Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. Zwain HM, Nile BK, Faris AM, Vakili M, Dahlan I
    Sci Rep, 2020 12 17;10(1):22209.
    PMID: 33335267 DOI: 10.1038/s41598-020-79395-8
    Odors due to the emission of hydrogen sulfide (H2S) have been a concern in the sewage treatment plants over the last decades. H2S fate and emissions from extended aeration activated sludge (EAAS) system in Muharram Aisha-sewage treatment plant (MA-STP) were studied using TOXCHEM model. Sensitivity analysis at different aeration flowrate, H2S loading rate, wastewater pH, wastewater temperature and wind speed were studied. The predicted data were validated against actual results, where all the data were validated within the limits, and the statistical evaluation of normalized mean square error (NMSE), geometric variance (VG), and correlation coefficient (R) were close to the ideal fit. The results showed that the major processes occurring in the system were degradation and emission. During summer (27 °C) and winter (12 °C), about 25 and 23%, 1 and 2%, 2 and 2%, and 72 and 73% were fated as emitted to air, discharged with effluent, sorbed to sludge, and biodegraded, respectively. At summer and winter, the total emitted concentrations of H2S were 6.403 and 5.614 ppm, respectively. The sensitivity results indicated that aeration flowrate, H2S loading rate and wastewater pH highly influenced the emission and degradation of H2S processes compared to wastewater temperature and wind speed. To conclude, TOXCHEM model successfully predicted the H2S fate and emissions in EAAS system.
    Matched MeSH terms: Wind
  2. Zhao X, Kim SK, Zhu W, Kannan N, Li D
    Chemosphere, 2015 Jan;119:289-294.
    PMID: 25036943 DOI: 10.1016/j.chemosphere.2014.06.005
    The Changbai (also known as "Baekdu") Mountain, on the border between China and North Korea, is the highest mountain (2750 m) in northeastern China. Recently, this mountain region has experienced a dramatic increase in air pollution, not only because of increasing volumes of tourism-derived traffic but also because of the long-range transport of polluted westerly winds passing through major industrial and urban cities in the eastern region of China. To assess the relative importance of the two sources of pollution, 16 polycyclic aromatic hydrocarbons (PAHs) as model substances were determined in the mountain soil. A total of 32 soil samples were collected from different sides of the mountain at different latitudes between July and August of 2009. The ∑PAH concentrations were within the range 38.5-190.1 ng g(-1) on the northern side, 117.7-443.6 ng g(-1) on the southern side, and 75.3-437.3 ng g(-1) on the western side. A progressive increase in the level of ∑PAHs with latitude was observed on the southern and western sides that face the westerly wind with abundant precipitation. However, a similar concentration gradient was not observed on the northern side that receives less rain and is on the leeward direction of the wind. The high-molecular-weight PAH compounds were predominant in the soils on the southern and western sides, while low-molecular-weight PAHs dominated the northern side soils. These findings show that the distribution of PAHs in the mountain soil is strongly influenced by the atmospheric long-range transport and cold trapping.
    Matched MeSH terms: Wind
  3. Zhang C, Lim PT, Li X, Gu H, Li X, Anderson DM
    Reg Stud Mar Sci, 2020 Sep;39.
    PMID: 33241099 DOI: 10.1016/j.rsma.2020.101397
    Gymnodinium catenatum is a cosmopolitan, bloom-forming dinoflagellate known to produce a suite of potent paralytic shellfish poisoning (PSP) toxins. Here, we revisit two major blooms of G. catenatum along the Fujianese Coast, China, in 2017 and 2018. The impact area of the 2017 bloom was larger than that of the 2018 event. Field sampling and remote satellite sensing revealed that alongshore transport driven by the southwest wind, as well as physical accumulation driven by the northeast wind, played important roles in the development and distribution of the two bloom events. The relationship between wind-induced hydrodynamic conditions and the unprecedented HAB events established in this study adds greatly to our understanding of algal bloom dynamics along the Fujianese coast. These results improve our ability to detect, track, and forecast G. catenatum blooms, thereby potentially minimizing the negative impacts of future HAB events.
