Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Munksgaard NC, Kurita N, Sánchez-Murillo R, Ahmed N, Araguas L, Balachew DL, et al.
    Sci Rep, 2019 10 08;9(1):14419.
    PMID: 31595004 DOI: 10.1038/s41598-019-50973-9
    We present precipitation isotope data (δ2H and δ18O values) from 19 stations across the tropics collected from 2012 to 2017 under the Coordinated Research Project F31004 sponsored by the International Atomic Energy Agency. Rainfall samples were collected daily and analysed for stable isotopic ratios of oxygen and hydrogen by participating laboratories following a common analytical framework. We also calculated daily mean stratiform rainfall area fractions around each station over an area of 5° x 5° longitude/latitude based on TRMM/GPM satellite data. Isotope time series, along with information on rainfall amount and stratiform/convective proportions provide a valuable tool for rainfall characterisation and to improve the ability of isotope-enabled Global Circulation Models to predict variability and availability of inputs to fresh water resources across the tropics.
    Matched MeSH terms: Water Resources
  2. Chuah CJ, Mukhaidin N, Choy SH, Smith GJD, Mendenhall IH, Lim YAL, et al.
    Sci Total Environ, 2016 08 15;562:701-713.
    PMID: 27110981 DOI: 10.1016/j.scitotenv.2016.03.247
    A catchment-scale investigation of the prevalence of Cryptosporidium and Giardia in the Kuang River Basin was carried out during the dry and rainy seasons. Water samples were collected from the Kuang River and its tributaries as well as a major irrigation canal at the study site. We also investigated the prevalence of gastrointestinal parasitic infection among dairy and beef cattle hosts. Cryptosporidium and/or Giardia were detected in all the rivers considered for this study, reflecting their ubiquity within the Kuang River Basin. The high prevalence of Cryptosporidium/Giardia in the upper Kuang River and Lai River is of a particular concern as both drain into the Mae Kuang Reservoir, a vital source of drinking-water to many local towns and villages at the research area. We did not, however, detected neither Cryptosporidium nor Giardia were in the irrigation canal. The frequency of Cryptosporidium/Giardia detection nearly doubled during the rainy season compared to the dry season, highlighting the importance of water as an agent of transport. In addition to the overland transport of these protozoa from their land sources (e.g. cattle manure, cess pits), Cryptosporidium/Giardia may also be re-suspended from the streambeds (a potentially important repository) into the water column of rivers during storm events. Faecal samples from dairy and beef cattle showed high infection rates from various intestinal parasites - 97% and 94%, respectively. However, Cryptosporidium and Giardia were only detected in beef cattle. The difference in management style between beef (freeranging) and dairy cattle (confined) may account for this disparity. Finally, phylogenetic analyses revealed that the Cryptosporidium/Giardia-positive samples contained C. ryanae (non-zoonotic) as well as Giardia intestinalis assemblages B (zoonotic) and E (non-zoonotic). With only basic water treatment facilities afforded to them, the communities of the rural area relying on these water supplies are highly at risk to Cryptosporidium/Giardia infections.
    Matched MeSH terms: Water Resources
  3. Leila Khodapanah, Wan Nor Azmin Sulaiman
    MyJurnal
    Eshtehard aquifer located in southwest of Tehran province, Iran, provides a large amount of water requirement for inhabitants of Eshtehard district. Monitoring and analyzing of groundwater quality are important for protecting groundwater as sustainable water resource. One of the most advanced techniques for groundwater quality interpolation and mapping is geostatistics methods. The purposes of this study are (1) to investigate major ions concentration and their relative abundance to provide an overview of present groundwater chemistry and (2) to map the groundwater quality in the study area using geostatistics techniques. In this investigation, ArcGIS 9.2 was used for predicting spatial distribution of some groundwater characteristics such as: Chloride, Sulfate, pH, and Conductivity. These methods are applied for data from 44 wells within the study area. The final maps show that the south parts of the Eshtehard aquifer have suitable groundwater quality for human consumption and in general, the groundwater quality degrades south to north and west to east of the Eshtehard plain along the groundwater flow path.
