Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Mak JW
    Trop Biomed, 2004 Dec;21(2):39-50.
    PMID: 16493397
    Intestinal protozoa are increasingly being studied because of their association with acute and chronic diarrhoea in immunocompromised as well as immunocompetent patients. Various community outbreaks due to contamination of water or food with these protozoa have further highlighted their importance in public health. Among these important pathogens are Giardia duodenalis, Entamoeba histolytica, Cryptosporidium parvum, Cyclospora cayetanensis, Isospora belli, and microsporidia. Except for the cyst-forming G. duodenalis and E. histolytica, the others are intracellular and form spores which are passed out with the faeces. These organisms are also found in various animals and birds and zoonotic transmission is thought to occur. These infections are distributed worldwide, with a higher prevalence in developing compared to developed countries. However, the relative importance of zoonotic infections especially in developing countries has not been studied in detail. The prevalence rates are generally higher in immunodeficient compared to immunocompetent patients. Higher prevalence rates are also seen in rural compared to urban communities. Most studies on prevalence have been carried out in developed countries where the laboratory and other health infrastructure are more accessible than those in developing countries. This relative inadequacy of laboratory diagnosis can affect accurate estimates of the prevalence of these infections in developing countries. However, reports of these infections in travellers and workers returning from developing countries can provide some indication of the extent of these problems. Most studies on prevalence of amoebiasis in developing countries were based on morphological identification of the parasite in faecal smears. As the pathogenic E. histolytica is morphologically indistinguishable from that of non-pathogenic E. dispar, estimates of amoebiasis may not be accurate. The epidemiology of human microsporidia infections is not completely understood. Two species, Enterocytozoon bieneusi and Encephalitozoon intestinalis, are associated with gastrointestinal disease in humans and it is believed that human to human as well as animal to human infections occur. However, the importance of zoonotic infections has not been fully characterised. G. duodenalis cysts, microsporidia and Cryptosporidium oocysts have been detected in various ground water resources, but their role in community outbreaks and maintenance of the infection has not been fully characterised. The taxonomic classification and pathogenic potential of B. hominis are still controversial. While considered by many as yeast, fungi or protozoon, recent sequence analysis of the complete SSUrRNA gene has placed it within an informal group, the stramenopiles. This review covers recent published data on these zoonotic infections and examines their public health importance in Asian countries.
    Matched MeSH terms: Water Resources
  2. Babat SO, Sirekbasan S, Macin S, Kariptas E, Polat E
    Trop Biomed, 2018 Dec 01;35(4):1087-1091.
    PMID: 33601855
    Intestinal parasitic infections are among important health problems in developing countries. In societies living in low socioeconomic conditions, it has been neglected and mostly affects children. It is important to determine the prevalence and type of intestinal parasites in order to determine the intervention strategies for these infections. Therefore, the aim of this study is to evaluate intestinal parasite prevalence and IgE levels and the factors associated with the region in which the children population live, in Sirnak province, in the eastern of Turkey. A total of 357 symptomatic children aged 4 to 12 years, who were admitted to the Paediatric Polyclinic of Sirnak State Hospital, were examined prospectively. The collected stool samples were examined with direct wet-mount and concentration method under light microscope. In addition, total serum IgE levels were compared among 223 children with parasitic disease and 134 children without parasitic disease. One or more intestinal parasites were detected in 223 out of the 357 children participating in the study. The ratio of single, double, and triple parasitic infections in children was 32.5 %, 22.4 % and 7.6 %, respectively. The most common parasites determined in the study were Taenia spp. (39.9%), Enterobius vermicularis (38.6%) and Giardia intestinalis. (30 %). The difference between IgE levels determined in both groups was not regarded to be statistically significant. This study indicated that that intestinal polyparism is very common in children living in the province of Sirnak, which is located in the east of Turkey, neighbouring Iraq and Syria in the South. For this reason, sustainable control measures are urgently needed to improve personal hygiene and sanitation, to provide a healthy infrastructure and to improve the quality of existing water resources.
