Displaying publications 1 - 20 of 419 in total

Abstract:
Sort:
  1. Hamid HA, Lin X, Qin YK, Akim AM, Zhang L, Wang J, et al.
    Int Wound J, 2024 Feb;21(2):e14574.
    PMID: 38379231 DOI: 10.1111/iwj.14574
    This cross-sectional study was conducted to examine the most effective strategies for managing malodorous and infected wounds in patients who have been diagnosed with advanced cervical cancer. The research was conducted in Liupanshui, China. The study specifically examined demographic profiles, wound characteristics and effectiveness of wound management approaches. The study incorporated the heterogeneous sample of 289 participants who fulfilled the inclusion criteria. Data collection was conducted via structured questionnaires and medical record evaluations. Descriptive statistics and statistical analyses, such as regression analysis, were utilized to evaluate demographic attributes, wound profiles and effects of different approaches to wound management. The findings unveiled the heterogeneous demographic composition of patients, encompassing differences in socioeconomic standing, educational attainment and age. A wide range of wound characteristics were observed, as 65.7% of lesions during the acute phase with diameter between 2 and 5 centimetres, while 41.5% of lesions had this range. The most prevalent types of infections were those caused by fungi (48.4%), followed by bacterial infections lacking resistance (38.1%). A moderate degree of odour intensity was prevalent, affecting 45.0% of the cases. With maximal odour reduction of 80%, a mean healing time of 25 days and patient satisfaction rating of 4.5 out of 5, Negative Pressure Wound Therapy demonstrated itself to be the most efficacious treatment method. Additional approaches, such as photodynamic therapy and topical antibiotic therapy, demonstrated significant effectiveness, as evidenced by odour reductions of 70% and 75%, respectively, and patient satisfaction ratings of 4.3 and 4.2. Thus, the study determined challenges associated with management of malodorous and infected lesions among patients with advanced cervical cancer. The results underscored the significance of individualized care approaches, drew attention to efficacious wound management techniques and identified critical determinants that impacted patient recuperation. The findings of this study hold potential for advancing palliative care for individuals diagnosed with advanced cervical cancer.
    Matched MeSH terms: Wound Healing
  2. Abu Bakar N, Mydin RBSMN, Yusop N, Matmin J, Ghazalli NF
    J Tissue Viability, 2024 Feb;33(1):104-115.
    PMID: 38092620 DOI: 10.1016/j.jtv.2023.11.001
    Complexity of the entire body precludes an accurate assessment of the specific contributions of tissues or cells during the healing process, which might be expensive and time consuming. Because of this, controlling the wound's size, depth, and dimensions may be challenging, and there is not yet an efficient and reliable chronic wound model representation. Furthermore, given the inherent challenges associated with conducting non-invasive in vivo investigations, it becomes peremptory to explore alternative methodologies for studying wound healing. In this context, biologically-realistic mathematical and computational models emerge as a valuable framework that can effectively address this need. Therefore, it might improve our approach to understanding the process at its core. This article will examines all facets of wound healing, including the kinds, pathways, and most current developments in wound treatment worldwide, particularly in silico modelling utilizing both mathematical and structure-based modelling techniques. It may be helpful to identify the crucial traits through the feedback loop of computer models and experimental investigations in order to build innovative therapies to cure wounds. Hence the effectiveness of personalised medicine and more targeted therapy in the healing of wounds may be enhanced by this interdisciplinary expertise.
    Matched MeSH terms: Wound Healing*
  3. Phang SJ, Teh HX, Looi ML, Fauzi MB, Neo YP, Arumugam B, et al.
    Tissue Eng Regen Med, 2024 Feb;21(2):243-260.
    PMID: 37865625 DOI: 10.1007/s13770-023-00590-5
    BACKGROUND: Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. The lack of effective diabetic wound dressings has been a significant problem in DFU management. In this study, we aim to establish a phlorotannin-incorporated nanofibre system and determine its potential in accelerating hyperglycaemic wound healing.