    Matched MeSH terms: Water Resources
  4. Tang KHD
    Sci Total Environ, 2019 Feb 10;650(Pt 2):1858-1871.
    PMID: 30290336 DOI: 10.1016/j.scitotenv.2018.09.316
    PURPOSE: This paper reviews the past and future trends of climate change in Malaysia, the major contributors of greenhouse gases and the impacts of climate change to Malaysia. It also reviews the mitigation and adaptations undertaken, and future strategies to manage the impacts of regional climate change.

    METHODOLOGY: The review encompasses historical climate data comprising mean daily temperature, precipitation, mean sea level and occurrences of extreme weather events. Future climate projections have also been reviewed in addition to scholarly papers and news articles related to impacts, contributors, mitigation and adaptations in relation to climate change.

    FINDINGS: The review shows that annual mean temperature, occurrences of extreme weather events and mean sea level are rising while rainfall shows variability. Future projections point to continuous rise of temperature and mean sea level till the end of the 21st century, highly variable rainfall and increased frequency of extreme weather events. Climate change impacts particularly on agriculture, forestry, biodiversity, water resources, coastal and marine resources, public health and energy. The energy and waste management sectors are the major contributors to climate change. Mitigation of and adaptations to climate change in Malaysia revolve around policy setting, enactment of laws, formulation and implementation of plans and programmes, as well as global and regional collaborations, particularly for energy, water resources, agriculture and biodiversity. There are apparent shortcomings in continuous improvement and monitoring of the programmes as well as enforcement of the relevant laws.

    ORIGINALITY/VALUE: This paper presents a comprehensive review of the major themes of climate change in Malaysia and recommends pertinent ways forward to fill the gaps of mitigation and adaptations already implemented.

    Matched MeSH terms: Water Resources
  5. Hoque MA, Pradhan B, Ahmed N, Sohel MSI
    Sci Total Environ, 2020 Nov 17.
    PMID: 33248778 DOI: 10.1016/j.scitotenv.2020.143600
    Droughts are recurring events in Australia and cause a severe effect on agricultural and water resources. However, the studies about agricultural drought risk mapping are very limited in Australia. Therefore, a comprehensive agricultural drought risk assessment approach that incorporates all the risk components with their influencing criteria is essential to generate detailed drought risk information for operational drought management. A comprehensive agricultural drought risk assessment approach was prepared in this work incorporating all components of risk (hazard, vulnerability, exposure, and mitigation capacity) with their relevant criteria using geospatial techniques. The prepared approach is then applied to identify the spatial pattern of agricultural drought risk for Northern New South Wales region of Australia. A total of 16 relevant criteria under each risk component were considered, and fuzzy logic aided geospatial techniques were used to prepare vulnerability, exposure, hazard, and mitigation capacity indices. These indices were then incorporated to quantify agricultural drought risk comprehensively in the study area. The outputs depicted that about 19.2% and 41.7% areas are under very-high and moderate to high risk to agricultural droughts, respectively. The efficiency of the results is successfully evaluated using a drought inventory map. The generated spatial drought risk information produced by this study can assist relevant authorities in formulating proactive agricultural drought mitigation strategies.
    Matched MeSH terms: Water Resources
  6. Pak HY, Chuah CJ, Yong EL, Snyder SA
    Sci Total Environ, 2021 Aug 01;780:146661.