    Matched MeSH terms: Water Resources
  3. Koohpeyma HR, Vakili AH, Moayedi H, Panjsetooni A, Nazir R
    ScientificWorldJournal, 2013;2013:587462.
    PMID: 24459437 DOI: 10.1155/2013/587462
    Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow.
    Matched MeSH terms: Water Resources*
  4. Chuah CJ, Mukhaidin N, Choy SH, Smith GJD, Mendenhall IH, Lim YAL, et al.
    Sci Total Environ, 2016 08 15;562:701-713.
    PMID: 27110981 DOI: 10.1016/j.scitotenv.2016.03.247
    A catchment-scale investigation of the prevalence of Cryptosporidium and Giardia in the Kuang River Basin was carried out during the dry and rainy seasons. Water samples were collected from the Kuang River and its tributaries as well as a major irrigation canal at the study site. We also investigated the prevalence of gastrointestinal parasitic infection among dairy and beef cattle hosts. Cryptosporidium and/or Giardia were detected in all the rivers considered for this study, reflecting their ubiquity within the Kuang River Basin. The high prevalence of Cryptosporidium/Giardia in the upper Kuang River and Lai River is of a particular concern as both drain into the Mae Kuang Reservoir, a vital source of drinking-water to many local towns and villages at the research area. We did not, however, detected neither Cryptosporidium nor Giardia were in the irrigation canal. The frequency of Cryptosporidium/Giardia detection nearly doubled during the rainy season compared to the dry season, highlighting the importance of water as an agent of transport. In addition to the overland transport of these protozoa from their land sources (e.g. cattle manure, cess pits), Cryptosporidium/Giardia may also be re-suspended from the streambeds (a potentially important repository) into the water column of rivers during storm events. Faecal samples from dairy and beef cattle showed high infection rates from various intestinal parasites - 97% and 94%, respectively. However, Cryptosporidium and Giardia were only detected in beef cattle. The difference in management style between beef (freeranging) and dairy cattle (confined) may account for this disparity. Finally, phylogenetic analyses revealed that the Cryptosporidium/Giardia-positive samples contained C. ryanae (non-zoonotic) as well as Giardia intestinalis assemblages B (zoonotic) and E (non-zoonotic). With only basic water treatment facilities afforded to them, the communities of the rural area relying on these water supplies are highly at risk to Cryptosporidium/Giardia infections.
    Matched MeSH terms: Water Resources
  5. Hoque MA, Pradhan B, Ahmed N, Sohel MSI
    Sci Total Environ, 2020 Nov 17.
    PMID: 33248778 DOI: 10.1016/j.scitotenv.2020.143600
    Droughts are recurring events in Australia and cause a severe effect on agricultural and water resources. However, the studies about agricultural drought risk mapping are very limited in Australia. Therefore, a comprehensive agricultural drought risk assessment approach that incorporates all the risk components with their influencing criteria is essential to generate detailed drought risk information for operational drought management. A comprehensive agricultural drought risk assessment approach was prepared in this work incorporating all components of risk (hazard, vulnerability, exposure, and mitigation capacity) with their relevant criteria using geospatial techniques. The prepared approach is then applied to identify the spatial pattern of agricultural drought risk for Northern New South Wales region of Australia. A total of 16 relevant criteria under each risk component were considered, and fuzzy logic aided geospatial techniques were used to prepare vulnerability, exposure, hazard, and mitigation capacity indices. These indices were then incorporated to quantify agricultural drought risk comprehensively in the study area. The outputs depicted that about 19.2% and 41.7% areas are under very-high and moderate to high risk to agricultural droughts, respectively. The efficiency of the results is successfully evaluated using a drought inventory map. The generated spatial drought risk information produced by this study can assist relevant authorities in formulating proactive agricultural drought mitigation strategies.
    Matched MeSH terms: Water Resources
  6. Pak HY, Chuah CJ, Yong EL, Snyder SA
    Sci Total Environ, 2021 Aug 01;780:146661.
