Displaying publications 1 - 20 of 204 in total

Abstract:
Sort:
  1. Zulkafli Abdul Rashid, Mohammad Noor Azmai Amal
    Sains Malaysiana, 2018;47:1941-1951.
    This study assesses the influence of water quality on fish occurrences in Sungai Pahang, Maran District, Pahang, Malaysia. Water quality and fish samplings were conducted at seven sampling sites in the district for 13 consecutive months. We used canonical correspondence analyses (CCA) to determine the influence of water quality on monthly fish species occurrences. The ranges of water quality parameters were quite high considering the measurements were made during rainy and dry seasons throughout the year. A total of 2,075 individual fish was captured which comprised of 22 different families and 65 species. Family Cyprinidae recorded the highest number of fish species of the area (27 species; 41.5%), followed by Bagridae (five species; 7.69%) and Pangasiidae (five species; 7.69%). Three fish species categorized as endangered, including Balantiocheilos melanopterus, Probarbus jullieni and Pangasianodon hypophthalmus were also collected. The collected fish species were divided into three groups (A to C), which was clearly separated in the CCA ordination diagram. The most important water quality variables for the fish occurrences in this river were pH, followed by temperature, conductivity, alkalinity and phosphate. Data analysis indicates that the occurrence of fishes were influenced by a combination of water quality parameters, but not associated with sampling month. The results present a new data from a study of fish assemblage and their habitat condition which may be important in fisheries activity and fish conservation of the river in the future.
    Matched MeSH terms: Water Quality
  2. Zokaeifar H, Babaei N, Saad CR, Kamarudin MS, Sijam K, Balcazar JL
    Fish Shellfish Immunol, 2014 Jan;36(1):68-74.
    PMID: 24161773 DOI: 10.1016/j.fsi.2013.10.007
    In this study, vegetative cell suspensions of two Bacillus subtilis strains, L10 and G1 in equal proportions, was administered at two different doses 10(5) (BM5) and 10(8) (BM8) CFU ml(-1) in the rearing water of shrimp (Litopenaeus vannamei) for eight weeks. Both probiotic groups showed a significant reduction of ammonia, nitrite and nitrate ions under in vitro and in vivo conditions. In comparison to untreated control group, final weight, weight gain, specific growth rate (SGR), food conversion ratio (FCR) and digestive enzymatic activity were significantly greater in the BM5 and BM8 groups. Significant differences for survival were recorded in the BM8 group as compared to the control. Eight weeks after the start of experiment, shrimp were challenged with Vibrio harveyi. Statistical analysis revealed significant differences in shrimp survival between probiotic and control groups. Cumulative mortality of the control group was 80%, whereas cumulative mortality of the shrimp that had been given probiotics was 36.7% with MB8 and 50% with MB5. Subsequently, real-time RT-PCR was employed to determine the mRNA levels of prophenoloxidase (proPO), peroxinectin (PE), lipopolysaccharide- and β-1,3-glucan- binding protein (LGBP) and serine protein (SP). The expression of all immune-related genes studied was only significantly up-regulated in the BM5 group compared to the BM8 and control groups. These results suggest that administration of B. subtilis strains in the rearing water confers beneficial effects for shrimp aquaculture, considering water quality, growth performance, digestive enzymatic activity, immune response and disease resistance.
    Matched MeSH terms: Water Quality
  3. Zin, Thant, SabaiAung, Tin, Sahipudin Saupin, Myint, Than, KhinSN, Daw, Aung, Meiji Soe, et al.
    MyJurnal
    The lower percentage of water, sanitation and hygiene are the root causes of diarrhoea and cholera. Cholera is a sudden onset of acute watery diarrhoea which can progress to severe dehydration and death if untreated. The current pandemic, Vibrio Cholera O1 started in 1961. This study explores water, sanitation, hygiene and cholera and diarrhoea in three affected villages of Beluran District, Sabah Malaysia to support effective and timely public health intervention. This cross sectional study uses purposive sampling. All (114) households were interviewed and household water samples collected. The study reported lower coverage improved sanitation facilities (35.3% to 52.3%), no latrine at home (37% to 63%), improved water supply (52% to 60%), and prevalence of hand washing after toilet (57% - 74%). For water quality, Ecoli was present in household water (32% to 37%) but Vibrio cholerae was not isolated in any of the water samples tested. Statistically significant associations were found for; 1) occupation−nonagriculture and unimproved sanitation facility and 2) house ownership and correct knowledge of ORS preparation. Predictors for household water quality were: latrine at home, and improved household toilet. Aggressive strategies to improve water supply, sanitation and hygiene−hand washing after toilet−were recommended for future prevention of cholera and diarrhoea in the affected area.
    Matched MeSH terms: Water Quality
  4. Zin T, Mudin KD, Myint T, Naing DKS, Sein T, Shamsul BS
    WHO South East Asia J Public Health, 2013 Jan-Mar;2(1):6-11.
    PMID: 28612817 DOI: 10.4103/2224-3151.115828
    BACKGROUND AND OBJECTIVES: Water and sanitation are major public health issues exacerbated by rapid population growth, limited resources, disasters and environmental depletion. This study was undertaken to study the influencing factors for household water quality improvement for reducing diarrhoea in resource-limited areas.

