate and protein, and to decrease in EPS carbohydrate and protein. The BRE of COD dropped from 80% at 23 °C to 47% at 42 °C, while the FRE was relatively constant at about 90%. Both removal efficiencies of NH(3)-N trended from about 100% at 33 °C to less than 50% at 42 °C. TMP and BWP ascended critically with temperature increase up to 336 and 304 mbar respectively by the end of the experiment. The values of suspended solids (SS) and the turbidity in the final effluent were negligible. The DO in the mixed liquor was varying with temperature change, while the pH was within the range of 6.7-8.3.
    Matched MeSH terms: Water Purification/methods*
  5. Haron MJ, Tiansin M, Ibrahim NA, Kassim A, Wan Yunus WM, Talebi SM
    Water Sci Technol, 2011;63(8):1788-93.
    PMID: 21866782
    This paper describes the sorption of Pb(ll) from aqueous solution. Oil palm empty fruit bunch (OPEFB) fiber was first grafted with poly(methylacrylate) and then treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid (PHA) grafted OPEFB. Sorption of Pb(ll) by PHA-OPEFB was maximum at pH 5. The sorption followed the Langmuir model with maximum capacityof 125.0 mg g-1 at 25 degrees C. The sorption process was exothermic, as shown by the negative value of enthalpy change, Delta H0. The free energy change (DeltaG0) for the sorption was negative, showing that the sorption process was spontaneous. A kinetic study showed that the Pb(ll) sorption followed a second order kinetic model.
    Matched MeSH terms: Water Purification/methods
  6. Damayanti A, Ujang Z, Salim MR, Olsson G
    Water Sci Technol, 2011;63(8):1701-6.
    PMID: 21866771
    Biofouling is a crucial factor in membrane bioreactor (MBR) applications, particularly for high organic loading operations. This paper reports a study on biofouling in an MBR to establish a relationship between critical flux, Jc, mixed liquor suspended solids (MLSS) (ranging from 5 to 20 g L-1) and volumetric loading rate (6.3 kg COD m-3 h-1) of palm oil mill effluent (POME). A lab-scale 100 L hybrid MBR consisting of anaerobic, anoxic, and aerobic reactors was used with flat sheet microfiltration (MF) submerged in the aerobic compartment. The food-to-microorganism (F/M) ratio was maintained at 0.18 kg COD kg-1 MLSSd-1. The biofouling tendency of the membrane was obtained based on the flux against the transmembrane pressure (TMP) behaviour. The critical flux is sensitive to the MLSS. At the MLSS 20 g L-1 the critical flux is about four times lower than that for the MLSS concentration of 5 g L-1. The results showed high removal efficiency of denitrification and nitrification up to 97% at the MLSS concentration 20 g L-1. The results show that the operation has to compromise between a high and a low MLSS concentration. The former will favour a higher removal rate, while the latter will favour a higher critical flux.
    Matched MeSH terms: Water Purification/methods
  7. Zainal-Abideen M, Aris A, Yusof F, Abdul-Majid Z, Selamat A, Omar SI
    Water Sci Technol, 2012;65(3):496-503.
    PMID: 22258681 DOI: 10.2166/wst.2012.561
    In this study of coagulation operation, a comparison was made between the optimum jar test values for pH, coagulant and coagulant aid obtained from traditional methods (an adjusted one-factor-at-a-time (OFAT) method) and with central composite design (the standard design of response surface methodology (RSM)). Alum (coagulant) and polymer (coagulant aid) were used to treat a water source with very low pH and high aluminium concentration at Sri-Gading water treatment plant (WTP) Malaysia. The optimum conditions for these factors were chosen when the final turbidity, pH after coagulation and residual aluminium were within 0-5 NTU, 6.5-7.5 and 0-0.20 mg/l respectively. Traditional and RSM jar tests were conducted to find their respective optimum coagulation conditions. It was observed that the optimum dose for alum obtained through the traditional method was 12 mg/l, while the value for polymer was set constant at 0.020 mg/l. Through RSM optimization, the optimum dose for alum was 7 mg/l and for polymer was 0.004 mg/l. Optimum pH for the coagulation operation obtained through traditional methods and RSM was 7.6. The final turbidity, pH after coagulation and residual aluminium recorded were all within acceptable limits. The RSM method was demonstrated to be an appropriate approach for the optimization and was validated by a further test.