    Matched MeSH terms: Wind
  4. Zaifol Samsu, Mohd Harun, Mahdi E. Mahmoud, Norasiah Ab Kasim, Katrul Hisham Alahudin, Zaiton Selamat
    MyJurnal
    An air fin cooler system consists of a tube bundle that is used to cool the various processing fluids in process industries that utilizes air as a cooling medium. The said tubes failed when exposed to corrosive environment(s). Tubes located at the bottom row of the air fin cooler were corroded as a result of exposure to rain water, brought in by induced air when the wind blows. The tube material is A179 Carbon steel. Two tubes, namely Tube A and Tube B along with an aluminum fin in each tube were investigated. A leak was observed on tube A, probably due to Corrosion Under Deposit mechanism. A general corrosion attack was observed at tube B, and macroscopic analysis showed that the corrosion occurred along the grain boundaries, which consist of ferrite and pearlite. Microanalysis showed that the corrosion product on the outer surface of the tube consists of Fe, O, S and Cl elements. It is concluded that the humid environment contains corrosive elements such as S and Cl. EDAX analysis on the fin showed that the material is pure aluminum. However, the aluminum was corroded by galvanized corrosion and produced brittle Al2O3 as a result.
    Matched MeSH terms: Wind
  5. Wu B, Zhai B, Mu H, Peng X, Wang C, Patwary AK
    Environ Sci Pollut Res Int, 2022 Feb;29(10):15144-15158.
    PMID: 34628612 DOI: 10.1007/s11356-021-16770-6
    Energy security and environmental measurements are incomplete without renewable energy; therefore, there is a dire need to explore new energy sources. Hence, this study aimed to measure the wind power potential to generate renewable hydrogen (H2), including its production and supply cost. This study used first-order engineering model and net present value to measure the levelized cost of wind-generated renewable hydrogen by using the data source of the Pakistan Meteorological Department and State Bank of Pakistan. Results showed that the use of surplus wind and renewable hydrogen energy for green economic production is suggested as an innovative project option for large-scale hydrogen use. The key annual running expenses for hydrogen are electricity and storage costs, which have a significant impact on the costs of renewable hydrogen. The results also indicated that the project can potentially cut carbon dioxide (CO2) pollution by 139 million metric tons and raise revenue for wind power plants by US$2998.52 million. The renewable electrolyzer plants avoided CO2 at a rate of US$24.9-36.9/ton under baseload service, relative to US$44.3/ton for the benchmark. However, in the more practical mid-load situation, these plants have significant benefits. Further, the wind-generated renewable hydrogen delivers 6-11% larger annual rate of return than the standard CO2 catch plant due to their capacity to remain running and supply hydrogen to the consumer through periods of plentiful wind and heat. Also, the measured levelized output cost of hydrogen (LCOH) was US$6.22/kgH2, and for the PEC system, it was US$8.43/kgH2. Finally, it is a mutually agreed consensus among environmental scientists that the integration of renewable energy is the way forward to increase energy security and environmental performance by ensuring uninterrupted clean and green energy. This application has the potential to address Pakistan's urgent issues of large-scale surplus wind- and solar-generated energy, as well as rising energy demand.
    Matched MeSH terms: Wind
  6. Wang X, Liu K, Zhu L, Li C, Song Z, Li D
    J Hazard Mater, 2021 07 15;414:125477.
    PMID: 33647626 DOI: 10.1016/j.jhazmat.2021.125477
    The presence of microplastics (MPs) in the atmosphere is a global concern because of its environmental and health impacts; however, the monsoonal transport of atmospheric MPs has not yet been investigated. To fully understand the effect of the monsoon on atmospheric MP transport, we conducted a study along the southeast coast of China during the East Asian summer monsoon (EASM). We found that the EASM transports atmospheric MPs back onto the continent at a flux of up to 212.977-213.433 kg/EASM/year. The backward trajectory and wind field results indicate that the EASM provides an effective MP transport pathway from Vietnam, the Philippines, and Malaysia to southeastern China. This suggests that only some of the airborne MPs over the ocean enter the marine ecosystem. The average abundance of atmospheric MPs over the sampling area was 0.39 items/100 m3 (0.39 ± 0.43 items/100 m3) during the EASM season, with high variability among the sampling sites. This study improves our understanding of the impact of the EASM on atmospheric MP transport, which can help quantify the contributions of atmospheric MPs to marine or terrestrial ecosystems.