    MATERIALS AND METHODS: Data were collected from articles and reviews from relevant randomized controlled trials, new articles, systematic reviews and meta-analyses from PubMed, World Health Organization (WHO), United Nations Children's Fund (UNICEF) and WELL Resource Centre For Water, Sanitation And Environmental Health.

    DISCUSSION: Water quality on diarrhoea prevention could be affected by contamination during storage, collection and even at point-of-use. Point-of-use water treatment (household-based) is the most cost-effective method for prevention of diarrhoea. Chemical disinfection, filtration, thermal disinfection, solar disinfection and flocculation and disinfection are five most promising household water treatment methodologies for resource-limited areas.

    CONCLUSION: Promoting household water treatment is most essential for preventing diarrhoeal disease. In addition, the water should be of acceptable taste, appropriate for emergency and non-emergency use.
    Matched MeSH terms: Water Quality
  5. Zainurin SN, Wan Ismail WZ, Mahamud SNI, Ismail I, Jamaludin J, Ariffin KNZ, et al.
    Int J Environ Res Public Health, 2022 Oct 28;19(21).
    PMID: 36360992 DOI: 10.3390/ijerph192114080
    Nowadays, water pollution has become a global issue affecting most countries in the world. Water quality should be monitored to alert authorities on water pollution, so that action can be taken quickly. The objective of the review is to study various conventional and modern methods of monitoring water quality to identify the strengths and weaknesses of the methods. The methods include the Internet of Things (IoT), virtual sensing, cyber-physical system (CPS), and optical techniques. In this review, water quality monitoring systems and process control in several countries, such as New Zealand, China, Serbia, Bangladesh, Malaysia, and India, are discussed. Conventional and modern methods are compared in terms of parameters, complexity, and reliability. Recent methods of water quality monitoring techniques are also reviewed to study any loopholes in modern methods. We found that CPS is suitable for monitoring water quality due to a good combination of physical and computational algorithms. Its embedded sensors, processors, and actuators can be designed to detect and interact with environments. We believe that conventional methods are costly and complex, whereas modern methods are also expensive but simpler with real-time detection. Traditional approaches are more time-consuming and expensive due to the high maintenance of laboratory facilities, involve chemical materials, and are inefficient for on-site monitoring applications. Apart from that, previous monitoring methods have issues in achieving a reliable measurement of water quality parameters in real time. There are still limitations in instruments for detecting pollutants and producing valuable information on water quality. Thus, the review is important in order to compare previous methods and to improve current water quality assessments in terms of reliability and cost-effectiveness.
    Matched MeSH terms: Water Quality*
  6. Zainol Z, Akhir MF, Zainol Z
    Mar Pollut Bull, 2021 Mar;164:112011.
    PMID: 33485016 DOI: 10.1016/j.marpolbul.2021.112011
    Setiu Wetland is rapidly developing into an aquaculture and agriculture hub, causing concern about its water quality condition. To address this issue, it is imperative to acquire knowledge of the spatial and temporal distributions of pollutants. Consequently, this study applied combinations of hydrodynamic and particle tracking models to identify the transport behaviour of pollutants and calculate the residence time in Setiu Lagoon. The particle tracking results indicated that the residence time in Setiu Lagoon was highly influenced by the release location, where particles released closer to the river mouth exhibited shorter residence times than those released further upstream. Despite this fact, the pulse of river discharges successfully reduced the residence time in the order of two to twelve times shorter. Under different tidal phases, the residence time during the neap tide was longer regardless of heavy rainfalls, implying the domination of tidal flow in the water renewal within the lagoon.
    Matched MeSH terms: Water Quality
  7. Zainol Z, Akhir MF, Johari A, Ali A
    Data Brief, 2021 Apr;35:106866.
    PMID: 33816725 DOI: 10.1016/j.dib.2021.106866
    This article contains water quality data collected in a shallow and narrow Setiu Lagoon during the southwest monsoon, wet period of northeast monsoon and dry period of northeast monsoon. The surface water quality parameters, which include the temperature, salinity, chlorophyll-a and nutrients (ammonia, nitrate, phosphate, and silicate) were sampled twice per day (high and low tides) at a total of eight stations. Hourly current speed and direction was obtained from mooring of two units of current meters. Compared to the Malaysia Marine Water Quality Criteria and Standard (MWQCS), nutrients in Setiu Lagoon were in Class 2. Although limited, this dataset can provide insights on the changes of water quality condition in Setiu Lagoon under the presence of anthropogenic pressures.
