Displaying publications 1 - 20 of 119 in total

Abstract:
Sort:
  1. Shafika Sultan Abdullah, M.A. Malek, Namiq Sultan Abdullah, A. Mustapha
    Sains Malaysiana, 2015;44:1053-1059.
    Water scarcity is a global concern, as the demand for water is increasing tremendously and poor management of water resources will accelerates dramatically the depletion of available water. The precise prediction of evapotranspiration (ET), that consumes almost 100% of the supplied irrigation water, is one of the goals that should be adopted in order to avoid more squandering of water especially in arid and semiarid regions. The capabilities of feedforward backpropagation neural networks (FFBP) in predicting reference evapotranspiration (ET0) are evaluated in this paper in comparison with the empirical FAO Penman-Monteith (P-M) equation, later a model of FFBP+Genetic Algorithm (GA) is implemented for the same evaluation purpose. The study location is the main station in Iraq, namely Baghdad Station. Records of weather variables from the related meteorological station, including monthly mean records of maximum air temperature (Tmax), minimum air temperature (Tmin), sunshine hours (Rn), relative humidity (Rh) and wind speed (U2), from the related meteorological station are used in the prediction of ET0 values. The performance of both simulation models were evaluated using statistical coefficients such as the root of mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The results of both models are promising, however the hybrid model shows higher efficiency in predicting ET0 and could be recommended for modeling of ET0 in arid and semiarid regions.
    Matched MeSH terms: Weather
  2. Haque R, Ho SB, Chai I, Abdullah A
    F1000Res, 2021;10:911.
    PMID: 34745565 DOI: 10.12688/f1000research.73026.1
    Background - Recently, there have been attempts to develop mHealth applications for asthma self-management. However, there is a lack of applications that can offer accurate predictions of asthma exacerbation using the weather triggers and demographic characteristics to give tailored response to users. This paper proposes an optimised Deep Neural Network Regression (DNNR) model to predict asthma exacerbation based on personalised weather triggers. Methods - With the aim of integrating weather, demography, and asthma tracking, an mHealth application was developed where users conduct the Asthma Control Test (ACT) to identify the chances of their asthma exacerbation. The asthma dataset consists of panel data from 10 users that includes 1010 ACT scores as the target output. Moreover, the dataset contains 10 input features which include five weather features (temperature, humidity, air-pressure, UV-index, wind-speed) and five demography features (age, gender, outdoor-job, outdoor-activities, location). Results - Using the DNNR model on the asthma dataset, a score of 0.83 was achieved with Mean Absolute Error (MAE)=1.44 and Mean Squared Error (MSE)=3.62. It was recognised that, for effective asthma self-management, the prediction errors must be in the acceptable loss range (error<0.5). Therefore, an optimisation process was proposed to reduce the error rates and increase the accuracy by applying standardisation and fragmented-grid-search. Consequently, the optimised-DNNR model (with 2 hidden-layers and 50 hidden-nodes) using the Adam optimiser achieved a 94% accuracy with MAE=0.20 and MSE=0.09. Conclusions - This study is the first of its kind that recognises the potentials of DNNR to identify the correlation patterns among asthma, weather, and demographic variables. The optimised-DNNR model provides predictions with a significantly higher accuracy rate than the existing predictive models and using less computing time. Thus, the optimisation process is useful to build an enhanced model that can be integrated into the asthma self-management for mHealth application.
    Matched MeSH terms: Weather
  3. Ahmad Kamal N, Muhammad NS, Abdullah J
    Environ Pollut, 2020 Apr;259:113909.