    PMID: 34030308 DOI: 10.1016/j.scitotenv.2021.146661
    Land use plays a significant role in determining the spatial patterns of water quality in the Johor River Basin (JRB), Malaysia. In the recent years, there have been several occurrences of pollution in these rivers, which has generated concerns over the long-term sustainability of the water resources in the JRB. Specifically, this water resource is a shared commodity between two states, namely, Johor state of Malaysia and Singapore, a neighbouring country adjacent to Malaysia. Prior to this study, few research on the influence of land use configuration on water quality have been conducted in Johor. In addition, it is also unclear how water quality varies under different seasonality in the presence of point sources. In this study, we investigated the influence of land use and point sources from wastewater treatment plants (WWTPs) on the water quality in the JRB. Two statistical techniques - Multivariate Linear Regression (MLR) and Redundancy Analysis (RA) were undertaken to analyse the relationships between river water quality and land use configuration, as well as point sources from WWTPs under different seasonality. Water samples were collected from 49 sites within the JRB from March to December in 2019. Results showed that influence from WWTPs on water quality was greater during the dry season and less significant during the wet season. In particular, point source was highly positively correlated with ammoniacal‑nitrogen (NH3-N). On the other hand, land use influence was greater than point source influence during the wet season. Residential and urban land use were important predictors for nutrients and organic matter (chemical oxygen demand); and forest land use were important sinks for heavy metals but a significant source of manganese.
    Matched MeSH terms: Water Resources
  7. Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, et al.
    Sci Total Environ, 2018 Sep 01;634:853-867.
    PMID: 29653429 DOI: 10.1016/j.scitotenv.2018.04.055
    The aim of the current study was to produce groundwater spring potential maps using novel ensemble weights-of-evidence (WoE) with logistic regression (LR) and functional tree (FT) models. First, a total of 66 springs were identified by field surveys, out of which 70% of the spring locations were used for training the models and 30% of the spring locations were employed for the validation process. Second, a total of 14 affecting factors including aspect, altitude, slope, plan curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), sediment transport index (STI), lithology, normalized difference vegetation index (NDVI), land use, soil, distance to roads, and distance to streams was used to analyze the spatial relationship between these affecting factors and spring occurrences. Multicollinearity analysis and feature selection of the correlation attribute evaluation (CAE) method were employed to optimize the affecting factors. Subsequently, the novel ensembles of the WoE, LR, and FT models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) curves, standard error, confidence interval (CI) at 95%, and significance level P were employed to validate and compare the performance of three models. Overall, all three models performed well for groundwater spring potential evaluation. The prediction capability of the FT model, with the highest AUC values, the smallest standard errors, the narrowest CIs, and the smallest P values for the training and validation datasets, is better compared to those of other models. The groundwater spring potential maps can be adopted for the management of water resources and land use by planners and engineers.
    Matched MeSH terms: Water Resources
  8. Sheikhy Narany T, Aris AZ, Sefie A, Keesstra S
    Sci Total Environ, 2017 Dec 01;599-600:844-853.
    PMID: 28501010 DOI: 10.1016/j.scitotenv.2017.04.171
    The conversions of forests and grass land to urban and farmland has exerted significant changes on terrestrial ecosystems. However, quantifying how these changes can affect the quality of water resources is still a challenge for hydrologists. Nitrate concentrations can be applied as an indicator to trace the link between land use changes and groundwater quality due to their solubility and easy transport from their source to the groundwater. In this study, 25year records (from 1989 to 2014) of nitrate concentrations are applied to show the impact of land use changes on the quality of groundwater in Northern Kelantan, Malaysia, where large scale deforestation in recent decades has occurred. The results from the integration of time series analysis and geospatial modelling revealed that nitrate (NO3-N) concentrations significantly increased with approximately 8.1% and 3.89% annually in agricultural and residential wells, respectively, over 25years. In 1989 only 1% of the total area had a nitrate value greater than 10mg/L; and this value increased sharply to 48% by 2014. The significant increase in nitrate was only observed in a shallow aquifer with a 3.74% annual nitrate increase. Based on the result of the Autoregressive Integrated Moving Average (ARIMA) model the nitrate contamination is expected to continue to rise by about 2.64% and 3.9% annually until 2030 in agricultural and residential areas. The present study develops techniques for detecting and predicting the impact of land use changes on environmental parameters as an essential step in land and water resource management strategy development.