    Matched MeSH terms: Wind
  7. Wah SH, Halimatun Muhamad, Tangang FT, Liew J
    Sains Malaysiana, 2012;41:1411-1422.
    The historical and future storm surge climate over the South China Sea Sunda Shelf was derived using a barotropic two dimensional model. The atmospheric forcings were obtained from the UKMO regional climate modeling system, PRECIS (Providing Regional Climates for Impacts Studies), forced at the boundary by the ECHAM4 simulation output under the SRES A2 emission experiment. In general, the model simulates historical sea surface elevation characteristics satisfactory although there is a substantial underestimation for the sea level elevation at local scales. The climate change analysis suggests that the storm surge extreme over the Sunda Shelf is expected to increase along the coastal area of the Gulf of Thailand and east coast of Peninsular Malaysia in the future (2071-2100). The projected increment is averagely ~9% over the Sunda Shelf region by the end of the 21st century corresponding to about 5% stronger wind speed as compare to the baseline period of 1961-1990.
    Matched MeSH terms: Wind
  8. Valappil NKM, Viswanathan PM, Hamza V
    PMID: 32572749 DOI: 10.1007/s11356-020-09542-1
    A comprehensive study of the chemical composition of rainwater was carried out from October 2016 to September 2017 in the equatorial tropical rainforest region of northwestern Borneo. Monthly cumulative rainwater samples were collected from different locations in the Limbang River Basin (LRB) and were later categorized into seasonal samples representing northeast monsoon (NEM), southwest monsoon (SWM), and inter-monsoon (IM) periods. Physical parameters (pH, EC, TDS, DO, and turbidity), major ions (HCO3-, Cl-, Ca2+, Mg2+, Na+, and K+) and trace metals (Co, Ni, Cd, Fe, Mn, Pb, Zn, and Cu) were analyzed from collected rainwater samples. Rainwater is slightly alkaline with mean pH higher than 5.8. Chloride and bicarbonate are the most abundant ions, and the concentration of major ions in seasonal rainwater has shown slight variation which follows a descending order of HCO3-> Cl-> Na+ > Ca2+ > Mg2+ > K+ in NEM and Cl- > HCO3- > Na+ > Ca2+ > K+ > Mg2+ in SWM and Cl- > HCO3- > Na+ > Ca2+ > Mg2+ > K+ in IM period. Trace metals such as Fe and Ni have shown dominance in seasonal rainwater samples, and all the metals have shown variation in concentration in different seasons. Variation in chemical characteristic of seasonal rainwater samples identified through piper diagram indicates dominance of Ca2+-Mg2+-HCO3- and mixed Ca2+-Mg2+-Cl- facies during NEM, SWM, and IM periods. Statistical analysis of the results through two-way ANOVA and Pearson's correlation also indicates significant variation in physico-chemical characteristics. This suggests a variation in contributing sources during the monsoon seasons. Factor analysis confirmed the source variation by explaining the total variance of 79.80%, 90.72%, and 90.52% with three factor components in NEM, SWM, and IM rainwater samples with different loading of parameters. Enrichment factor analysis revealed a combined contribution of marine and crustal sources except K+ which was solely from crustal sources. Sample analysis of backward air mass trajectory supports all these findings by explaining seasonal variation in the source of pollutants reaching the study area. Overall, the results show that the chemical composition of seasonal rainwater samples in LRB was significantly influenced by natural as well as anthropogenic processes. These include (long-range and local) industrial activities, fossil fuel combustion, forest burning, transportation activities including road transport and shipping activities, and land-derived soil dust along with chemical constituents carried by seasonal wind.