    PMID: 34030308 DOI: 10.1016/j.scitotenv.2021.146661
    Land use plays a significant role in determining the spatial patterns of water quality in the Johor River Basin (JRB), Malaysia. In the recent years, there have been several occurrences of pollution in these rivers, which has generated concerns over the long-term sustainability of the water resources in the JRB. Specifically, this water resource is a shared commodity between two states, namely, Johor state of Malaysia and Singapore, a neighbouring country adjacent to Malaysia. Prior to this study, few research on the influence of land use configuration on water quality have been conducted in Johor. In addition, it is also unclear how water quality varies under different seasonality in the presence of point sources. In this study, we investigated the influence of land use and point sources from wastewater treatment plants (WWTPs) on the water quality in the JRB. Two statistical techniques - Multivariate Linear Regression (MLR) and Redundancy Analysis (RA) were undertaken to analyse the relationships between river water quality and land use configuration, as well as point sources from WWTPs under different seasonality. Water samples were collected from 49 sites within the JRB from March to December in 2019. Results showed that influence from WWTPs on water quality was greater during the dry season and less significant during the wet season. In particular, point source was highly positively correlated with ammoniacal‑nitrogen (NH3-N). On the other hand, land use influence was greater than point source influence during the wet season. Residential and urban land use were important predictors for nutrients and organic matter (chemical oxygen demand); and forest land use were important sinks for heavy metals but a significant source of manganese.
    Matched MeSH terms: Water Resources
  7. Maroufpoor S, Bozorg-Haddad O, Maroufpoor E, Gerbens-Leenes PW, Loáiciga HA, Savic D, et al.
    Sci Rep, 2021 10 25;11(1):21027.
    PMID: 34697363 DOI: 10.1038/s41598-021-00500-6
    The worsening water scarcity has imposed a significant stress on food production in many parts of the world. This stress becomes more critical when countries seek self-sufficiency. A literature review shows that food self-sufficiency has not been assessed as the main factor in determining the optimal cultivation patterns. However, food self-sufficiency is one of the main policies of these countries and requires the most attention and concentration. Previous works have focused on the virtual water trade to meet regional food demand and to calculate trade flows. The potential of the trade network can be exploited to improve the cropping pattern to ensure food and water security. To this end, and based on the research gaps mentioned, this study develops a method to link intra-country trade networks, food security, and total water footprints (WFs) to improve food security. The method is applied in Iran, a water-scarce country. The study shows that 781 × 106 m3 of water could be saved by creating a trade network. Results of the balanced trade network are input to a multi-objective optimization model to improve cropping patterns based on the objectives of achieving food security and preventing water crises. The method provides 400 management scenarios to improve cropping patterns considering 51 main crops in Iran. Results show a range of improvements in food security (19-45%) and a decrease in WFs (2-3%). The selected scenario for Iran would reduce the blue water footprint by 1207 × 106 m3, and reduce the cropland area by 19 × 103 ha. This methodology allows decision makers to develop policies that achieve food security under limited water resources in arid and semi-arid regions.
    Matched MeSH terms: Water Resources*
  8. Afan HA, Allawi MF, El-Shafie A, Yaseen ZM, Ahmed AN, Malek MA, et al.
    Sci Rep, 2020 03 13;10(1):4684.
    PMID: 32170078 DOI: 10.1038/s41598-020-61355-x
    In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.
    Matched MeSH terms: Water Resources
  9. Hossain K, Quaik S, Ismail N, Rafatullah M, Avasan M, Shaik R
    Iran J Biotechnol, 2016 Sep;14(3):154-162.
    PMID: 28959331 DOI: 10.15171/ijb.1216
    BACKGROUND: Application of membrane technology to wastewater treatment has expanded over the last decades due to increasingly stringent legislation, greater opportunities for water reuse/recycling processes and continuing advancement in membrane technology.

    OBJECTIVES: In the present study, a bench-scale submerged microfiltration membrane bioreactor (MBR) was used to assess the treatment of textile wastewater.

    MATERIALS AND METHODS: The decolorization capacity of white-rot fungus coriolus versicolor was confirmed through agar plate and liquid batch studies. The temperature and pH of the reactor were controlled at 29±1°C and 4.5±2, respectively. The bioreactor was operated with an average flux of 0.05 m.d(-1) (HRT=15hrs) for a month.