    Matched MeSH terms: Water Resources
  9. Tang KHD
    Sci Total Environ, 2019 Feb 10;650(Pt 2):1858-1871.
    PMID: 30290336 DOI: 10.1016/j.scitotenv.2018.09.316
    PURPOSE: This paper reviews the past and future trends of climate change in Malaysia, the major contributors of greenhouse gases and the impacts of climate change to Malaysia. It also reviews the mitigation and adaptations undertaken, and future strategies to manage the impacts of regional climate change.

    METHODOLOGY: The review encompasses historical climate data comprising mean daily temperature, precipitation, mean sea level and occurrences of extreme weather events. Future climate projections have also been reviewed in addition to scholarly papers and news articles related to impacts, contributors, mitigation and adaptations in relation to climate change.

    FINDINGS: The review shows that annual mean temperature, occurrences of extreme weather events and mean sea level are rising while rainfall shows variability. Future projections point to continuous rise of temperature and mean sea level till the end of the 21st century, highly variable rainfall and increased frequency of extreme weather events. Climate change impacts particularly on agriculture, forestry, biodiversity, water resources, coastal and marine resources, public health and energy. The energy and waste management sectors are the major contributors to climate change. Mitigation of and adaptations to climate change in Malaysia revolve around policy setting, enactment of laws, formulation and implementation of plans and programmes, as well as global and regional collaborations, particularly for energy, water resources, agriculture and biodiversity. There are apparent shortcomings in continuous improvement and monitoring of the programmes as well as enforcement of the relevant laws.

    ORIGINALITY/VALUE: This paper presents a comprehensive review of the major themes of climate change in Malaysia and recommends pertinent ways forward to fill the gaps of mitigation and adaptations already implemented.

    Matched MeSH terms: Water Resources
  10. Alomari. Nashwan K., Badronnisa Yusuf, Thamer Ahmed Mohammed Ali, Abdul Halim Ghazali
    MyJurnal
    Branching channel flow refers to any side water withdrawals from rivers or main channels.
    Branching channels have wide application in many practical projects, such as irrigation and drainage
    network systems, water and waste water treatment plants, and many water resources projects. In the
    last decades, extensive theoretical and experimental investigations of the branching open channels
    have been carried out to understand the characteristics of this branching flow, varying from case
    studies to theoretical and experimental investigations. The objectives of this paper are to review and
    summarise the relevant literatures regarding branching channel flow. These literatures were reviewed
    based on flow characteristics, physical characteristics, and modeling of the branching flow.
    Investigations of the flow into branching channel show that the branching discharge depends on many
    interlinked parameters. It increases with the decreasing of the main channel flow velocity and Froude
    number at the upstream of the branch channel junction. Also it increases with the increasing of the
    branch channel bed slope. In subcritical flow, water depth in the branch channel is always lower than
    the main channel water depth. The flow diversion to the branch channel leads to an increase of water
    depth at the downstream of the main channel. From the review, it is important to highlight that most
    of the study concentrated on flow characteristics in a right angle branch channel with a rigid boundary.
    Investigations on different branching angles with movable bed have still to be explored.
    Matched MeSH terms: Water Resources
  11. Mahboubeh Ebrahimian, Ahmad Ainuddin Nuruddin, Mohd Amin Mohd Soom, Alias Mohd Sood, Liew Juneng
    MyJurnal
    The hydrological effects of climate variation and land use conversion can occur at various spatial scales, but the most important sources of these changes are at the regional or watershed scale. In addition, the managerial and technical measures are primarily implemented at local and watershed scales in order to mitigate adverse impacts of human activities on the renewable resources of the watershed. Therefore, quantitative estimation of the possible hydrological consequences of potential land use and climate changes on hydrological regime at watershed scale is of tremendous importance. This paper focuses on the impacts of climate change as well as land use change on the hydrological processes of river basin based on pertinent published literature which were precisely scrutinized. The various causes, forms, and consequences of such impacts were discussed to synthesize the key findings of literature in reputable sources and to identify gaps in the knowledge where further research is required. Results indicate that the watershed-scale studies were found as a gap in tropical regions. Also, these studies are important to facilitate the application of results to real environment. Watershed scale studies are essential to measure the extent of influences made to the hydrological conditions and understanding of causes and effects of climate variation and land use conversion on hydrological cycle and water resources.