    METHODS: The effective dose of Ecklonia cava phlorotannins (ECP) for hyperglycaemic wound healing was determined prior to phlorotannin nanofibre fabrication using polyvinyl-alcohol (PVA), polyvinylpyrrolidone (PVP), and ECP. Vapour glutaraldehyde was used for crosslinking of the PVA/PVP nanofibres. The phlorotannin nanofibres were characterised, and their safety and cytocompatibility were validated. Next, the wound healing effect of phlorotannin nanofibres was determined with 2D wound scratch assay, whereas immunofluorescence staining of Collagen-I (Col-I) and Cytokeratin-14 (CK-14) was performed in human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), respectively.

    RESULTS: Our results demonstrated that 0.01 μg/mL ECP significantly improved hyperglycaemic wound healing without compromising cell viability and proliferation. Among all nanofibres, PVA/PVP/0.01 wt% ECP nanofibres exhibited the best hyperglycaemic wound healing effect. They displayed a diameter of 334.7 ± 10.1 nm, a porosity of 40.7 ± 3.3%, and a WVTR of 1718.1 ± 32.3 g/m2/day. Besides, the FTIR spectra and phlorotannin release profile validated the successful vapour glutaraldehyde crosslinking and ECP incorporation. We also demonstrated the potential of phlorotannin nanofibres as a non-cytotoxic wound dressing as they support the viability and proliferation of both HDF and HEK. Furthermore, phlorotannin nanofibres significantly ameliorated the impaired hyperglycaemic wound healing and restored the hyperglycaemic-induced Col-I reduction in HDF.

    CONCLUSION: Taken together, our findings show that phlorotannin nanofibres have the potential to be used as a diabetic wound dressing.

    Matched MeSH terms: Wound Healing
  4. Haryanto, Amrullah S, Pratama SF, Agustini F, Pasmawati, Khairillah YN, et al.
    Med J Malaysia, 2024 Jan;79(1):60-67.
    PMID: 38287759
    INTRODUCTION: Research on diabetic foot ulcers (DFU) infection is limited to the first wound. Therefore, this study aimed to evaluate the relationship between wound classification (Wagner and SHID), and foot care against severity infection of DFU recurrent that may contribute to an increased susceptibility to infection among individuals with recurrent DFUs.

    MATERIALS AND METHODS: A cross-sectional design was used in this study involving 245 participants of type 2 diabetes mellitus (T2DM) was conducted at a Kitamura Wound Care Clinic, PKU Muhammadiyah, located in Pontianak, West Kalimantan, Indonesia, between September 2022 and February 2023. The Kruskal-Wallis test was used to assess the relationship between the foot care practices and infection status. A linear regression test to examine the independent risk factors.

    RESULTS: Wounds' characteristics regarding foot care practice group were significantly including more than 5 months wound heal from previous wounds (p = 0.045), the percentage of wound site on dorsal was higher in the foot care practice group (p < 0.001), the percentage had no deformity feet was higher in the foot care practice group (p < 0.001), the percentage had no previous amputation feet was higher in the foot care practice group (p < 0.001). Also, the percentage had grade three was higher in the foot care practice group (p < 0.001), the percentage had grade three was higher in the foot care practice group (p < 0.001), and the percentage had mild infection status was higher in the foot care practice group (p < 0.001). The predictors of diabetic foot infection were Wagner and SHID classification and foot care (p < 0.001, p < 0.001, and p < 0.01) respectively.

    CONCLUSION: This study demonstrated that foot-care behaviour in diabetic patients in Indonesia is poor. In addition, this study also has shown Wagner grading, SHID grading, and foot-care are predictors of infection in recurrent DFUs.

