Displaying publications 1 - 20 of 169 in total

Abstract:
Sort:
  1. Farasyahida A. Samad, Wan Salida Wan Mansor, idayatul Aini Zakaria
    MyJurnal
    Clean, safe and readily available water is very crucial in everyday life, especially for health, hygiene, and the productivity of the community. Unfortunately, increase in contaminants in water supplies from human activities and industrialization is very worrying. Conventional wastewater treatment includes the usage of alum that will affect health with prolonged consumption. This research was carried out to focus on the development of wastewater treatment system using adsorbent from Moringa oleifera seeds. Adsorbent was successfully synthesized from the seeds of Moringa oleifera. Characterization of the sample was made using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), while the effectiveness of water treatment was analyzed using Turbidity Meter. Then, all samples were tested against kaolin wastewater. XRD results showed that all the adsorbent samples were amorphous in nature. FTIR results indicated that there were hydroxyl group and carboxylic group in the sample representing numerous oxygen-riddled functional groups on the surface. From SEM results, it was clearly shown that the pore structure and size of Moringa oleifera affected the capability of adsorption where the smaller the size, the more effective the sample. Turbidity test showed that the sample that worked best for wastewater treatment was adsorbent from Moringa oleifera seeds in size of 125µm that was heated for 4 hours with 93.76% turbidity removal. Therefore, this study proved that the adsorbent from Moringa oleifera seeds is very suitable for high turbidity wastewater treatment. Further studies investigating the combination of conventional activated carbon with adsorbent from Moringa oleifera seeds should be conducted before these samples are made available for further use so that we can compare which sample works best for wastewater treatment.
    Matched MeSH terms: Water Supply
  2. Abdul Rahim Samsudin, Umar Hamzah, Zuraidah Ramli
    Sains Malaysiana, 2007;36:159-163.
    An integrated geophysical study was conducted to investigate the subsurface regional structure and the presence of a Quaternary sedimentary basin in the Olak Lempit - Banting area of Selangor, Malaysia. A regional gravity survey and the high resolution reflection seismic were employed to determine the thickness and areal distribution of the alluvial sedimentary basin as well as to investigate the depth and topography of the bedrock in the study area. The sedimentary basin hosts one of the most important coastal alluvial aquifer which was used to cater the shortage of domestic water supply during the worst water crisis that hit the state of Selangor in 1998. The surface geological map shows that in general 70% of the study area is covered by Quaternary deposits of Beruas, Gula and Simpang Formations which overlie the sedimentary bedrock of Kenny Hill Formation. The Beruas Formation consists of mainly clay, sandy clay and peat of Holocene fluviatile-estuarine deposits, whereas the Gula Formation represents Holocene marine to estuarine sediments which mostly consists of clay and minor sand. The Simpang Formation (Pleistocene) is a continental deposit comprising of gravel, sand, clay and silt. The underlying Kenny Hill Formation consists of a monotonous sequence of interbedded shales, mudstones and sandstones. The rock is Carbonaceous in age and it forms an undulating surface topography in the eastern part of the study area. A total of 121 gravity stations were established using a La Coste & Romberg gravity meter and the elevations of most of the stations were determined barometrically using Tiernan-Wallace altimeters. The high resolution seismic reflection using the common mid point (CMP) or roll along technique was carried out using a 24 channel signal enhancement seismograph and high frequency geophones. A total length of about 1.7 km stacked seismic section has been acquired in this survey and a nearby borehole data was used for interpretation. A relative Bouguer anomaly map shows an elongated zone of low gravity anomaly trending approximately NW-SE which is interpreted to be the deposition center of the Quaternary basin. The interpreted gravity profiles running across the central area of the study area show that the basin has thickness varies from tenth to several hundred meters with maximum depth to bedrock of about 275m. A gravity profile which passes through the eastern edge of the basin was modeled with depth to bedrock of about 178m below ground which agrees very well with those obtained from the interpreted seicmic section and borehole data. The stacked seismic section shows several high amplitude parallel to sub-parallel reflection overlying discontinuos and low reflection pattern. Reflections on the eastern part of the section is much shallower than the one observed on the western part which clearly indicates the presence of basinal structure with a total interpreted depth to bedrock of about 200 meters.