    Matched MeSH terms: Water Resources
  12. Faizalhakim, A.S., Nurhidayu, S., Norizah, K.
    MyJurnal
    Rainfall-runoff information is critical for water resource and river basin management. Runoff can be estimated by using two methods; gauged method (direct measurement) and ungauged method (indirect formula and equation). The in-situ measurement provides real-time and accurate yet required time-consuming operation and inaccessibility topography. Therefore, the runoff estimation modelling and equation was developed to overcome the limitation of in-situ measurement. SCS-CN is a simple model of ungauged method, where runoff volume (Q) resulting from rainfall (P) is formulated using equation of (Q= (P-Ia) 2 / (P-Ia + S). It was known as the best technique to be adopted for large basin study where time and manpower also accessibility are limited. SCS-CN method also is widely use in prediction software as it taken into consideration of the effects of soil, properties, land cover and antecedent moisture. Curve Number is well developed in USA for the agriculture purpose with many investigations to validate and calibrate the values of curve number. It was applied in numerous river basins in temperate and other regions e.g. US, Argentina, India, China, South Korea, Palestine and Malaysia. However, the reliability of the CN in the tropics is doubtable due to different land use characteristics, soil type, climate, geological features and rainfall pattern and variability. Based on the reviewed conceptual and applications of SCS-CN in temperate and tropics, numerous studies found the SCS-CN method is reliable and practical for runoff estimation in tropics region.
    Matched MeSH terms: Water Resources
  13. Munksgaard NC, Kurita N, Sánchez-Murillo R, Ahmed N, Araguas L, Balachew DL, et al.
    Sci Rep, 2019 10 08;9(1):14419.
    PMID: 31595004 DOI: 10.1038/s41598-019-50973-9
    We present precipitation isotope data (δ2H and δ18O values) from 19 stations across the tropics collected from 2012 to 2017 under the Coordinated Research Project F31004 sponsored by the International Atomic Energy Agency. Rainfall samples were collected daily and analysed for stable isotopic ratios of oxygen and hydrogen by participating laboratories following a common analytical framework. We also calculated daily mean stratiform rainfall area fractions around each station over an area of 5° x 5° longitude/latitude based on TRMM/GPM satellite data. Isotope time series, along with information on rainfall amount and stratiform/convective proportions provide a valuable tool for rainfall characterisation and to improve the ability of isotope-enabled Global Circulation Models to predict variability and availability of inputs to fresh water resources across the tropics.
    Matched MeSH terms: Water Resources
  14. Afan HA, Allawi MF, El-Shafie A, Yaseen ZM, Ahmed AN, Malek MA, et al.
    Sci Rep, 2020 03 13;10(1):4684.
    PMID: 32170078 DOI: 10.1038/s41598-020-61355-x
    In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.
    Matched MeSH terms: Water Resources
  15. Adib MNM, Rowshon MK, Mojid MA, Habibu I
    Sci Rep, 2020 05 20;10(1):8336.