    Matched MeSH terms: Wound Healing
  5. Swetha Menon NP, Kamaraj M, Anish Sharmila M, Govarthanan M
    Int J Biol Macromol, 2024 Jan;256(Pt 2):128499.
    PMID: 38048932 DOI: 10.1016/j.ijbiomac.2023.128499
    Wounds were considered as defects in the tissues of the human skin and wound healing is said to be a tedious process as there are possibilities of infection or inflammation due to microorganisms. Modern moisture-retentive wound dressing (MMRWD) is opening a new window toward wound therapy. It comprises different types of wound dressing that has classified based on their functionality. Selective polysaccharide-polypeptide fiber composite materials such as hydrogels, hydrocolloids, hydro fibers, transparent-film dressing, and alginate dressing are discussed in this review as a type of MMRWD. The highlight of this polysaccharide and polypeptide based MMRWD is that it supports and enhances the healing of different types of wounds by moisture absorption thus preventing infection. This study has given enlightenment on the application of selected polysaccharide and polypeptide based MMRWD that enhances wound healing actions still it has been observed that the composite wound healing dressing is more effective than the single one. The nano-sized materials (synthetic nano drugs and phyto drugs) were found to increase the efficiency of healing action while coated in the wound dressing material. Future research is required to find out more possibilities of the different composite types of wound dressing in the healing action.
    Matched MeSH terms: Wound Healing
  6. Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A
    Int J Biol Macromol, 2023 Dec 31;253(Pt 6):127331.
    PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331
    Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
    Matched MeSH terms: Wound Healing*
  7. Tehrany PM, Rahmanian P, Rezaee A, Ranjbarpazuki G, Sohrabi Fard F, Asadollah Salmanpour Y, et al.
    Environ Res, 2023 Dec 01;238(Pt 1):117087.
    PMID: 37716390 DOI: 10.1016/j.envres.2023.117087
    Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.
    Matched MeSH terms: Wound Healing
  8. Nair HKR, Lew X, Liew KY, Kamis SA, Nik Kub NMH, Zakaria AM, et al.
    Int J Low Extrem Wounds, 2023 Dec;22(4):759-766.
    PMID: 34806457 DOI: 10.1177/15347346211058273
    Background: Venous leg ulcers severely affect patients' quality of life due to its high morbidity and recurrent nature. Currently, compression therapy is the first-line treatment for venous leg ulcers. Aim: This study sought to evaluate the efficacy of the Mobiderm® technology developed by Thuasne in a prospective case series of venous leg ulcers. Methods: Nine patients (N  =  9) with venous leg ulcers were enrolled into this case series. Mobiderm® bandage was applied on to the affected limbs of the patients in the multi-component bandages system. The bandages were changed as frequent as the patients had their wound dressing for their standard treatment in a 12-week duration. Wound size and calf circumference were measured at week 0 and week 12. Paired sample t-test was used to compare the mean values of wound size and calf circumference pre- and post-treatment. Results: Reductions in wound size and calf circumference were observed in all nine patients (100%). Five patients were evaluable at week 12. The wound sizes significantly reduced by 27.2% to 53.2% (p  =  0.02), and the calf circumferences significantly reduced by 3.2% to 26.0% (p  =  0.02) after 12 weeks (N  =  5). Safety was unremarkable, with no occurrence of treatment-emergent-related adverse event. Conclusion: Mobiderm® bandage was reported to be effective in promoting wound healing and reducing swelling, suggesting it to be integrated in the compression therapy for the management of venous leg ulcers.
    Matched MeSH terms: Wound Healing
  9. Tai L, Saffery NS, Chin SP, Cheong SK
    Regen Med, 2023 Nov;18(11):839-856.
    PMID: 37671699 DOI: 10.2217/rme-2023-0085
    Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
    Matched MeSH terms: Wound Healing
  10. Dasrilsyah AM, Wan Abdul Halim WH, Mustapha M, Tang SF, Kaur B, Ong EY, et al.
    Cornea, 2023 Nov 01;42(11):1395-1403.
    PMID: 37267451 DOI: 10.1097/ICO.0000000000003308
    PURPOSE: The aim of this study was to measure and compare the effect of topical insulin (0.5 units, 4 times per day) versus artificial tears (Vismed, sodium hyaluronate 0.18%, 4 times per day) for the healing of postoperative corneal epithelial defects induced during vitreoretinal surgery in diabetic patients.

    METHODS: This is a double-blind randomized controlled hospital-based study involving diabetic patients with postoperative corneal epithelial defects after vitreoretinal surgery. Diabetic patients were randomized into 2 different groups and received either 0.5 units of topical insulin (DTI) or artificial tears (Vismed, sodium hyaluronate 0.18%; DAT). The primary outcome measured was the rate of corneal epithelial wound healing (mm 2 /h) over a preset interval and time from baseline to minimum size of epithelial defect on fluorescein-stained anterior segment digital camera photography. The secondary outcome measured was the safety of topical insulin 0.5 units and artificial tears (Vismed, sodium hyaluronate 0.18%). Patients were followed up until 3 months postoperation.