    Matched MeSH terms: Water Quality
  8. Zainol NFM, Zainuddin AH, Looi LJ, Aris AZ, Isa NM, Sefie A, et al.
    PMID: 34071804 DOI: 10.3390/ijerph18115733
    Rapid urbanization and industrial development in the Langat Basin has disturbed the groundwater quality. The populations' reliance on groundwater sources may induce possible risks to human health such as cancer and endocrine dysfunction. This study aims to determine the groundwater quality of an urbanized basin through 24 studied hydrochemical parameters from 45 groundwater samples obtained from 15 different sampling stations by employing integrated multivariate analysis. The abundance of the major ions was in the following order: bicarbonate (HCO3-) > chloride (Cl-) > sodium (Na+) > sulphate (SO42-) > calcium (Ca2+) > potassium (K+) > magnesium (Mg2+). Heavy metal dominance was in the following order: Fe > Mn > Zn > As > Hg > Pb > Ni > Cu > Cd > Se > Sr. Classification of the groundwater facies indicated that the studied groundwater belongs to the Na-Cl with saline water type and Na-HCO3 with mix water type characteristics. The saline water type characteristics are derived from agricultural activities, while the mixed water types occur from water-rock interaction. Multivariate analysis performance suggests that industrial, agricultural, and weathering activities have contributed to groundwater contamination. The study will help in the understanding of the groundwater quality issue and serve as a reference for other basins with similar characteristics.
    Matched MeSH terms: Water Quality
  9. Zaini Hamzah, Siti Afiqah Abdul Rahman, Ahmad Saat, Siti Shahrina Agos, Zaharudin Ahmad
    MyJurnal
    The presence of 226 Ra in water is a great concern in human life since it can cause health risk to a certain extent. In the state of Kelantan, being known of its granitic area, there is a lack measurement of 226 Ra content in river water, since water is the major source of water supply. According to the INTERIM National Water Quality Standards for Malaysia (INWQS), 226 Ra activity concentration in water cannot exceed 0.1 Bq/L. For this reasons, this research was planned to carry out a systematic measurement of water along Sungai Kelantan. Liquid Scintillation Counting was used for measurement of 226 Ra in water samples from Sungai Kelantan mainly in district of Kuala Krai. In this paper, the results obtained is about 26 water samples, filtered and unfiltered, collected along Sungai Lebir, Sungai Sok and Bukit Sabah. Thus, the assessment activity concentration of 226 Ra in river water was obtained as well as annual effective dose for consumption of drinking water.
    Matched MeSH terms: Water Quality
  10. Zaini Hamzah, Masitah Alias, Siti Afiqah Abdul Rahman, Mohamed Kassim, Ahmad Saat, Abdul Kadir Ishak
    MyJurnal
    Recently, Malaysia has taken a positive step toward providing a better water quality by introducing more water quality parameters into its Water Quality Standard. With regard to the natural radionuclides that may present in the water, 3 parameters were introduced that is gross alpha, gross beta and radium which need to be measured and cannot exceed 0.1, 1.0 and 1.0 Bq/L respectively. This study was conducted to develop a more practical method in measuring these parameters in aqueous environmental samples. Besides having a lot of former tin mining areas, some part of Malaysia is located on the granitic rock which also contributes to a certain extent the amount of natural radionuclides such as uranium and thorium. For all we know these two radionuclides are the origin of other radionuclides being produced from their decay series. The State of Kelantan was chosen as the study area, where the water samples were collected from various part of the Kelantan River. 25 liters of samples were collected, acidify to pH 2 and filtered before the analysis. Measurement of these parameters was done using liquid scintillation counter (LSC). The LSC was set up to
    the optimum discriminator level and counting was done using alpha-beta mode. The results show that gross alpha and beta can be measured using scintillation cocktail and radium and radon using extraction method. The results for gross alpha, gross beta, 222Ra and 226Ra are 0.39-6.42, 0.66-16.18, 0.40-4.65 and 0.05-0.56 Bq/L. MDA for gross alpha, gross beta and radium is 0.03, 0.08 and 0.00035 Bq/L respectively.
    Matched MeSH terms: Water Quality
  11. Zaini Hamzah, Masitah Alias, Ahmad Saat, Abdul Kadir Ishak