    RESULTS: Extensive growth of fungi and their attachment to the membrane led to its fouling and associated increase of the transmembrane pressure requiring a periodic withdrawal of sludge and membrane cleaning. However, stable decoloration activity (approx. 98%), BOD (40-50%), COD (50-67%) and total organic carbon (TOC) removal (>95%) was achieved using the entire system (fungi + membrane), while the contribution of the fungi culture alone for TOC removal, as indicated by the quality of the reactor supernatant, was 35-50% and 70%, respectively.

    CONCLUSIONS: The treated wastewater quality satisfied the requirement of water quality for dyeing and finishing process excluding light coloration. Therefore, textile wastewater reclamation and reuse is a promising alternative, which can both conserve or supplement the available water resource and reduce or eliminate the environmental pollution.

    Matched MeSH terms: Water Resources
  10. Malik A, Tikhamarine Y, Sammen SS, Abba SI, Shahid S
    PMID: 33751346 DOI: 10.1007/s11356-021-13445-0
    Drought is considered one of the costliest natural disasters that result in water scarcity and crop damage almost every year. Drought monitoring and forecasting are essential for the efficient management of water resources and sustainability in agriculture. However, the design of a consistent drought prediction model based on the dynamic relationship of the drought index with its antecedent values remains a challenging task. In the present research, the SVR (support vector regression) model was hybridized with two different optimization algorithms namely; Particle Swarm Optimization (PSO) and Harris Hawks Optimization (HHO) for reliable prediction of effective drought index (EDI) 1 month ahead, at different locations of Uttarakhand State of India. The inputs of the models were selected through partial autocorrelation function (PACF) analysis. The output produced by the SVR-HHO and SVR-PSO models was compared with the EDI estimated from observed data using five statistical indicators, i.e., RMSE (Root Mean Square Error), MAE (Mean Absolute Error), COC (Coefficient of Correlation), NSE (Nash-Sutcliffe Efficiency), WI (Willmott Index), and graphical inspection of radar-chart, time-variation plot, box-whisker plot, and Taylor diagram. Appraisal of results indicates that the SVR-HHO model (RMSE = 0.535-0.965, MAE = 0.363-0.622, NSE = 0.558-0.860, COC = 0.760-0.930, and WI = 0.862-0.959) outperformed the SVR-PSO model (RMSE = 0.546-0.967, MAE = 0.372-0.625, NSE = 0.556-0.855, COC = 0.758-0.929, and WI = 0.861-0.956) in predicting EDI. Visual inspection of model performances also showed a better performance of SVR-HHO compared to SVR-PSO in replicating the median, inter-quartile range, spread, and pattern of the EDI estimated from observed rainfall. The results indicate that the hybrid SVR-HHO approach can be utilized for reliable EDI predictions in the study area.
    Matched MeSH terms: Water Resources
  11. Seyed Reza Saghravani, Ismail Yusoff, Sa’ari Mustapha, Seyed Fazlollah Saghravani
    Sains Malaysiana, 2013;42:553-560.
    Estimation and forecast of groundwater recharge and capacity of aquifer are essential issues in water resources investigation. In the current research, groundwater recharge, recharge coefficient and effective rainfall were determined through a case study using empirical methods applicable to the tropical zones. The related climatological data between January 2000 and December 2010 were collected in Selangor, Malaysia. The results showed that groundwater recharge was326.39 mm per year, effective precipitation was 1807.97 mm per year and recharge coefficient was 18% for the study area. In summary, the precipitation converted to recharge, surface runoff and evapotranspiration are 12, 32 and 56% of rainfall, respectively. Correlation between climatic parameters and groundwater recharge showed positive and negative relationships. The highest correlation was found between precipitation and recharge. Linear multiple regressions between
    recharge and measured climatologic data proved significant relationship between recharge and rainfall and wind speed. It was also proven that the proposed model provided an accurate estimation for similar projects.