    PMID: 32433561 DOI: 10.1038/s41598-020-65114-w
    Climate change-induced spatial and temporal variability of stremflow has significant implications for hydrological processes and water supplies at basin scale. This study investigated the impacts of climate change on streamflow of the Kurau River Basin in Malaysia using a Climate-Smart Decision Support System (CSDSS) to predict future climate sequences. For this, we used 25 reliazations consisting from 10 Global Climate Models (GCMs) and three IPCC Representative Concentration Pathways (RCP4.5, RCP6.0 and RCP8.5). The generated climate sequences were used as input to Soil and Water Assessment Tool (SWAT) to simulate projected changes in hydrological processes in the basin over the period 2021-2080. The model performed fairly well for the Kurau River Basin, with coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE) and Percent Bias (PBIAS) of 0.65, 0.65 and -3.0, respectively for calibration period (1981-1998) and 0.60, 0.59 and -4.6, respectively for validation period (1996-2005). Future projections over 2021-2080 period show an increase in rainfall during August to January (relatively wet season, called the main irrigation season) but a decrease in rainfall during February to July (relatively dry season, called the off season). Temperature projections show increase in both the maximum and minimum temperatures under the three RCP scenarios, with a maximum increase of 2.5 °C by 2021-2080 relative to baseline period of 1976-2005 under RCP8.5 scenario. The model predicted reduced streamflow under all RCP scenarios compared to the baseline period. Compared to 2021-2050 period, the projected streamflow will be higher during 2051-2080 period by 1.5 m3/s except in February for RCP8.5. The highest streamflow is predicted during August to December for both future periods under RCP8.5. The seasonal changes in streamflow range between -2.8% and -4.3% during the off season, and between 0% (nil) and -3.8% during the main season. The assessment of the impacts of climatic variabilities on the available water resources is necessary to identify adaptation strategies. It is supposed that such assessment on the Kurau River Basin under changing climate would improve operation policy for the Bukit Merah reservoir located at downstream of the basin. Thus, the predicted streamflow of the basin would be of importance to quantify potential impacts of climate change on the Bukit Merah reservoir and to determine the best possible operational strategies for irrigation release.
    Matched MeSH terms: Water Resources
  16. Maroufpoor S, Bozorg-Haddad O, Maroufpoor E, Gerbens-Leenes PW, Loáiciga HA, Savic D, et al.
    Sci Rep, 2021 10 25;11(1):21027.
    PMID: 34697363 DOI: 10.1038/s41598-021-00500-6
    The worsening water scarcity has imposed a significant stress on food production in many parts of the world. This stress becomes more critical when countries seek self-sufficiency. A literature review shows that food self-sufficiency has not been assessed as the main factor in determining the optimal cultivation patterns. However, food self-sufficiency is one of the main policies of these countries and requires the most attention and concentration. Previous works have focused on the virtual water trade to meet regional food demand and to calculate trade flows. The potential of the trade network can be exploited to improve the cropping pattern to ensure food and water security. To this end, and based on the research gaps mentioned, this study develops a method to link intra-country trade networks, food security, and total water footprints (WFs) to improve food security. The method is applied in Iran, a water-scarce country. The study shows that 781 × 106 m3 of water could be saved by creating a trade network. Results of the balanced trade network are input to a multi-objective optimization model to improve cropping patterns based on the objectives of achieving food security and preventing water crises. The method provides 400 management scenarios to improve cropping patterns considering 51 main crops in Iran. Results show a range of improvements in food security (19-45%) and a decrease in WFs (2-3%). The selected scenario for Iran would reduce the blue water footprint by 1207 × 106 m3, and reduce the cropland area by 19 × 103 ha. This methodology allows decision makers to develop policies that achieve food security under limited water resources in arid and semi-arid regions.
    Matched MeSH terms: Water Resources*
  17. Attias E, Thomas D, Sherman D, Ismail K, Constable S
    Sci Adv, 2020 Nov;6(48).
    PMID: 33239299 DOI: 10.1126/sciadv.abd4866
    Conventional hydrogeologic framework models used to compute ocean island sustainable yields and aquifer storage neglect the complexity of the nearshore and offshore submarine environment. However, the onshore aquifer at the island of Hawai'i exhibits a notable volumetric discrepancy between high-elevation freshwater recharge and coastal discharge. In this study, we present a novel transport mechanism of freshwater moving from onshore to offshore through a multilayer formation of water-saturated layered basalts with interbedded low-permeability layers of ash/soil. Marine electromagnetic imaging reveals ∼35 km of laterally continuous resistive layers that extend to at least 4 km from west of Hawai'i's coastline, containing about 3.5 km3 of freshened water. We propose that this newly found transport mechanism of fresh groundwater may be the governing mechanism in other volcanic islands. In such a scenario, volcanic islands worldwide can use these renewable offshore reservoirs, considered more resilient to climate change-driven droughts, as new water resources.