    MyJurnal
    The issue of water quality is a never ended issue and becoming more critical when considering the presence of natural radionuclides. Physical parameters and the levels of radionuclides may have some correlation and need further attention. In this study, the former tin mine lake in Kampong Gajah was chosen as a study area for its past historical background which might contribute to attenuation of the levels of natural radionuclides in water. The water samples were collected from different lakes using water sampler and some in-situ measurement were conducted to measure physical parameters as well as surface dose level. The water samples were analyzed for its gross alpha and gross beta activity concentrations using liquid scintillation counting and in-house cocktail method. Gross alpha and beta analyzed using in-house cocktail are in the range of 3.17 to 8.20 Bq/L and 9.89 to 22.20 Bq/L; 1.64 to 8.78 Bq/L and 0.22 to 28.22 Bq/L, respectively for preserved and un-preserved sample. The surface dose rate measured using survey meter is in the range of 0.07 to 0.21 μSv/h and 0.07 to 0.2 μSv/h for surface and 1 meter above the surface of the water, respectively.
    Matched MeSH terms: Water Quality
  12. Zaini Hamzah, Wan Noorhayani Wan Rosdi, Abdul Khalik Wood
    MyJurnal
    Well water is a renewable natural resources and one of the drinking water sources. The well water may constituted of dissolved essential chemicals such as K+, Ca''+ and Na+ ; and natural radionuclides such as radioisotopes from uranium-thorium decay series. The geology and mineral composition of the soil will determined the kinds and levels of chemical contents in the groundwater resources. The water flows through the geological formation and dissolved the chemicals before reaching the aquifers. To evaluate how much chemicals and natural radioactive in the water resources, a study has been carried out. Well water samples in this study were taken from 3 districts in Kelantan, which is Bachok, Machang and Kuala Krai. Similarly, in situ water quality parameters were measured using YSI portable water quality parameter include pH, salinity, dissolve oxygen(DO), conductivity, turbidity and total dissolved solids(TDS). The concentrations of K', Ca" and Na' were determined using Energy Dispersive X-ray Fluorescence (EDXRF). Five ml of filtered sample was pipette into the sample cup and, irradiated and measured for 100 seconds counting times. The type of filter used for measuring If+ and Cat{ was Al-thin and default for Nat The ranged of concentration of Kt Ce and Na+ is 23.04-251.89, 3.12-.45.41, and 3.71-125.75 ppm, respectively.
    Matched MeSH terms: Water Quality
  13. Zaidi Farouk MIH, Jamil Z, Abdul Latip MF
    Environ Res, 2023 Dec 01;238(Pt 1):117147.
    PMID: 37716398 DOI: 10.1016/j.envres.2023.117147
    The exponential growth of human population and anthropogenic activities have led to the increase of global surface water contamination especially in river, lakes and ocean. Safe and clean surface water sources are crucial to human health and well-being, aquatic ecosystem, environment and economy. Thus, water monitoring is vital to ensure minimal and controllable contamination in the water sources. The conventional surface water monitoring method involves collecting samples on site and then testing them in the laboratory, which is time-consuming and not able to provide real-time water quality data. In addition, it involves many manpower and resources, costly and lack of integration. These make surface water quality monitoring more challenging. The incorporation of Internet of Things (IoT) and smart technology has contributed to the improvement of monitoring system. There are different approaches in the development and implementation of online surface water quality monitoring system to provide real-time data collection with lower operating cost. This paper reviews the sensors and system developed for the online surface water quality monitoring system in the previous studies. The calibration and validation of the sensors, and challenges in the design and development of online surface water quality monitoring system are also discussed.
    Matched MeSH terms: Water Quality*
  14. Zahidi I, Wilson G, Brown K, Hou FKK
    J Health Pollut, 2020 Dec;10(28):201207.
    PMID: 33324504 DOI: 10.5696/2156-9614-10.28.201207
    Background: Rivers are susceptible to pollution and water pollution is a growing problem in low- and middle-income countries (LMIC) with rapid development and minimal environmental protections. There are universal pollutant threshold values, but they are not directly linked to river activities such as sand mining and aquaculture. Water quality modelling can support assessments of river pollution and provide information on this important environmental issue.