    Matched MeSH terms: Water Purification/methods*
  8. Ayub KR, Zakaria NA, Abdullah R, Ramli R
    Water Sci Technol, 2010;62(8):1931-6.
    PMID: 20962410 DOI: 10.2166/wst.2010.473
    The Bio-ecological Drainage System, or BIOECODS, is an urban drainage system located at the Engineering Campus, Universiti Sains Malaysia. It consists of a constructed wetland as a part of the urban drainage system to carry storm water in a closed system. In this closed system, the constructed wetland was designed particularly for further treatment of storm water. For the purpose of studying the water balance of the constructed wetland, data collection was carried out for two years (2007 and 2009). The results show that the constructed wetland has a consistent volume of water storage compared to the outflow for both years with correlation coefficients (R(2)) of 0.99 in 2007 and 0.86 in 2009.
    Matched MeSH terms: Water Purification/methods*
  9. Ngu LH, Law PL, Wong KK, Yusof AA
    Water Sci Technol, 2010;62(5):1129-35.
    PMID: 20818055 DOI: 10.2166/wst.2010.407
    This research investigated the effects of co- and counter-current flow patterns on oil-water-solid separation efficiencies of a circular separator with inclined coalescence mediums. Oil-water-solid separations were tested at different influent concentrations and flowrates. Removal efficiencies increased as influent flowrate decreased, and their correlationship can be represented by power equations. These equations were used to predict the required flowrate, Q(ss50), for a given influent suspended solids concentration C(iss) to achieve the desired effluent suspended solids concentration, C(ess) of 50 mg/L, to meet environmental discharge requirements. The circular separator with counter-current flow was found to attend removal efficiencies relatively higher as compared to the co-current flow. As compared with co-current flow, counter-current flow Q(ss50) was approximately 1.65 times higher than co-current flow. It also recorded 13.16% higher oil removal at influent oil concentration, C(io) of 100 mg/L, and approximately 5.89% higher TSS removal at all influent flowrates. Counter-current flow's better removal performances were due to its higher coalescing area and constant interval between coalescence plate layers.
    Matched MeSH terms: Water Purification/methods*
  10. Hamdan R, Mara DD
    Water Sci Technol, 2011;63(5):841-4.
    PMID: 21411931 DOI: 10.2166/wst.2011.102
    Rock filters are an established technology for polishing waste stabilization pond effluents. However, they rapidly become anoxic and consequently do not remove ammonium-nitrogen. Horizontal-flow aerated rock filters (HFARF), developed to permit nitrification and hence ammonium-N removal, were compared with a novel vertical-flow aerated rock filter (VFARF). There were no differences in the removals of BOD5, TSS and TKN, but the VFARF consistently produced effluents with lower ammonium-N concentrations (<0.3 mg N/L) than the HFARF (0.8-1.5 mg N/L) and higher nitrate-N concentrations (24-29 mg N/L vs. 17-24 mg N/L).
    Matched MeSH terms: Water Purification/methods*
  11. Bashir MJ, Aziz HA, Yusoff MS, Huqe AA, Mohajeri S
    Water Sci Technol, 2010;61(3):641-9.
    PMID: 20150700 DOI: 10.2166/wst.2010.867
    Landfill leachate is one of the major contamination sources. In this study, the ability of synthetic ion exchange resins which carry different mobile ion for removing color, chemical oxygen demand (COD), and ammonia nitrogen (NH(3)-N) from stabilized leachate was investigated. The synthetic resin INDION 225 Na as a cationic exchanger and INDION FFIP MB as an anionic exchanger were used in this study. INDION 225 Na was used in hydrogen form (H(+)) and in sodium form (Na(+)), while INDION FFIP MB resin was used in hydroxide form (OH(-)) and in calcium form (Cl(-)) form. The results indicated better removal of color, COD and NH(3)-N by using INDION 225 Na in H(+) as compared with Na(+) form, while no performance differences were observed by using INDION FFIP MB in OH(-) or Cl(-) form. Applying cationic resin followed by anionic resin achieved 97, 88 and 94, percent removal of color, COD and NH(3)-N. The residual amounts were 160 Pt-Co, 290 mg/L and 110 mg/L of color, COD and NH(3)-N respectively.