    Matched MeSH terms: Water Resources
  12. Babat SO, Sirekbasan S, Macin S, Kariptas E, Polat E
    Trop Biomed, 2018 Dec 01;35(4):1087-1091.
    PMID: 33601855
    Intestinal parasitic infections are among important health problems in developing countries. In societies living in low socioeconomic conditions, it has been neglected and mostly affects children. It is important to determine the prevalence and type of intestinal parasites in order to determine the intervention strategies for these infections. Therefore, the aim of this study is to evaluate intestinal parasite prevalence and IgE levels and the factors associated with the region in which the children population live, in Sirnak province, in the eastern of Turkey. A total of 357 symptomatic children aged 4 to 12 years, who were admitted to the Paediatric Polyclinic of Sirnak State Hospital, were examined prospectively. The collected stool samples were examined with direct wet-mount and concentration method under light microscope. In addition, total serum IgE levels were compared among 223 children with parasitic disease and 134 children without parasitic disease. One or more intestinal parasites were detected in 223 out of the 357 children participating in the study. The ratio of single, double, and triple parasitic infections in children was 32.5 %, 22.4 % and 7.6 %, respectively. The most common parasites determined in the study were Taenia spp. (39.9%), Enterobius vermicularis (38.6%) and Giardia intestinalis. (30 %). The difference between IgE levels determined in both groups was not regarded to be statistically significant. This study indicated that that intestinal polyparism is very common in children living in the province of Sirnak, which is located in the east of Turkey, neighbouring Iraq and Syria in the South. For this reason, sustainable control measures are urgently needed to improve personal hygiene and sanitation, to provide a healthy infrastructure and to improve the quality of existing water resources.
    Matched MeSH terms: Water Resources
  13. Mahmoud khaki, Ismail Yusoff, Nur Islami, Nur Hayati Hussin
    Sains Malaysiana, 2016;45:19-28.
    Forecasting of groundwater level variations is a significantly needed in groundwater resource management. Precise water level prediction assists in practical and optimal usage of water resources. The main objective of using an artificial neural network (ANN) was to investigate the feasibility of feed-forward, Elman and Cascade forward neural networks with different algorithms to estimate groundwater levels in the Langat Basin from 2007 to 2013. In order to examine the accuracy of monthly water level forecasts, effectiveness of the steepness coefficient in the sigmoid function of a developed ANN model was evaluated in this research. The performance of the models was evaluated using the mean squared error (MSE) and the correlation coefficient (R). The results indicated that the ANN technique was well suited for forecasting groundwater levels. All models developed had shown acceptable results. Based on the observation, the feed-forward neural network model optimized with the Levenberg-Marquardt algorithms showed the most beneficial results with the minimum MSE value of (0.048) and maximum R value of (0.839), obtained for simulation of groundwater levels. The present research conclusively showed the capability of ANNs to provide excellent estimation accuracy and valuable sensitivity analyses.
    Matched MeSH terms: Water Resources
  14. Faizalhakim, A.S., Nurhidayu, S., Norizah, K.
    MyJurnal
    Rainfall-runoff information is critical for water resource and river basin management. Runoff can be estimated by using two methods; gauged method (direct measurement) and ungauged method (indirect formula and equation). The in-situ measurement provides real-time and accurate yet required time-consuming operation and inaccessibility topography. Therefore, the runoff estimation modelling and equation was developed to overcome the limitation of in-situ measurement. SCS-CN is a simple model of ungauged method, where runoff volume (Q) resulting from rainfall (P) is formulated using equation of (Q= (P-Ia) 2 / (P-Ia + S). It was known as the best technique to be adopted for large basin study where time and manpower also accessibility are limited. SCS-CN method also is widely use in prediction software as it taken into consideration of the effects of soil, properties, land cover and antecedent moisture. Curve Number is well developed in USA for the agriculture purpose with many investigations to validate and calibrate the values of curve number. It was applied in numerous river basins in temperate and other regions e.g. US, Argentina, India, China, South Korea, Palestine and Malaysia. However, the reliability of the CN in the tropics is doubtable due to different land use characteristics, soil type, climate, geological features and rainfall pattern and variability. Based on the reviewed conceptual and applications of SCS-CN in temperate and tropics, numerous studies found the SCS-CN method is reliable and practical for runoff estimation in tropics region.