    PMID: 31927277 DOI: 10.1016/j.envpol.2020.113909
    Malaysia is a tropical country that is highly dependent on surface water for its raw water supply. Unfortunately, surface water is vulnerable to pollution, especially in developed and dense urban catchments. Therefore, in this study, a methodology was developed for an extensive temporal water quality index (WQI) and classification analysis, simulations of various pollutant discharge scenarios using QUAL2K software, and maps with NH3-N as the core pollutant using an integrated QUAL2K-GIS. It was found that most of the water quality stations are categorized as Class III (slightly polluted to polluted). These stations are surrounded by residential areas, industries, workshops, restaurants and wet markets that contribute to the poor water quality levels. Additionally, low WQI values were reported in 2010 owing to development and agricultural activities. However, the WQI values improved during the wet season. High concentrations of NH3-N were found in the basin, especially during dry weather conditions. Three scenarios were simulated, i.e. 10%, 50% and 70% of pollution discharge into Skudai river using a calibrated and validated QUAL2K model. Model performance was evaluated using the relative percentage difference. An inclusive graph showing the current conditions and pollution reduction scenarios with respect to the distance of Skudai river and its tributaries is developed to determine the WQI classification. Comprehensive water quality maps based on NH3-N as the core pollutant are developed using integrated QUAL2K-GIS to illustrate the overall condition of the Skudai river. High NH3-N in the Skudai River affects water treatment plant operations. Pollution control of more than 90% is required to improve the water quality classification to Class II. The methodology and analysis developed in this study can assist various stakeholders and authorities in identifying problematic areas and determining the required percentage of pollution reduction to improve the Skudai River water quality.
    Matched MeSH terms: Weather
  4. Jasim M. Rajab, Mat Jafri, M.Z, Lim, H.S., Abdullah, K.
    MyJurnal
    Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant. It is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. It is produced by the incomplete combustion of fossil fuels, and biomass burning. The CO data are obtained from Atmospheric Infrared Sounder (AIRS) onboard NASA’s Aqua satellite. The AIRS provides information for several greenhouse gases, CO2, CH4, CO, and O3 as a one goal of the AIRS instrument (included on the EOS Aqua satellite launched, May 4, 2002) as well as to improve weather prediction of the water and energy cycle. The results of the analysis of the retrieved CO total column amount (CO_total_column_A) as well as effective of the CO volume mixing ratio (CO_VMR_eff_A), Level-3 monthly (AIR*3STM) 1º*1º spatial resolution, ascending are used to study the CO distribution over the East and West Malaysia for the year 2003. The CO maps over the study area were generated by using Kriging Interpolation technique and analyzed by using Photoshop CS. Variations in the biomass burning and the CO emissions where noted, while the highest CO occurred at late dry season in the region which has experienced extensive biomass burning and greater draw down of CO occurred in the pristine continental environment (East Malaysia). In all cases, the CO concentration at West Malaysia is higher than East Malaysia. The southeastern Sarawak (lat. 3.5˚ - long. 115.5˚) is less polluted regions and less the CO in most of times in the year. Examining satellite measurements revealed that the enhanced CO emission correlates with occasions of less rainfall during the dry season.
    Matched MeSH terms: Weather
  5. Nellis S, Loong SK, Abd-Jamil J, Fauzi R, AbuBakar S
    Geospat Health, 2021 11 03;16(2).
    PMID: 34730321 DOI: 10.4081/gh.2021.1008
    Dengue is a complex disease with an increasing number of infections worldwide. This study aimed to analyse spatiotemporal dengue outbreaks using geospatial techniques and examine the effects of the weather on dengue outbreaks in the Klang Valley area, Kuala Lumpur, Malaysia. Daily weather variables including rainfall, temperature (maximum and minimum) and wind speed were acquired together with the daily reported dengue cases data from 2001 to 2011 and converted into geospatial format to identify whether there was a specific pattern of the dengue outbreaks. The association between these variables and dengue outbreaks was assessed using Spearman's correlation. The result showed that dengue outbreaks consistently occurred in the study area during a 11-year study period. And that the strongest outbreaks frequently occurred in two high-rise apartment buildings located in Kuala Lumpur City centre. The results also show significant negative correlations between maximum temperature and minimum temperature on dengue outbreaks around the study area as well as in the area of the high-rise apartment buildings in Kuala Lumpur City centre.
    Matched MeSH terms: Weather
  6. Nazif A, Mohammed NI, Malakahmad A, Abualqumboz MS
    Environ Sci Pollut Res Int, 2018 Jan;25(1):283-289.