    Matched MeSH terms: Water Supply
  3. Moradpour N, Karimova M, Pourafshary P, Zivar D
    ACS Omega, 2020 Jul 28;5(29):18155-18167.
    PMID: 32743190 DOI: 10.1021/acsomega.0c01766
    The results of many previous studies on low salinity/controlled ions water (CIW) flooding suggest that future laboratory and modeling investigations are required to comprehensively understand and interpret the achieved observations. In this work, the aim is co-optimization of the length of the injected slug and soaking time in the CIW flooding process. Furthermore, the possibility of the occurrence of several governing mechanisms is studied. Therefore, the experimental results were utilized to develop a compositional model, using CMG GEM software, in order to obtain the relative permeability curves by history matching. It was concluded that CIW slug injection, concentrated in the potential-determining ion, can increase oil recovery under a multi ion exchange (MIE) mechanism. The wettability of the carbonate rocks was changed from a mixed or oil wet state toward more water wetness. However, there is a CIW slug length, beyond which extending the length does not significantly improve the rock wettability, and consequently, the oil production, which is known as the optimum slug size. This implies that the optimization of the injection process, by minimizing the slug size, can decrease the need for the CIW supply, therefore lowering the process expenditure. Moreover, if the exposure time of the rock and CIW is increased (soaking), a higher level of ion substitution is probable, leading to more oil detachment and production. Rock dissolution/precipitation (leading to a pH change) was found to have a negligible contribution.
    Matched MeSH terms: Water Supply
  4. Chuah CJ, Mukhaidin N, Choy SH, Smith GJD, Mendenhall IH, Lim YAL, et al.
    Sci Total Environ, 2016 08 15;562:701-713.
    PMID: 27110981 DOI: 10.1016/j.scitotenv.2016.03.247
    A catchment-scale investigation of the prevalence of Cryptosporidium and Giardia in the Kuang River Basin was carried out during the dry and rainy seasons. Water samples were collected from the Kuang River and its tributaries as well as a major irrigation canal at the study site. We also investigated the prevalence of gastrointestinal parasitic infection among dairy and beef cattle hosts. Cryptosporidium and/or Giardia were detected in all the rivers considered for this study, reflecting their ubiquity within the Kuang River Basin. The high prevalence of Cryptosporidium/Giardia in the upper Kuang River and Lai River is of a particular concern as both drain into the Mae Kuang Reservoir, a vital source of drinking-water to many local towns and villages at the research area. We did not, however, detected neither Cryptosporidium nor Giardia were in the irrigation canal. The frequency of Cryptosporidium/Giardia detection nearly doubled during the rainy season compared to the dry season, highlighting the importance of water as an agent of transport. In addition to the overland transport of these protozoa from their land sources (e.g. cattle manure, cess pits), Cryptosporidium/Giardia may also be re-suspended from the streambeds (a potentially important repository) into the water column of rivers during storm events. Faecal samples from dairy and beef cattle showed high infection rates from various intestinal parasites - 97% and 94%, respectively. However, Cryptosporidium and Giardia were only detected in beef cattle. The difference in management style between beef (freeranging) and dairy cattle (confined) may account for this disparity. Finally, phylogenetic analyses revealed that the Cryptosporidium/Giardia-positive samples contained C. ryanae (non-zoonotic) as well as Giardia intestinalis assemblages B (zoonotic) and E (non-zoonotic). With only basic water treatment facilities afforded to them, the communities of the rural area relying on these water supplies are highly at risk to Cryptosporidium/Giardia infections.
    Matched MeSH terms: Water Supply/statistics & numerical data*
  5. Zaini Hamzah, Siti Afiqah Abdul Rahman, Ahmad Saat, Siti Shahrina Agos, Zaharudin Ahmad
    MyJurnal
    The presence of 226 Ra in water is a great concern in human life since it can cause health risk to a certain extent. In the state of Kelantan, being known of its granitic area, there is a lack measurement of 226 Ra content in river water, since water is the major source of water supply. According to the INTERIM National Water Quality Standards for Malaysia (INWQS), 226 Ra activity concentration in water cannot exceed 0.1 Bq/L. For this reasons, this research was planned to carry out a systematic measurement of water along Sungai Kelantan. Liquid Scintillation Counting was used for measurement of 226 Ra in water samples from Sungai Kelantan mainly in district of Kuala Krai. In this paper, the results obtained is about 26 water samples, filtered and unfiltered, collected along Sungai Lebir, Sungai Sok and Bukit Sabah. Thus, the assessment activity concentration of 226 Ra in river water was obtained as well as annual effective dose for consumption of drinking water.