    Matched MeSH terms: Wind
  9. Usubamatov, R., Qasim, A.Y., Zain, Z.M.
    MyJurnal
    Wind energy has often been touted as one of the most reliable sources of renewable energy that should be used for people. Today, wind energy (mainly by propeller type wind turbines) produces less than one percent of the total energy used worldwide. Practically, a standard three-blade propellers efficiency of use of the wind energy is around twenty percents and this is due to its design and shape that use the wind lift force and a rotating turbine. In addition, these turbines are quite expensive due to the complex aerodynamic shape of the propellers which are made of composite materials. The new world boom for wind turbines obliges inventors to create new wind turbine designs that have high efficiency and are better than any known design. This paper proposes the new patented invention of the vane-type wind turbine which uses wind energy more efficiently and is only dependent on the acting area of the vanes. The vane wind turbine was designed to increase the output of a wind turbine that uses kinetic energy of the wind. Due to its high efficiency, simple construction and technology, the vane wind turbine can be used universally, apart from the fact that it is made from cheap materials. The new design of the vane-type wind turbine has quite small sizes than the propeller type one of same output power.
    Matched MeSH terms: Wind
  10. Ueng SK, Chan Yao-Hong, Lu WH, Chang HW
    Sains Malaysiana, 2015;44:1701-1706.
    Wind turbines are massive electrical structures. They produce large returns when illuminated by radar waves. These
    scatterings have a great impact on the operation of surveillance, air traffic control and weather radars. This paper presents
    two geometric modelling methods for reshaping wind turbine towers so that the Radar Cross Section (RCS) of wind turbines
    is reduced. In the proposed reshaping methods, bump structures are created on the surface of the conventional cylinder
    wind turbine tower. When a reshaped tower is illuminated by radar waves, the bump structures scatter incident radar
    waves into insignificant directions so that the strength of back-scattering is declined and the RCS of the wind turbine is
    decreased. The test results confirmed that the proposed methodssignificantly reduce bi-static RCS values of wind turbines.
    The proposed reshaping methods are practical, flexible and effective in alleviating the scatterings of wind turbines.
    Matched MeSH terms: Wind
  11. Torabi Asr, M., Masoumi, M.M., Mustapha, F.
    MyJurnal
    Pre-stressing is a concept used in many engineering structures. In this study prestressing in the form of axial compression stress is proposed in the blade structure of H-Darrieus wind turbine. The study draws a structural comparison between reference and prestressed configurations of turbine rotor with respect to their dynamic vibrational response. Rotordynamics calculations provided by ANSYS Mechanical is used to investigate the effects of turbine rotation on the dynamic response of the system. Rotation speed ranging between 0 to 150 rad/s was examined to cover the whole operating range of commercial instances. The modal analysis ends up with first six mode shapes of both rotor configurations. As a result, the displacement of the proposed configurations reduced effectively. Apparent variations in Campbell diagrams of both cases indicate that prestressed configuration has its resonant frequencies far away from turbine operation speeds and thus remarkably higher safety factor against whirling and probable following failures.
    Matched MeSH terms: Wind
  12. Tofa MM, Maimun A, Ahmed YM, Jamei S, Priyanto A, Rahimuddin
    ScientificWorldJournal, 2014;2014:489308.
    PMID: 24701170 DOI: 10.1155/2014/489308
    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.
    Matched MeSH terms: Wind
  13. Suparta, W., Samah, A.A., Harper, A.R.
    ASM Science Journal, 2009;3(2):152-160.
    MyJurnal
    Katabatic winds dramatically affect the polar climate. Their activity depends on density of air and temperature in the source region. This paper presents for first time an analysis of the precipitable water vapour (PWV) variability and its relation to a katabatic event at Scott Base station, Antarctica. A significant effect in their characteristics toward calculation of a reliable user accuracy in GPS applications is addressed. Our investigations using the data between 21st and 30th of November 2002 showed that the PWV profile exhibited an irregular pattern with a maximum value of 7.38 mm (~ 6 mm on average), and was more strongly influenced by relative humidity than by wind speed activity. The dominant wind flow during this period was from the North-Northeast (blowing from the Ross Sea) with a median speed of 4.96 ms–1. The PWV was high when the temperature was between –15ºC and –11ºC. During the dates identified as a katabatic event between 21:30 UT of 28th November and 18:40 UT on 29th November, the wind blew from the Southeast-South direction (from the Ross Ice Shelf) with a maximum speed of 10.92 ms–1. The PWV increased ~1.4 mm (23%) from the mean value, indicating severe wind during this event which had pronounced effect on GPS observations.