    PMID: 29032528 DOI: 10.1007/s11356-017-0407-2
    The devastating health effects of particulate matter (PM10) exposure by susceptible populace has made it necessary to evaluate PM10 pollution. Meteorological parameters and seasonal variation increases PM10 concentration levels, especially in areas that have multiple anthropogenic activities. Hence, stepwise regression (SR), multiple linear regression (MLR) and principal component regression (PCR) analyses were used to analyse daily average PM10 concentration levels. The analyses were carried out using daily average PM10 concentration, temperature, humidity, wind speed and wind direction data from 2006 to 2010. The data was from an industrial air quality monitoring station in Malaysia. The SR analysis established that meteorological parameters had less influence on PM10 concentration levels having coefficient of determination (R 2) result from 23 to 29% based on seasoned and unseasoned analysis. While, the result of the prediction analysis showed that PCR models had a better R 2 result than MLR methods. The results for the analyses based on both seasoned and unseasoned data established that MLR models had R 2 result from 0.50 to 0.60. While, PCR models had R 2 result from 0.66 to 0.89. In addition, the validation analysis using 2016 data also recognised that the PCR model outperformed the MLR model, with the PCR model for the seasoned analysis having the best result. These analyses will aid in achieving sustainable air quality management strategies.
    Matched MeSH terms: Weather
  7. Arora S, Sawaran Singh NS, Singh D, Rakesh Shrivastava R, Mathur T, Tiwari K, et al.
    Comput Intell Neurosci, 2022;2022:9755422.
    PMID: 36531923 DOI: 10.1155/2022/9755422
    In this study, the air quality index (AQI) of Indian cities of different tiers is predicted by using the vanilla recurrent neural network (RNN). AQI is used to measure the air quality of any region which is calculated on the basis of the concentration of ground-level ozone, particle pollution, carbon monoxide, and sulphur dioxide in air. Thus, the present air quality of an area is dependent on current weather conditions, vehicle traffic in that area, or anything that increases air pollution. Also, the current air quality is dependent on the climate conditions and industrialization in that area. Thus, the AQI is history-dependent. To capture this dependency, the memory property of fractional derivatives is exploited in this algorithm and the fractional gradient descent algorithm involving Caputo's derivative has been used in the backpropagation algorithm for training of the RNN. Due to the availability of a large amount of data and high computation support, deep neural networks are capable of giving state-of-the-art results in the time series prediction. But, in this study, the basic vanilla RNN has been chosen to check the effectiveness of fractional derivatives. The AQI and gases affecting AQI prediction results for different cities show that the proposed algorithm leads to higher accuracy. It has been observed that the results of the vanilla RNN with fractional derivatives are comparable to long short-term memory (LSTM).
    Matched MeSH terms: Weather
  8. Humada AM, Hojabri M, Sulaiman MH, Hamada HM, Ahmed MN
    PLoS One, 2016;11(4):e0152766.
    PMID: 27035575 DOI: 10.1371/journal.pone.0152766
    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.
    Matched MeSH terms: Weather
  9. Rahman AM, Jamayet NB, Nizami MMUI, Johari Y, Husein A, Alam MK
    J Prosthet Dent, 2021 Jan 17.
    PMID: 33472753 DOI: 10.1016/j.prosdent.2020.07.026
    STATEMENT OF PROBLEM: The climate of tropical Southeast Asia includes high humidity and ultraviolet radiation that reduce the lifespan of silicone prostheses by inducing changes in their mechanical properties and color stability. Studies on the surface roughness (SR) and mechanical properties of different silicone elastomers (SEs) subjected to the natural tropical weather of Southeast Asia are lacking.

    PURPOSE: The purpose of this in vitro study was to evaluate the SR, tensile strength (TS), and percentage elongation (% E) of different SEs subjected to outdoor weathering in the Malaysian climate.

    MATERIAL AND METHODS: Type-II dumbbell-shaped specimens (N-120) (nonweathered=15, weathered=15) were made from 3 room-temperature vulcanized (A-2000, A-2006, and A-103) and 1 heat-temperature vulcanized (M-511) silicone (Factor II). For 6 months, weathered specimens were subjected to outdoor weathering inside a custom exposure rack. Simultaneously, the nonweathered specimens were kept in a dehumidifier. Subsequently, the SR was measured with a profilometer; TS and % E were measured by using a universal testing machine. Two-way ANOVA was used to compare the means of the tested properties of the nonweathered and weathered specimens, and pairwise comparison was carried out between the silicones (α=.05).

    RESULTS: After outdoor weathering, the SR, TS, and % E were adversely affected by weathering in the Malaysian environment. Among the silicone materials, A-2000 showed the least TS changes (2.51 MPa), while A-2006 demonstrated significant changes in percentage elongation after outdoor weathering (266.5%). M-511 exhibited the highest mean value (2.50 μm) for SR changes. In addition, A-103 SE showed statistically significant differences in most pairwise comparisons for all 3 dependent variables.