    Matched MeSH terms: Water Supply
  6. Kato M, Azimi MD, Fayaz SH, Shah MD, Hoque MZ, Hamajima N, et al.
    Chemosphere, 2016 Dec;165:27-32.
    PMID: 27619645 DOI: 10.1016/j.chemosphere.2016.08.124
    Toxic elements in drinking water have great effects on human health. However, there is very limited information about toxic elements in drinking water in Afghanistan. In this study, levels of 10 elements (chromium, nickel, copper, arsenic, cadmium, antimony, barium, mercury, lead and uranium) in 227 well drinking water samples in Kabul, Afghanistan were examined for the first time. Chromium (in 0.9% of the 227 samples), arsenic (7.0%) and uranium (19.4%) exceeded the values in WHO health-based guidelines for drinking-water quality. Maximum chromium, arsenic and uranium levels in the water samples were 1.3-, 10.4- and 17.2-fold higher than the values in the guidelines, respectively. We next focused on uranium, which is the most seriously polluted element among the 10 elements. Mean ± SD (138.0 ± 1.4) of the (238)U/(235)U isotopic ratio in the water samples was in the range of previously reported ratios for natural source uranium. We then examined the effect of our originally developed magnesium (Mg)-iron (Fe)-based hydrotalcite-like compounds (MF-HT) on adsorption for uranium. All of the uranium-polluted well water samples from Kabul (mean ± SD = 190.4 ± 113.9 μg/L; n = 11) could be remediated up to 1.2 ± 1.7 μg/L by 1% weight of our MF-HT within 60 s at very low cost (<0.001 cents/day/family) in theory. Thus, we demonstrated not only elevated levels of some toxic elements including natural source uranium but also an effective depurative for uranium in well drinking water from Kabul. Since our depurative is effective for remediation of arsenic as shown in our previous studies, its practical use in Kabul may be encouraged.
    Matched MeSH terms: Water Supply
  7. Bello MO, Solarin SA, Yen YY
    J Environ Manage, 2018 Aug 01;219:218-230.
    PMID: 29747103 DOI: 10.1016/j.jenvman.2018.04.101
    The primary objective of this paper is to investigate the isolated impacts of hydroelectricity consumption on the environment in Malaysia as an emerging economy. We use four different measures of environmental degradation including ecological footprint, carbon footprint, water footprint and CO2 emission as target variables, while controlling for GDP, GDP square and urbanization for the period 1971 to 2016. A recently introduced unit root test with breaks is utilized to examine the stationarity of the series and the bounds testing approach to cointegration is used to probe the long run relationships between the variables. VECM Granger causality technique is employed to examine the long-run causal dynamics between the variables. Sensitivity analysis is conducted by further including fossil fuels in the equations. The results show evidence of an inverted U-shaped relationship between environmental degradation and real GDP. Hydroelectricity is found to significantly reduce environmental degradation while urbanization is also not particularly harmful on the environment apart from its effect on air pollution. The VECM Granger causality results show evidence of unidirectional causality running from hydroelectricity and fossil fuels consumption to all measures of environmental degradation and real GDP per capita. There is evidence of feedback hypothesis between real GDP to all environmental degradation indices. The inclusion of fossil fuel did not change the behavior of hydroelectricity on the environment but fossil fuels significantly increase water footprint.
    Matched MeSH terms: Water Supply*
  8. Wan Mohtar WHM, Abdul Maulud KN, Muhammad NS, Sharil S, Yaseen ZM
    Environ Pollut, 2019 May;248:133-144.
    PMID: 30784832 DOI: 10.1016/j.envpol.2019.02.011
    Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH3) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
    Matched MeSH terms: Water Supply
  9. Zulkifli A, Khairul Anuar A, Atiya AS, Yano A
    JUMMEC, 1999;4:99-103.