    Matched MeSH terms: Water Resources
  15. Koohpeyma HR, Vakili AH, Moayedi H, Panjsetooni A, Nazir R
    ScientificWorldJournal, 2013;2013:587462.
    PMID: 24459437 DOI: 10.1155/2013/587462
    Internal erosion is known as the most important cause of dam failure after overtopping. It is important to improve the erosion resistance of the erodible soil by selecting an effective technique along with the reasonable costs. To prevent internal erosion of embankment dams the use of chemical stabilizers that reduce the soil erodibility potential is highly recommended. In the present study, a lignin-based chemical, known as lignosulfonate, is used to improve the erodibility of clayey sand specimen. The clayey sand was tested in various hydraulic heads in terms of internal erosion in its natural state as well as when it is mixed with the different percentages of lignosulfonate. The results show that erodibility of collected clayey sand is very high and is dramatically reduced by adding lignosulfonate. Adding 3% of lignosulfonate to clayey sand can reduce the coefficient of soil erosion from 0.01020 to 0.000017. It is also found that the qualitative erodibility of stabilized soil with 3% lignosulfonate is altered from the group of extremely rapid to the group of moderately slow.
    Matched MeSH terms: Water Resources*
  16. Meo MS, Sabir SA, Arain H, Nazar R
    Environ Sci Pollut Res Int, 2020 Jun;27(16):19678-19687.
    PMID: 32219658 DOI: 10.1007/s11356-020-08361-8
    The current study explores the relationship between water resources and tourism in South Asia for the period of 1995-2017. The study employs the CIPS unit root test for stationarity of the variables and the CD test for cross-sectional dependence among cross-sectional units. As for the long-run parameters, a novel technique, known as dynamic common correlated effect (DCCE) model, is used which was recently developed by Chudik and Pesaran (J Econ 188:393-420, 2015b). The outcomes from the DCCE method suggest that water resources have a positive impact on tourism in South Asia. It is also proven that ignoring cross-sectional dependence among the cross-sectional units may bring about misleading outcomes. The findings of the study can be helpful for policymakers to understand the role of water resources in boosting tourism and contributing to the economic prosperity of South Asian countries.
    Matched MeSH terms: Water Resources*
  17. Mohd Armi, A.S., Afiza, A.S., Mohd Ramzi, A.
    ASM Science Journal, 2012;6(2):149-151.
    MyJurnal
    Over the last century, the earth’s climate has changed. It is a serious global, long-term problem which involves complex interactions. A lot of evidence suggests that most of the observed factors contributing to the crisis over the last 50 years can be attributed to human activities. Malaysia has always been vulnerable to extreme climatic events such as typhoons, floods and drought. We expect climate change to exacerbate these vulnerabilities. To ensure, that our water resources will always be secure and ready for use. We need to create awareness in the public and the policy makers so that they will acknowledge that the climate change issue is real. They also need to accept that actions to adapt with our vulnerabilities should be immediately put in place. We can do this by integrating the various sector policies and securing the participation of all stakeholders in Malaysia and other countries.
    Matched MeSH terms: Water Resources
  18. Al-Hassoun, Saleh A., Mohammad, Thamer Ahmed
    MyJurnal
    Groundwater is the main source of water in the Kingdom of Saudi Arabia (KSA). A larger part of groundwater is founded in alluvial (unconfined) aquifers. Prediction of water table elevations in
    unconfined aquifers is very useful in water resources planning and management. During the last two
    decades, many aquifers in different regions of the KSA experienced significant groundwater decline.