    CONCLUSIONS: Based on the evaluation of mechanical properties, A-103 can be suggested as a suitable silicone for maxillofacial prostheses fabricated for tropical climates. However, A-2000 can be a suitable alternative, although significant changes to surface roughness were detected after outdoor weathering.

    Matched MeSH terms: Weather
  10. Madya Mastika binti Ahmad, Amirah binti Mohd Arif
    MyJurnal
    In this day and age, with the ever-growing population and energy demand, we should take the renewable option route in our energy source. We should also keep in mind that said energy should not cause any lasting environmental damage, one of the perfect example being solar energy. A country that is hot and sunny all year long is the perfect contributor to solar energy, case in point, Malaysia. With that in mind Solar Tree is designed and developed to facilitate consumers who need electric power at any place, anytime, anywhere. The objective of this study is to assess a mini project in the likes of Solar Tree that can generate electricity without harming the environment, despite the weather. Intended specifically to be a mini project, it is understandable that electricity generated is limited, with only up to 500W in total. As a trial, two electronic devices were tested, specifically a mobile phone and a laptop, as both devices are used almost every day. The data collected is then tabulated and analysed. It was concluded the solar tree developed proved efficient in charging both devices and will continue to do so given enough sunlight.
    Matched MeSH terms: Weather
  11. Norli, R., Azmi, M.T.
    MyJurnal
    Introduction : Johor Bahru has one of the highest rates of dengue disease in this country in spite of the implementation of COMBI (Communication for Behavioural Impact) in 2001.
    Methods : To identify factors contributing to this problem, a case control study was conducted, focusing on risk factors such as the weather (rainfall and temperature), environment and sociodemography. Cases were selected from confirmed dengue cases from January to June, 2006. Controls were selected from patients who had no past history of having dengue illness from Health Clinics in Johore Bahru. Both case group and control group were matched by age and sex. All risk factors were analysed using SPSS version 11.5.
    Results : Results from time-series analysis indicated that the cases of dengue illness were related to changes in the minimum temperature (r =-0.149; p
    Matched MeSH terms: Weather
  12. Mohammed Taher Alfates, Biak, Dayang Radiah Awang
    MyJurnal
    Transport of fuel is essential to ensure supplies are delivered as per requested by the industrial sites or other demands. Numerous accidents have been reported and recorded in which loss of containment of hazardous chemicals occurred and led to disastrous outcomes. This paper presents the analysis of Boiling Liquid Expanding Vapour Explosion (BLEVE) due to loss of containment for Liquefied Petroleum Gas (LPG) road tankers. The main objective of this paper is to evaluate the potential consequences resulting from overpressure blast and thermal radiation of tankers carrying LPG to the people and the surrounding. The aim is also to compare the outcomes obtained from PHAST software simulator 8.11 with that of established mathematical model. Malaysia North-south Expressway (NSE) was selected as the location of the incident. The volume, weather parameters and properties of LPG were identified. It was found that the effect of BLEVE on people and structures was catastrophic. The results obtained from the mathematical model were similar with that modelled using PHAST software simulator.
    Matched MeSH terms: Weather
  13. Adiana G, Shazili NA, Marinah MA, Bidai J
    Environ Monit Assess, 2014 Jan;186(1):421-31.
    PMID: 23974537 DOI: 10.1007/s10661-013-3387-9
    Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019-0.194 μg/L and 50-365 μg/g, respectively, for cadmium (Cd), 0.05-0.45 μg/L and 38-3,570 μg/g for chromium (Cr), 0.05-3.54 μg/L and 21-1,947 μg/g for manganese (Mn), and 0.03-0.49 μg/L and 2-56,982 μg/g for lead (Pb). The order of mean log K D found was Cd > Cr > Pb > Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments.
    Matched MeSH terms: Weather
  14. Blust R
    Hum Biol, 2013 Feb-Jun;85(1-3):401-16.