    Objectives: The objective of the present study was to demonstrate water quality modelling methodology in reviewing existing policies for Malaysian river catchments based on an example case study.

    Methods: The MIKE 11 software developed by the Danish Hydraulic Institute was used to model the main pollutant point sources within the study area - sand mining and aquaculture. Water quality data were obtained for six river stations from 2000 to 2015. All sand mining and aquaculture locations and approximate production capacities were quantified by ground survey. Modelling of the sand washing effluents was undertaken with the advection-dispersion module due to the nature of the fine sediment. Modelling of the fates of aquaculture deposits required both advection-dispersion and Danish Hydraulic Institute ECO Lab modules to simulate the detailed interactions between water quality determinants.

    Results: According to the Malaysian standard, biochemical oxygen command (BOD) and ammonium (NH4) parameters fell under Class IV at most of the river reaches, while the dissolved oxygen (DO) parameter varied between Classes II to IV. Total suspended solids (TSS) fell within Classes IV to V along the mid river reaches of the catchment.

    Discussion: Comparison between corresponding constituents and locations showed that the water quality model reproduced the long-term duration exceedance for the main body of the curves. However, the water quality model underestimated the infrequent high concentration observations. A standard effluent disposal was proposed for the development of legislation and regulations by authorities in the district that could be replicated for other similar catchments.

    Conclusions: Modelling pollutants enables observation of trends over the years and the percentage of time a certain class is exceeded for each individual pollutant. The catchment did not meet Class II requirements and may not be able to reach Class I without extensive improvements in the quality and reducing the quantity of both point and non-point effluent sources within the catchment.

    Competing Interests: The authors declare no competing financial interests.