    A survey of malnutrition and helminth infections among 268 pre-school children living in the Kuala Betis Orang Asli resttlement villages in Kelantan. The prevalence of helminth infections was 47.4% with Ascaris lumbricoides being the most common helminth (43.9%), followed by Trichuris trichiura (29.7%) and hookworm (6.3%). The prevalence of Ascaris lumbricoides and Trichuris trichiura infections increased with age, with the highest prevalence found in the 6-7 years age group. The overall prevalence of stunting, underweight and wasting were 61.7%, 60.4% and 17.5% respectively. Both stunting and underweight were significantly higher among the infected children. Factors associated with helminth infections in the pre-school children were older age group, poor water supply and households with more than 5 members. Rountine regular deworming is recommended based on the World Health Organisation recommendations for school children.
    Matched MeSH terms: Water Supply
  10. DeVantier L, Alcala A, Wilkinson C
    Ambio, 2004 Feb;33(1-2):88-97.
    PMID: 15083654
    The Sulu-Sulawesi Sea, with neighboring Indonesian Seas and South China Sea, lies at the center of the world's tropical marine biodiversity. Encircled by 3 populous, developing nations, the Philippines, Indonesia and Malaysia, the Sea and its adjacent coastal and terrestrial ecosystems, supports ca. 33 million people, most with subsistence livelihoods heavily reliant on its renewable natural resources. These resources are being impacted severely by rapid population growth (> 2% yr-1, with expected doubling by 2035) and widespread poverty, coupled with increasing international market demand and rapid technological changes, compounded by inefficiencies in governance and a lack of awareness and/or acceptance of some laws among local populations, particularly in parts of the Philippines and Indonesia. These key root causes all contribute to illegal practices and corruption, and are resulting in severe resource depletion and degradation of water catchments, river, lacustrine, estuarine, coastal, and marine ecosystems. The Sulu-Sulawesi Sea forms a major geopolitical focus, with porous borders, transmigration, separatist movements, piracy, and illegal fishing all contributing to environmental degradation, human suffering and political instability, and inhibiting strong trilateral support for interventions. This review analyzes these multifarious environmental and socioeconomic impacts and their root causes, provides a future prognosis of status by 2020, and recommends policy options aimed at amelioration through sustainable management and development.
    Matched MeSH terms: Water Supply*
  11. Normaliza Ab. Malik, Rohazila Mohd Hanafiah, Wan Mohamad Nasi Wan Othman
    Sains Malaysiana, 2013;42:53-58.
    This study was to evaluate the microbial contamination level in direct water supply at the Polyclinic, Faculty of Dentistry, USIM, Malaysia. Water samples were collected randomly from water supplied via the cup filler outlet of 20 dental units and 20 side water taps at Level 16 and 17 of Polyclinic, Faculty of Dentistry, USIM. All the samples were placed and spread evenly on the surface of prepared agar media (the nutrient agar) using the spread technique. Each sample consists of 0.5 mL water. The microbial count was done using a magnifying glass and the total number of bacteria concentration was reported as colony forming unit in 1 mL of water (cfu/mL). In this study water from an aquarium was used as positive control with 220 cfu/mL, while the distilled water taken from the CSSD was used as negative control with no colony of microorganism. The study demonstrated that there were low contamination before the treatment that was beginning of the session in water supplied via the cup filler outlet and side water tap from the sink with 2 cfu/mL. However, two cup fillers water and one side water taps from Polyclinic level 17 showed a slightly higher bacterial colonies with 4 cfu/mL and 6 cfu/mL of microbes. At the end of the session, result showed that higher bacterial count from Polyclinic level 17 than Polyclinic level 16 with the highest reading of 40 cfu/mL. The findings were considered low and the water was safe for the dental procedures. The quality of water supplied at the Faculty of Dentistry, USIM was within the limits recommended by the American Dental Association, i.e. bacterial loads of not more than 200 cfu/mL for dental procedures.
    Matched MeSH terms: Water Supply
  12. Lonergan S, Vansickle T
    Soc Sci Med, 1991;33(8):937-46.
    PMID: 1745918
    Due to the increasingly documented prevalence of diarrhoeal diseases in Malaysia, a number of water-related programmes have been implemented in an attempt to improve health status through the reduction of incidence of waterborne communicable diseases associated with poor public water supplies. The implicit assumption underlying these projects is that the enhancement of the physical infrastructure, and subsequent improvements in the quality of the water supply, will substantially reduce water-related disease. The present study questions this hypothesis and uses a socio-ecological model as a framework to assess risk factors associated with the increased probability of waterborne disease. Research is centred on Port Dickson, a district which typifies existing water and sanitation conditions in much of semi-rural Malaysia. Health services utilization data and a 268-household diarrhoeal morbidity survey were used to measure the burden of illness of waterborne disease within the district and to identify predictors of morbidity. It was concluded that although treatment facilities will reduce the health burden in the region, a number of behavioural and sanitation factors may be more important and could act to minimize the potential impacts of improved water quality.