    PMID: 24297235
    Within recorded history, most Southeast Asian peoples have been of "southern Mongoloid" physical type, whether they speak Austroasiatic, Tibeto-Burman, Austronesian, Tai-Kadai, or Hmong-Mien languages. However, population distributions suggest that this is a post-Pleistocene phenomenon and that for tens of millennia before the last glaciation ended Greater Mainland Southeast Asia, which included the currently insular world that rests on the Sunda Shelf, was peopled by short, dark-skinned, frizzy-haired foragers whose descendants in the Philippines came to be labeled by the sixteenth-century Spanish colonizers as "negritos," a term that has since been extended to similar groups throughout the region. There are three areas in which these populations survived into the present so as to become part of written history: the Philippines, the Malay Peninsula, and the Andaman Islands. All Philippine negritos speak Austronesian languages, and all Malayan negritos speak languages in the nuclear Mon-Khmer branch of Austroasiatic, but the linguistic situation in the Andamans is a world apart. Given prehistoric language shifts among both Philippine and Malayan negritos, the prospects of determining whether disparate negrito populations were once a linguistically or culturally unified community would appear hopeless. Surprisingly, however, some clues to a common negrito past do survive in a most unexpected way.
    Matched MeSH terms: Weather*
  15. Ahmad A, Ahmad AH, Dieng H, Satho T, Ahmad H, Aziz AT, et al.
    J Med Entomol, 2011 Nov;48(6):1236-46.
    PMID: 22238885
    There is accumulating evidence that criminals wrap dead bodies in an attempt to conceal evidence. To anticipate the forensic implications of this phenomenon, we examined whether flies that are naturally associated with cadavers exhibit a delay in attendance or differ in species composition and abundance patterns because of the presence of wrapping material. Wrapped and exposed carcasses of dead monkeys placed in an oil plantation in Kedah, Malaysia, were visited over 50 d. On daily visits to each of the six carcasses, visiting adult flies were sampled using hand nets. Flies of 12 families were encountered. Calliphoridae (Chrysomya rufifacies Macquart and C. megacephala (F.) was the most prevalent family, followed by Sphaeroceridae. Some families tended to be more abundant in WRCs (i.e., Calliphoridae, Muscidae, and Phoridae), whereas others (i.e., Piophilidae, Sepsidae, and Psychodidae) were more prevalent in exposed carcasses. Wrapping delayed the arrival of all fly species encountered, with delays varying from 1 to 13 d depending on species. Wrapping did not affect species composition of flies, but prolong the occurrence of some species. The results of the current study emphasize the need to take into consideration the presence of a wrap when estimating postmortem interval.
    Matched MeSH terms: Weather
  16. Siri JG, Newell B, Proust K, Capon A
    Asia Pac J Public Health, 2016 Mar;28(2 Suppl):15S-27S.
    PMID: 26219559 DOI: 10.1177/1010539515595694
    Extreme events, both natural and anthropogenic, increasingly affect cities in terms of economic losses and impacts on health and well-being. Most people now live in cities, and Asian cities, in particular, are experiencing growth on unprecedented scales. Meanwhile, the economic and health consequences of climate-related events are worsening, a trend projected to continue. Urbanization, climate change and other geophysical and social forces interact with urban systems in ways that give rise to complex and in many cases synergistic relationships. Such effects may be mediated by location, scale, density, or connectivity, and also involve feedbacks and cascading outcomes. In this context, traditional, siloed, reductionist approaches to understanding and dealing with extreme events are unlikely to be adequate. Systems approaches to mitigation, management and response for extreme events offer a more effective way forward. Well-managed urban systems can decrease risk and increase resilience in the face of such events.
    Matched MeSH terms: Weather
  17. Pereira, J.J., Hunt, J.C.R., Chan, J.C.L.
    ASM Science Journal, 2014;8(1):1-10.
    MyJurnal
    The role of science and technology (S&T) in preventing disasters and building resilience to climate change is featured in this paper, drawing primarily on the presentations and discussion of researchers, practitioners and policy makers from 31 institutions in 17 countries during the Workshop on Natural Disasters and Climate Change in Asia, held on 5–7 November 2012 in Bangi, Malaysia. Issues highlighted include advances in climate modelling and weather forecasts, with emphasis on information gaps; hazards and its cascading effects, focusing on current research and approaches; and the potential for land-based mitigation-adaptation strategies. Progress in mobilizing S&T to support disaster prevention and climate resilience is hindered by factors such as absence or lack of research, incomplete and non-existent scientific records, restricted access to data and capacity to innovate and transmit S&T, among others. The establishment of an Asian Network for Climate Science and Technology is proposed to provide and facilitate exchange of information and aid development of research co-ordination projects led by Asian researchers and possibly to act as a one-stop repository of global climate change related research too. The scope of the network would cover climate research with particular relevance to disaster resilience, including scientific capacity, which is all very distinct in Asia.