    Matched MeSH terms: Wind
  14. Suman M, Maity R
    Sci Rep, 2020 04 15;10(1):6452.
    PMID: 32296124 DOI: 10.1038/s41598-020-63571-x
    Analysis of observed Indian Summer Monsoon precipitation reveals more increase in extreme precipitation (in terms of its magnitude) over south India compared to north and central India during 1971-2017 (base period: 1930-1970). In the future, analysis of precipitation from the Coordinated Regional Downscaling Experiment indicates a southward shift of precipitation extremes over South Asia. For instance, the Arabian Sea, south India, Myanmar, Thailand, and Malaysia are expected to have the maximum increase (~18.5 mm/day for RCP8.5 scenario) in mean extreme precipitation (average precipitation for the days with more than 99th percentile of daily precipitation). However, north and central India and Tibetan Plateau show relatively less increase (~2.7 mm/day for RCP8.5 scenario). Analysis of air temperature at 850 mb and precipitable water (RCP4.5 and RCP8.5) indicates an intensification of Indian Ocean Dipole in future, which will enhance the monsoon throughout India. Moisture flux and convergence analysis (at 850 mb) show a future change of the direction of south-west monsoon winds towards the east over the Indian Ocean. These changes will intensify the observed contrast in extreme precipitation between south and north India, and cause more extreme precipitation events in the countries like Myanmar, Thailand, Malaysia, etc.
    Matched MeSH terms: Wind
  15. Sulaiman C, Abdul-Rahim AS
    Environ Sci Pollut Res Int, 2017 Nov;24(32):25204-25220.
    PMID: 28929456 DOI: 10.1007/s11356-017-0092-1
    This study examines the three-way linkage relationships between CO2 emission, energy consumption and economic growth in Malaysia, covering the 1975-2015 period. An autoregressive distributed lag approach was employed to achieve the objective of the study and gauged by dynamic ordinary least squares. Additionally, vector error correction model, variance decompositions and impulse response functions were employed to further examine the relationship between the interest variables. The findings show that economic growth is neither influenced by energy consumption nor by CO2 emission. Energy consumption is revealed to be an increasing function of CO2 emission. Whereas, CO2 emission positively and significantly depends on energy consumption and economic growth. This implies that CO2 emission increases with an increase in both energy consumption and economic growth. Conclusively, the main drivers of CO2 emission in Malaysia are proven to be energy consumption and economic growth. Therefore, renewable energy sources ought to be considered by policy makers to curb emission from the current non-renewable sources. Wind and biomass can be explored as they are viable sources. Energy efficiency and savings should equally be emphasised and encouraged by policy makers. Lastly, growth-related policies that target emission reduction are also recommended.
    Matched MeSH terms: Wind
  16. Sufyan M, Abd Rahim N, Tan C, Muhammad MA, Sheikh Raihan SR
    PLoS One, 2019;14(2):e0211642.
    PMID: 30763331 DOI: 10.1371/journal.pone.0211642
    The incessantly growing demand for electricity in today's world claims an efficient and reliable system of energy supply. Distributed energy resources such as diesel generators, wind energy and solar energy can be combined within a microgrid to provide energy to the consumers in a sustainable manner. In order to ensure more reliable and economical energy supply, battery storage system is integrated within the microgrid. In this article, operating cost of isolated microgrid is reduced by economic scheduling considering the optimal size of the battery. However, deep discharge shortens the lifetime of battery operation. Therefore, the real time battery operation cost is modeled considering the depth of discharge at each time interval. Moreover, the proposed economic scheduling with battery sizing is optimized using firefly algorithm (FA). The efficacy of FA is compared with other metaheuristic techniques in terms of performance measurement indices, which are cost of electricity and loss of power supply probability. The results show that the proposed technique reduces the cost of microgrid and attain optimal size of the battery.