    Matched MeSH terms: Water Resources
  18. Mahmoud khaki, Ismail Yusoff, Nur Islami, Nur Hayati Hussin
    Sains Malaysiana, 2016;45:19-28.
    Forecasting of groundwater level variations is a significantly needed in groundwater resource management. Precise water level prediction assists in practical and optimal usage of water resources. The main objective of using an artificial neural network (ANN) was to investigate the feasibility of feed-forward, Elman and Cascade forward neural networks with different algorithms to estimate groundwater levels in the Langat Basin from 2007 to 2013. In order to examine the accuracy of monthly water level forecasts, effectiveness of the steepness coefficient in the sigmoid function of a developed ANN model was evaluated in this research. The performance of the models was evaluated using the mean squared error (MSE) and the correlation coefficient (R). The results indicated that the ANN technique was well suited for forecasting groundwater levels. All models developed had shown acceptable results. Based on the observation, the feed-forward neural network model optimized with the Levenberg-Marquardt algorithms showed the most beneficial results with the minimum MSE value of (0.048) and maximum R value of (0.839), obtained for simulation of groundwater levels. The present research conclusively showed the capability of ANNs to provide excellent estimation accuracy and valuable sensitivity analyses.
    Matched MeSH terms: Water Resources
  19. Noor Halini Baharim, Razali Ismail, Mohamad Hanif Omar
    Sains Malaysiana, 2011;40:1179-1186.
    Thermal stratification in lakes is an important natural process that can have a significant effect on the water resource quality. The potential changes in chemical contents in water resulting from stratification are the production of ammonia, sulphides and algal nutrients and the increasing concentrations of iron and manganese. One of the water supply reservoirs located in Johor, Malaysia facing with high iron and manganese concentrations associated with the period of stratifications. This study showed that the level of thermal stratification in the reservoir varied at different time of the year. During the strongest period of stratification, the dissolved oxygen content was found to diminish significantly with depth and iron and manganese were recorded at the highest concentrations. Although significant period of rainfalls contributed to the natural destratification of reservoir, lower concentrations of iron and manganese only remained for a shorter period before the concentrations continued to increase with the onset of the thermal stratification. A good understanding on the behaviour of the reservoir may help to identify several measures for the improvement of water quality.
    Matched MeSH terms: Water Resources
  20. Ahmad Zaharin Aris, Wan YL, Sarva MP, Mohd Kamil Yusoff, Muhamma Firuz Ramli, Hafizan Juahir
    Sains Malaysiana, 2014;43:377-388.
    The water chemistry of selected rivers in Kota Marudu, Sabah was studied based on the major ion chemistry and its suitability for drinking and irrigation purposes. Ten sampling stations were selected and water samples were collected from each station to assess its chemical properties. The physico-chemical variables including temperature, electrical conductivity (EC), total dissolved solids (TDS), salinity, dissolved oxygen (DO), pH, turbidity, ammoniacal-nitrogen (NH3-N), biological oxygen demand (BOD), chemical oxygen demand (COD) and total suspended solid (TSS) were measured. The cations (K, Mg, Ca, Na) were analyzed by ICP-MS. Most of the variables were within the drinking water quality standards stipulated by the World Health Organization (WHO) and the Ministry of Health (MOH), Malaysia except for turbidity. Sodium adsorption ratio (SAR) and salinity hazard were calculated to identify the suitability of the water as irrigation water. The Wilcox diagram classifies that only 10% of samples are not suitable for the purpose of irrigation. The overall results showed that most of the rivers in Kota Marudu are still in a clean condition and suitable for drinking and irrigation purposes except for Sumbilingan River, which is considered as slightly polluted. The results are supported by the hierarchical cluster analysis as the stations were grouped into two groups; low and high pollution intensities. This preliminary result can update the baseline data of selected water quality parameters in the Kota Marudu and could serve as tool for assisting relevant government bodies in regulating the water resources policies in the future.
    Matched MeSH terms: Water Resources
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links