    The declines in these aquifers raised concerns over the quantity and quality of groundwater, as well
    as concerns over the planning and management policies used in KSA. The main objective of this study was to predict water table fluctuations and to estimate the annual change in water table at an alluvial aquifer at wadi Hada Al Sham near Makkah, KSA. The methodology was achieved using numerical groundwater model (MODFLOW). The model was calibrated and then used to predict water table elevations due to pumping for a period of 5 years. The output of the model was found to be in agreement with the previous records. Moreover, the simulation results also show reasonable declination of water table elevations in the study area during the study period.
    Matched MeSH terms: Water Resources
  19. Noor Halini Baharim, Razali Ismail, Mohamad Hanif Omar
    Sains Malaysiana, 2011;40:1179-1186.
    Thermal stratification in lakes is an important natural process that can have a significant effect on the water resource quality. The potential changes in chemical contents in water resulting from stratification are the production of ammonia, sulphides and algal nutrients and the increasing concentrations of iron and manganese. One of the water supply reservoirs located in Johor, Malaysia facing with high iron and manganese concentrations associated with the period of stratifications. This study showed that the level of thermal stratification in the reservoir varied at different time of the year. During the strongest period of stratification, the dissolved oxygen content was found to diminish significantly with depth and iron and manganese were recorded at the highest concentrations. Although significant period of rainfalls contributed to the natural destratification of reservoir, lower concentrations of iron and manganese only remained for a shorter period before the concentrations continued to increase with the onset of the thermal stratification. A good understanding on the behaviour of the reservoir may help to identify several measures for the improvement of water quality.
    Matched MeSH terms: Water Resources
  20. Mak JW
    Trop Biomed, 2004 Dec;21(2):39-50.
    PMID: 16493397
    Intestinal protozoa are increasingly being studied because of their association with acute and chronic diarrhoea in immunocompromised as well as immunocompetent patients. Various community outbreaks due to contamination of water or food with these protozoa have further highlighted their importance in public health. Among these important pathogens are Giardia duodenalis, Entamoeba histolytica, Cryptosporidium parvum, Cyclospora cayetanensis, Isospora belli, and microsporidia. Except for the cyst-forming G. duodenalis and E. histolytica, the others are intracellular and form spores which are passed out with the faeces. These organisms are also found in various animals and birds and zoonotic transmission is thought to occur. These infections are distributed worldwide, with a higher prevalence in developing compared to developed countries. However, the relative importance of zoonotic infections especially in developing countries has not been studied in detail. The prevalence rates are generally higher in immunodeficient compared to immunocompetent patients. Higher prevalence rates are also seen in rural compared to urban communities. Most studies on prevalence have been carried out in developed countries where the laboratory and other health infrastructure are more accessible than those in developing countries. This relative inadequacy of laboratory diagnosis can affect accurate estimates of the prevalence of these infections in developing countries. However, reports of these infections in travellers and workers returning from developing countries can provide some indication of the extent of these problems. Most studies on prevalence of amoebiasis in developing countries were based on morphological identification of the parasite in faecal smears. As the pathogenic E. histolytica is morphologically indistinguishable from that of non-pathogenic E. dispar, estimates of amoebiasis may not be accurate. The epidemiology of human microsporidia infections is not completely understood. Two species, Enterocytozoon bieneusi and Encephalitozoon intestinalis, are associated with gastrointestinal disease in humans and it is believed that human to human as well as animal to human infections occur. However, the importance of zoonotic infections has not been fully characterised. G. duodenalis cysts, microsporidia and Cryptosporidium oocysts have been detected in various ground water resources, but their role in community outbreaks and maintenance of the infection has not been fully characterised. The taxonomic classification and pathogenic potential of B. hominis are still controversial. While considered by many as yeast, fungi or protozoon, recent sequence analysis of the complete SSUrRNA gene has placed it within an informal group, the stramenopiles. This review covers recent published data on these zoonotic infections and examines their public health importance in Asian countries.
    Matched MeSH terms: Water Resources
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links