    Matched MeSH terms: Water Supply/standards*
  13. Al Mashhadany Y, Alsanad HR, Al-Askari MA, Algburi S, Taha BA
    Environ Monit Assess, 2024 Apr 09;196(5):438.
    PMID: 38592580 DOI: 10.1007/s10661-024-12606-1
    Advanced sensor technology, especially those that incorporate artificial intelligence (AI), has been recognized as increasingly important in various contemporary applications, including navigation, automation, water under imaging, environmental monitoring, and robotics. Data-driven decision-making and higher efficiency have enabled more excellent infrastructure thanks to integrating AI with sensors. The agricultural sector is one such area that has seen significant promise from this technology using the Internet of Things (IoT) capabilities. This paper describes an intelligent system for monitoring and analyzing agricultural environmental conditions, including weather, soil, and crop health, that uses internet-connected sensors and equipment. This work makes two significant contributions. It first makes it possible to use sensors linked to the IoT to accurately monitor the environment remotely. Gathering and analyzing data over time may give us valuable insights into daily fluctuations and long-term patterns. The second benefit of AI integration is the remote control; it provides for essential activities like irrigation, pest management, and disease detection. The technology can optimize water usage by tracking plant development and health and adjusting watering schedules accordingly. Intelligent Control Systems (Matlab/Simulink Ver. 2022b) use a hybrid controller that combines fuzzy logic with standard PID control to get high-efficiency performance from water pumps. In addition to monitoring crops, smart cameras allow farmers to make real-time adjustments based on soil moisture and plant needs. Potentially revolutionizing contemporary agriculture, this revolutionary approach might boost production, sustainability, and efficiency.
    Matched MeSH terms: Water Supply
  14. Heydari M, Othman F, Taghieh M
    PLoS One, 2016;11(6):e0156276.
    PMID: 27248152 DOI: 10.1371/journal.pone.0156276
    Optimal operation of water resources in multiple and multipurpose reservoirs is very complicated. This is because of the number of dams, each dam's location (Series and parallel), conflict in objectives and the stochastic nature of the inflow of water in the system. In this paper, performance optimization of the system of Karun and Dez reservoir dams have been studied and investigated with the purposes of hydroelectric energy generation and providing water demand in 6 dams. On the Karun River, 5 dams have been built in the series arrangements, and the Dez dam has been built parallel to those 5 dams. One of the main achievements in this research is the implementation of the structure of production of hydroelectric energy as a function of matrix in MATLAB software. The results show that the role of objective function structure for generating hydroelectric energy in weighting method algorithm is more important than water supply. Nonetheless by implementing ε- constraint method algorithm, we can both increase hydroelectric power generation and supply around 85% of agricultural and industrial demands.
    Matched MeSH terms: Water Supply*
  15. Syed Sharizman Syed Abdul Rahim
    MyJurnal
    Introduction: Food poisoning usually occurs with the consumption of contaminated food. Some related factors are unsafe water supply, poor sanitation, unhygienic waste disposal and unhygienic practices or poor personal hygiene by food handlers. The purpose of this study is to describe the spatial epidemiology of food poisoning cases in the four districts of Sabah. Methods: This review consists of all food poisoning cases reported from 2011 to 2014 from Kota Kinabalu, Penampang, Putatan and Papar, Sabah. The coordinates used for locations of cases are based on home addresses. Tools such as SPSS v20, ArcGIS v10 and CrimeStat IV were used for data analysis and mapping. Results: A total of 1,787 cases of food poisoning were reported during this review period. In 2011, only Kota Kinabalu and Pa-par illustrated significant food poisoning clusters. Meanwhile, in the year 2012 to 2014, Kota Kinabalu, Penampang and Putatan had clustering of cases. Analysis of nearest neighbour hierarchical clustering analysis showed 32 food poisoning clusters. There were 4 food poisoning points at 500 meters radius around a market place, 2 food poisoning points near a sewage plant and 1 food poisoning point near a water treatment plant. No cases were near a municipal landfill. For rivers and coastline, there were 37 points of food poisoning cases in the proximity of 500 meters. Con-clusion: Food poisoning usually occurs in clusters with possible associated environmental factors.