    Matched MeSH terms: Water Quality
  15. Zabed H, Suely A, Faruq G, Sahu JN
    Sci Total Environ, 2014 Feb 15;472:363-9.
    PMID: 24295752 DOI: 10.1016/j.scitotenv.2013.11.051
    A sacred ritual well with continuously discharging of methane gas through its water body was studied for physicochemical and microbiological quality in three seasons and during ritual mass bathing. Most of the physicochemical parameters showed significant seasonal variations (P<0.05) and a sharp fluctuation during mass bathing. Dissolved oxygen (DO) was found negatively correlated with temperature (r=-0.384, P<0.05), biochemical oxygen demand (BOD) (r=-0.58, P<0.001) and ammonia (r=-0.738, P<0.001), while BOD showed positive correlation with chemical oxygen demand (COD) (r=0.762, P<0.001) and ammonia (r=0.83, P<0.001). Simple regression analysis also yielded significant linear relationship in DO vs. temperature (r(2)=0.147, P<0.05), DO vs. ammonia (r(2)=0.544, P<0.001) and BOD vs. DO (r(2)=0.336, P<0.001). A total of eight microbial indicators were studied and found that all of them increased unusually during mass bathing comparing with their respective seasonal values. Total coliforms (TC) were found positively correlated with fecal coliforms (FC) (r=0.971), FC with Escherichia coli (EC) (r=0.952), EC with intestinal enterococci (IE) (r=0.921), fecal streptococci (FS) with IE (r=0.953) and Staphylococcus aureus (SA) with Pseudomonas aeruginosa (PA) (r=0.946), which were significant at P<0.001. Some regression models showed significant linear relationship at P<0.001 with r(2) value of 0.943 for FC vs. TC, 0.907 for EC vs. FC, 0.869 for FS vs. FC, 0.848 for IE vs. EC and 0.909 for IE vs. FS. The overall results found in this study revealed that well water is suitable for bathing purpose but the religious activity considerably worsen its quality.
    Matched MeSH terms: Water Quality
  16. Yuhani Jamian, Zainap Lamat, Nurazura Rali
    MyJurnal
    Sungai Sarawak is the most important river in Sarawak. This study was aimed at assessing water quality in the selected stations from Satok bridge to the downstream, Muara Tebas, located along Sungai Sarawak. Water quality trend analysis was conducted to determine the correlation between the water quality parameters. Trend analysis was carried out using Mann-Kendall Test because data collected was non-parametric. Next, Spearman rank was used in order to determine the correlation between parameters. The results obtained and the observation made in this study reveals that the trend exists only for Chemical Oxygen Value (COD). But there are trends for Biochemical Oxygen Demand, (BOD), Dissolved Oxygen (DO), Total Suspended Solid (TSS), Ammoniacal Nitrogen (NH4N) and Turbidity to decrease or increase with no trends between 2007 and 2011. The correlation between parameters is not very strong because there are many determinants of water quality parameters. The result from this study would provide useful information for water quality management in order to maintain and improve the water quality of Sungai Sarawak.
    Matched MeSH terms: Water Quality
  17. Wong YJ, Shimizu Y, He K, Nik Sulaiman NM
    Environ Monit Assess, 2020 Sep 16;192(10):644.
    PMID: 32935203 DOI: 10.1007/s10661-020-08543-4
    The assessment of surface water quality is often laborious, expensive and tedious, as well as impractical, especially for the developing and middle-income countries in the ASEAN region. The application of the water quality index (WQI), which depends on several independent key parameters, has great potential and is a useful tool in this region. Therefore, this study aims to find out the spatial variability of various water quality parameters in geographical information system (GIS) environment and perform a comparative study among the ASEAN WQI systems. At present, there are four ASEAN countries which have implemented the WQI system to evaluate their surface water quality, which are (i) Own WQI system-Malaysia, Thailand and Vietnam-and (ii) Adopted WQI system: Indonesia. A spatial distribution of 12 water quality parameters in the Selangor river basin, Malaysia, was plotted and then applied into the different ASEAN WQI systems. The WQI values obtained from the different WQI systems have an appreciable difference, even for the same water samples due to the disparity in the parameter selection and the standards among them. WQI systems which consider all biophysicochemical parameters provide a consistent evaluation (Very Poor), but the system which either considers physicochemical or biochemical parameters gives a relatively lenient evaluation (Fair-Poor). The Selangor river basin is stressed and impacted by all physical, biological and chemical parameters caused by both the aridity of the climate and anthropogenic activities. Therefore, it is crucial to include all these aspects into the evaluation and corresponding actions should be taken.
    Matched MeSH terms: Water Quality*
  18. Wong YJ, Shimizu Y, Kamiya A, Maneechot L, Bharambe KP, Fong CS, et al.
    Environ Monit Assess, 2021 Jun 22;193(7):438.
    PMID: 34159431 DOI: 10.1007/s10661-021-09202-y
    Rivers in Malaysia are classified based on water quality index (WQI) that comprises of six parameters, namely, ammoniacal nitrogen (AN), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), pH, and suspended solids (SS). Due to its tropical climate, the impact of seasonal monsoons on river quality is significant, with the increased occurrence of extreme precipitation events; however, there has been little discussion on the application of artificial intelligence models for monsoonal river classification. In light of these, this study had applied artificial neural network (ANN) and support vector machine (SVM) models for monsoonal (dry and wet seasons) river classification using three of the water quality parameters to minimise the cost of river monitoring and associated errors in WQI computation. A structured trial-and-error approach was applied on input parameter selection and hyperparameter optimisation for both models. Accuracy, sensitivity, and precision were selected as the performance criteria. For dry season, BOD-DO-pH was selected as the optimum input combination by both ANN and SVM models, with testing accuracy of 88.7% and 82.1%, respectively. As for wet season, the optimum input combinations of ANN and SVM models were BOD-pH-SS and BOD-DO-pH with testing accuracy of 89.5% and 88.0%, respectively. As a result, both optimised ANN and SVM models have proven their prediction capacities for river classification, which may be deployed as effective and reliable tools in tropical regions. Notably, better learning and higher capacity of the ANN model for dataset characteristics extraction generated better predictability and generalisability than SVM model under imbalanced dataset.
    Matched MeSH terms: Water Quality
  19. Wan Mohtar WHM, Abdul Maulud KN, Muhammad NS, Sharil S, Yaseen ZM
    Environ Pollut, 2019 May;248:133-144.
    PMID: 30784832 DOI: 10.1016/j.envpol.2019.02.011
    Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH3) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
    Matched MeSH terms: Water Quality
  20. Wan Maznah Wan Omar
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    Algal communities possess many attributes as biological indicators of spatial and temporal environmental changes. Algal parameters, especially the community structural and functional variables that have been used in biological monitoring programs, are highlighted in this document. Biological indicators like algae have only recently been included in water quality assessments in some areas of Malaysia. The use of algal parameters in identifying various types of water degradation is essential and complementary to other environmental indicators.
    Matched MeSH terms: Water Quality
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links