    Matched MeSH terms: Wind
  17. Siti Mariam Norrulashikin, Fadhilah Yusof, Ibrahim Lawal Kane
    Sains Malaysiana, 2018;47:409-417.
    The vector autoregressive (VAR) approach is useful in many situations involving model development for multivariables
    time series. VAR model was utilised in this study and applied in modelling and forecasting four meteorological variables.
    The variables are n rainfall data, humidity, wind speed and temperature. However, the model failed to address the
    heteroscedasticity problem found in the variables, as such, multivariate GARCH, namely, dynamic conditional correlation
    (DCC) was incorporated in the VAR model to confiscate the problem of heteroscedasticity. The results showed that the use
    of the VAR coupled with the recognition of time-varying variances DCC produced good forecasts over long forecasting
    horizons as compared with VAR model alone.
    Matched MeSH terms: Wind
  18. Sinha, P.C., Jena, G.K., Rao, A.D., Mohd Lokman Husain, Jain, Indu
    MyJurnal
    A depth-averaged numerical model was developed to study tidal circulation and suspended sediment transport in the gulf of Khambhat along the west coast of India. The spatial resolution of the model is 750m x 750m. A 2-D fine resolution (150 m x 150 m) model for the lower part of the Narmada estuary is coupled with the coarser gulf model to simulate the flow features in the lower estuary. The model dynamics and basic formulation remain the same for both the gulf model and the estuary model. The models are barotropic, based on the shallow water equations and neglect horizontal diffusion and wind stress terms in the momentum equations. The models are fully non-linear and use a semi-explicit finite difference scheme to solve mass, momentum, and advection- diffusion equation for suspended sediments in a horizontal plane. The erosion and deposition have been computed by an empirically developed source and sink term in the suspended sediment equation. The tide in the gulf is mainly represented in the model by the semi-diurnal M2 constituent. Meanwhile, fresh water discharge from the rivers joining the gulf had also been considered. Numerical experiments were carried out to study the circulation and suspended sediment concentrations in the gulf and estuarine region.
    Matched MeSH terms: Wind
  19. Shuhada SN, Salim S, Nobilly F, Zubaid A, Azhar B
    Ecol Evol, 2017 09;7(18):7187-7200.
    PMID: 28944010 DOI: 10.1002/ece3.3273
    Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.
    Matched MeSH terms: Wind
  20. Shazmeen Daniar Shamsuddin, Nurlyana Omar, Koh, Meng-Hock
    MATEMATIKA, 2017;33(2):149-157.
    MyJurnal
    It has come to attention that Malaysia have been aiming to build its own
    nuclear power plant (NPP) for electricity generation in 2030 to diversify the national
    energy supply and resources. As part of the regulation to build a NPP, environmental
    risk assessment analysis which includes the atmospheric dispersion assessment has to
    be performed as required by the Malaysian Atomic Energy Licensing Board (AELB)
    prior to the commissioning process. The assessment is to investigate the dispersion of
    radioactive effluent from the NPP in the event of nuclear accident. This article will focus
    on current development of locally developed atmospheric dispersion modeling code
    based on Gaussian Plume model. The code is written in Fortran computer language
    and has been benchmarked to a readily available HotSpot software. The radionuclide
    release rate entering the Gaussian equation is approximated to the value found in the
    Fukushima NPP accident in 2011. Meteorological data of Mersing District, Johor of
    year 2013 is utilized for the calculations. The results show that the dispersion of radionuclide
    effluent can potentially affect areas around Johor Bahru district, Singapore
    and some parts of Riau when the wind direction blows from the North-northeast direction.
    The results from our code was found to be in good agreement with the one
    obtained from HotSpot, with less than 1% discrepancy between the two.
    Matched MeSH terms: Wind
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links