    Matched MeSH terms: Weather
  18. Bui Thi Tuong Thu, Tran Van Minh, Boey, Peng Lim, Chan, Lai Keng
    Trop Life Sci Res, 2011;22(2):37-43.
    MyJurnal
    Seeds of two selected clones of Artemisia annua L., TC1 and TC2, were germinated in a greenhouse. Four-week-old seedlings from both clones were grown in the Thù Ðúc province of Ho Chi Minh City on 2nd January 2009 and Ðà Lat on 20 th January 2009. During this study period in Thù Ðúc province, which is situated 4–5 m above sea level, was experiencing a tropical, dry season with temperatures ranging from 26.2°C–32.8°C. Ðà Lat, situated at 1500–2000 m above sea level, was having temperate, dry season with lower temperatures, ranging from 10.5°C–18.0°C. The high temperatures and low elevation in Thù Ðúc Province led to slow vegetative growth for all of the plants from the two different clones and the artemisinin contents were significantly reduced. The temperate environment of Ðà Lat supported robustly growing plants, with plant heights and branch lengths 4–5 times taller and longer that those planted at Thù Ðúc Province. The artemisinin contents of A. annua planted at Ðà Lat were 3–4 times greater than those cultivated at Thù Ðúc Province. Hence, this study indicated that the variations observed in plant growth and artemisinin contents were due to temperature effects because the two selected clones were genetically homogenous. The cold weather of Ðà Lat was suitable for planting of A. annua as opposed to the tropical weather of Thù Ðúc Province.
    Matched MeSH terms: Weather
  19. Ueng SK, Chan Yao-Hong, Lu WH, Chang HW
    Sains Malaysiana, 2015;44:1701-1706.
    Wind turbines are massive electrical structures. They produce large returns when illuminated by radar waves. These
    scatterings have a great impact on the operation of surveillance, air traffic control and weather radars. This paper presents
    two geometric modelling methods for reshaping wind turbine towers so that the Radar Cross Section (RCS) of wind turbines
    is reduced. In the proposed reshaping methods, bump structures are created on the surface of the conventional cylinder
    wind turbine tower. When a reshaped tower is illuminated by radar waves, the bump structures scatter incident radar
    waves into insignificant directions so that the strength of back-scattering is declined and the RCS of the wind turbine is
    decreased. The test results confirmed that the proposed methodssignificantly reduce bi-static RCS values of wind turbines.
    The proposed reshaping methods are practical, flexible and effective in alleviating the scatterings of wind turbines.
    Matched MeSH terms: Weather
  20. Khalid H, Hashim SJ, Ahmad SMS, Hashim F, Chaudhary MA
    Sensors (Basel), 2021 Feb 18;21(4).
    PMID: 33670675 DOI: 10.3390/s21041428
    The development of the industrial Internet of Things (IIoT) promotes the integration of the cross-platform systems in fog computing, which enable users to obtain access to multiple application located in different geographical locations. Fog users at the network's edge communicate with many fog servers in different fogs and newly joined servers that they had never contacted before. This communication complexity brings enormous security challenges and potential vulnerability to malicious threats. The attacker may replace the edge device with a fake one and authenticate it as a legitimate device. Therefore, to prevent unauthorized users from accessing fog servers, we propose a new secure and lightweight multi-factor authentication scheme for cross-platform IoT systems (SELAMAT). The proposed scheme extends the Kerberos workflow and utilizes the AES-ECC algorithm for efficient encryption keys management and secure communication between the edge nodes and fog node servers to establish secure mutual authentication. The scheme was tested for its security analysis using the formal security verification under the widely accepted AVISPA tool. We proved our scheme using Burrows Abdi Needham's logic (BAN logic) to prove secure mutual authentication. The results show that the SELAMAT scheme provides better security, functionality, communication, and computation cost than the existing schemes.
    Matched MeSH terms: Weather
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links