    Matched MeSH terms: Water Purification/methods*
  12. Ho YC, Norli I, Alkarkhi AF, Morad N
    Water Sci Technol, 2009;60(3):771-81.
    PMID: 19657173 DOI: 10.2166/wst.2009.303
    The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.
    Matched MeSH terms: Water Purification/methods*
  13. Ibrahim Z, Amin MF, Yahya A, Aris A, Muda K
    Water Sci Technol, 2010;61(5):1279-88.
    PMID: 20220250 DOI: 10.2166/wst.2010.021
    Textile wastewater, one of the most polluted industrial effluents, generally contains substantial amount of dyes and chemicals that will cause increase in the COD, colour and toxicity of receiving water bodies if not properly treated. Current treatment methods include chemical and biological processes; the efficiency of the biological treatment method however, remains uncertain since the discharged effluent is still highly coloured. In this study, granules consisting mixed culture of decolourising bacteria were developed and the physical and morphological characteristics were determined. After the sixth week of development, the granules were 3-10 mm in diameter, having good settling property with settling velocity of 70 m/h, sludge volume index (SVI) of 90 to 130 mL/g, integrity coefficient of 3.7, and density of 66 g/l. Their abilities to treat sterilised raw textile wastewater were evaluated based on the removal efficiencies of COD (initial ranging from 200 to 3,000 mg/L), colour (initial ranging from 450 to 2000 ADMI) of sterilised raw textile wastewater with pH from 6.8 to 9.4. Using a sequential anaerobic-aerobic treatment cycle with hydraulic retention time (HRT) of 24 h, maximum removal of colour and COD achieved was 90% and 80%, respectively.
    Matched MeSH terms: Water Purification/methods*
  14. Mohajeri S, Aziz HA, Isa MH, Zahed MA, Bashir MJ, Adlan MN
    Water Sci Technol, 2010;61(5):1257-66.
    PMID: 20220248 DOI: 10.2166/wst.2010.018
    In the present study, Electrochemical Oxidation was used to remove COD and color from semi-aerobic landfill leachate collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. Experiments were conducted in a batch laboratory-scale system in the presence of NaCl as electrolyte and aluminum electrodes. Central composite design (CCD) under Response surface methodology (RSM) was applied to optimize the electrochemical oxidation process conditions using chemical oxygen demand (COD) and color removals as responses, and the electrolyte concentrations, current density and reaction time as control factors. Analysis of variance (ANOVA) showed good coefficient of determination (R(2)) values of >0.98, thus ensuring satisfactory fitting of the second-order regression model with the experimental data. In un-optimized condition, maximum removals for COD (48.77%) and color (58.21%) were achieved at current density 80 mA/cm(2), electrolyte concentration 3,000 mg/L and reaction time 240 min. While after optimization at current density 75 mA/cm(2), electrolyte concentration 2,000 mg/L and reaction time 218 min a maximum of 49.33 and 59.24% removals were observed for COD and color respectively.
    Matched MeSH terms: Water Purification/methods
  15. Ujang Z, Ng KS, Tg Hamzah TH, Roger P, Ismail MR, Shahabudin SM, et al.
    Water Sci Technol, 2007;56(9):103-8.