    Matched MeSH terms: Water Supply
  16. Suhaimi S, Tahir NM, Suriyati S
    Bull Environ Contam Toxicol, 2004 Dec;73(6):1094-100.
    PMID: 15674725
    Matched MeSH terms: Water Supply/standards
  17. Hairi F, Ong CH, Suhaimi A, Tsung TW, bin Anis Ahmad MA, Sundaraj C, et al.
    Asia Pac J Public Health, 2003;15(1):37-43.
    PMID: 14620496
    A cross-sectional survey was conducted to assess the level of knowledge, attitude and practices concerning dengue and its vector Aedes mosquito among selected rural communities in the Kuala Kangsar district from 16-25th June, 2002. It was found that the knowledge of the community was good. Out of the 200 respondents, 82.0% cited that their main source of information on dengue was from television/radio. The respondents' attitude was found to be good and most of them were supportive of Aedes control measures. There is a significant association found between knowledge of dengue and attitude towards Aedes control (p = 0.047). It was also found that good knowledge does not necessarily lead to good practice. This is most likely due to certain practices like water storage for domestic use, which is deeply ingrained in the community. Mass media is an important means of conveying health messages to the public even among the rural population, thus research and development of educational strategies designed to improve behaviour and practice of effective control measures among the villagers are recommended.
    Matched MeSH terms: Water Supply
  18. Mohamed M, Stednick JD, Smith FM
    Water Sci Technol, 2002;46(9):47-54.
    PMID: 12448451
    Some of the many tools used for watershed management are mathematical and computer models for wasteload allocations. QUAL2E is one of the most popular water quality models used for such purposes. The question arises as to whether the model is applicable in a different climate such as that in the tropics. In this study, QUAL2E was used to model Sg. Selangor River in Malaysia using the predictive equations for reaeration coefficient (k2) within the model and the measured reaeration coefficients for the river. The study results indicated that use of the reaeration coefficient (k2) measured at Sg. Selangor River did give the lowest standard error (SE) for the simulation of water quality during the 7Q10 low-flow period which is considered as the worst scene scenario in water quality modeling. But during calibration and validation using actual low-flow discharge data, the measured reaeration coefficients did not give the lowest standard error (SE). In conclusion, the results indicated that QUAL2E is applicable in tropical rivers when used with the modeled river parameters (i.e. hydraulic parameters, meteorological conditions etc.). Measured reaeration coefficients produced good results and several predictive equations also produced comparatively good results.
    Matched MeSH terms: Water Supply/standards*
  19. Tan Poo Chang, Kwok Kwan Kit, Tan Boon Ann, Shyamala Nagaraj, Tey Nai Peng, Siti Norazah Zulkifli
    Asia Pac Popul J, 1987 Mar;2(1):3-20.
    PMID: 12341034
    PIP: Morality in Peninsular Malaysia has reached a level that is quite similar to that prevailing in the low mortality countries. This article systematically documents changes in mortality levels and differentials in Malaysia over time and relates these to changes in development indicators and health-related policies. Remedial measures undertaken by the authorities including the expansion of hospital and health services into the estates, together with a comprehensive malaria-eradication program, improvements in sanitation laws, and increased provision of public utilities and education, resulted in beriberi being eliminated and the incidence of malaria, typhus, and smallpox being greatly reduced by the time of World War II. The gain in life expectancy over the period of 1957-1979 was greatest for the Malay, the most significant period being 1957-1967, which saw the introduction of rural health programs. The infant mortality rate and the neonatal and post-neonatal rates declined substantially for all ethnic groups in Peninsular Malaysia for the same time period. Although the lower infant mortality of the Chinese can be explained by their advantageous socioeconomic position the same reason cannot explain the lower decline in infant mortality levels of the Indians. Much still needs to be done to narrow, if not to eliminate, the existing mortality differentials of different groups in the country. Overall, the quality of life of the general population can be further enhanced by reducing the high mortality level of disadvantaged groups.
    Matched MeSH terms: Water Supply*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links