    PMID: 18025737
    A pilot scale membrane plant was constructed and monitored in Shah Alam, Malaysia for municipal wastewater reclamation for industrial application purposes. The aim of this study was to verify its suitability under the local conditions and environmental constraints for secondary wastewater reclamation. Immersed-type crossflow microfiltration (IMF) was selected as the pretreatment step before reverse osmosis filtration. Secondary wastewater after chlorine contact tank was selected as feed water. The results indicated that the membrane system is capable of producing a filtrate meeting the requirements of both WHO drinking water standards and Malaysian Effluent Standard A. With the application of an automatic backwash process, IMF performed well in hydraulic performance with low fouling rate being achieved. The investigations showed also that chemical cleaning is still needed because of some irreversible fouling by microorganisms always remains. RO treatment with IMF pretreatment process was significantly applicable for wastewater reuse purposes and promised good hydraulic performance.
    Matched MeSH terms: Water Purification/methods*
  16. Yin CY, Aroua MK, Daud WM
    Water Sci Technol, 2007;56(9):95-101.
    PMID: 18025736
    Palm shell activated carbon was modified via surface impregnation with polyethyleneimine (PEI) to enhance removal of Cu(2+) from aqueous solution in this study. The effect of PEI modification on batch adsorption of Cu(2+) as well as the equilibrium behavior of adsorption of metal ions on activated carbon were investigated. PEI modification clearly increased the Cu(2+) adsorption capacities by 68% and 75.86% for initial solution pH of 3 and 5 respectively. The adsorption data of Cu(2+) on both virgin and PEI-modified AC for both initial solution pH of 3 and 5 fitted the Langmuir and Redlich-Peterson isotherms considerably better than the Freundlich isotherm.
    Matched MeSH terms: Water Purification/methods*
  17. Salmiati, Ujang Z, Salim MR, Md Din MF, Ahmad MA
    Water Sci Technol, 2007;56(8):179-85.
    PMID: 17978446
    This study aimed to produce polyhydroxyalkanoates (PHAs) from organic wastes by mixed bacterial cultures using anaerobic-aerobic fermentation systems. Palm oil mill effluent (POME) was used as an organic source, which was cultivated in a two-step-process of acidogenesis and acid polymerization. POME was operated in a continuous flow anaerobic reactor to access volatile fatty acids (VFAs) for PHAs production. During fermentation, VFA concentration was produced in the range of 5 to 8 g/L and the COD concentration reduced up to 80% from 65 g/L. The VFA from anaerobic fermentation was then utilised for PHA production using a mixed culture in availability of aerobic bioreactor. Production of PHAs was recorded high when using a high volume of substrates because of the higher VFA concentration. Even though the maximum PHA content was observed at only 40% of the cell dried weight (CDW), their production and performance are significant in mixed microbial culture.
    Matched MeSH terms: Water Purification/methods
  18. Idris A, Ahmed I, Jye HW
    Water Sci Technol, 2007;56(8):169-77.
    PMID: 17978445
    The objective of this research is to investigate the performance of blend cellulose acetate (CA)-polyethersulphone (PES) membranes prepared using microwave heating (MWH) techniques and then compare it with blend CA-PES membranes prepared using conventional heating (CH) methods using bovine serum albumin solution. The superior membranes were then used in the treatment of palm oil mill effluent (POME). Various blends of CA-PES have been blended with PES in the range of 1-5 wt%. This distinctive series of dope formulations of blend CA/PES and pure CA was prepared using N, N-dimethylformamide (DMF) as solvent. The dope solution was prepared by MW heating for 5 min at a high pulse and the membranes were prepared by phase inversion method. The performances of these membranes were evaluated in terms of pure water and permeate flux, percentage removal of total suspended solids (TSS), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). The results indicate that blend membranes prepared using the microwave technique is far more superior compared to that prepared using CH. Blend membranes with 19% CA, 1-3% PES and 80% of DMF solvent were found to be the best membrane formulation.
    Matched MeSH terms: Water Purification/methods*
  19. Razak AR, Ujang Z, Ozaki H
    Water Sci Technol, 2007;56(8):161-8.
    PMID: 17978444
    Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C(6)OCL(5)Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITAB(TM) software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.
    Matched MeSH terms: Water Purification/methods*
  20. Ujang Z, Soedjono E, Salim MR, Shutes RB
    Water Sci Technol, 2005;52(12):243-50.
    PMID: 16477992
    Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.
    Matched MeSH terms: Water Purification/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links