    RESULTS: A total of 38 eyes from 38 patients undergoing intraoperative corneal debridement during vitreoretinal surgery with resultant epithelial defects (19 eyes per group) were analyzed. DTI was observed to have a significantly higher healing rate compared with the DAT group at rates over 36 hours ( P = 0.010), 48 hours ( P = 0.009), and 144 hours ( P = 0.009). The rate from baseline to closure was observed to be significantly higher in the DTI group (1.20 ± 0.29) (mm 2 /h) compared with the DAT group (0.78 ± 0.20) (mm 2 /h) as well ( P < 0.001). No adverse effect of topical insulin and artificial tears was reported.

    CONCLUSIONS: Topical insulin (0.5 units, 4 times per day) is more effective compared with artificial tears (Vismed, sodium hyaluronate 0.18%, 4 times per day) for the healing of postoperative corneal epithelial defects induced during vitreoretinal surgery in diabetic patients, without any adverse events.

    Matched MeSH terms: Wound Healing
  11. Nair HK, Yan TD
    J Wound Care, 2023 Oct 01;32(Sup10a):S8-S14.
    PMID: 37830843 DOI: 10.12968/jowc.2023.32.Sup10a.S8
    There are many types of dressings available for the management of hard-to-heal (chronic) wounds. This case report illustrates the efficacy of bioelectric dressings in healing hard-to-heal wounds in five patients. Of the patients, four had diabetic foot ulcers (DFUs) and one had a surgical site infection. Wounds were examined using the TIMES concept and debridement was carried out if needed. Amorphous hydrogel was used as conduction fluid before the application of the bioelectric wound dressings. The wound was covered with foam dressing and crepe bandage. In this case report, among all five wounds, one wound healed completely while the other four reduced in size, with the presence of more granulation and re-epithelialisation. In this case report, bioelectric wound dressings were effective in managing infection and promoting wound healing.
    Matched MeSH terms: Wound Healing
  12. Wen CWY, Nasir FABM, Charl MK, Jane CA, Abdullah NSKH, Ping LB, et al.
    J Wound Care, 2023 Oct 01;32(Sup10a):S16-S20.
    PMID: 37830842 DOI: 10.12968/jowc.2023.32.Sup10a.S16
    This case study examines the effectiveness of using negative pressure wound therapy (NPWT) in the management of a hard-to-heal (chronic) wound with exposed ankle bone to reduce associated wound exudate and promote production of granulation tissue. A 60-year-old male patient who was able to attend wound follow-up diligently twice weekly for eight weeks, and weekly thereafter, was selected from a private hospital to take part. During each dressing change, the wound was cleansed with superoxidised cleansing solution, and minimal sharp debridement was performed. In the authors' opinion, the NPWT device used in this study is light and convenient for use in the community or home care setting. The NPWT wound dressing was connected to the NPWT machine via a connecting tube and the device then switched on using the default setting of a negative pressure of 125mmHg. Following the application of the NPWT device, the exposed ankle bone was successfully covered with healthy granulation tissue and healed within 20 weeks with minimal exudate formation in the wound. In the authors' opinion, NPWT is able to promote progress to wound healing; to minimise unnecessary dressing changes and, based on feedback from the patient, is comfortable to wear and when in use.
    Matched MeSH terms: Wound Healing
  13. Rastogi A, Kulkarni SA, Deshpande SK, Driver V, Barman H, Bal A, et al.
    Adv Wound Care (New Rochelle), 2023 Aug;12(8):429-439.
    PMID: 36245145 DOI: 10.1089/wound.2022.0093
    We aimed to assess safety and dose-finding efficacy of esmolol hydrochloride (Galnobax) for healing of diabetic foot ulcer (DFU). This is phase 1/2 multicenter, randomized, double-blind vehicle-controlled study. Participants having diabetes and noninfected, full-thickness, neuropathic, grade I or II (Wagner classification) DFU, area 1.5-10 cm2, and unresponsive to standard wound care (at least 4 weeks) were randomized to receive topical Galnobax 14% twice daily (BID), Galnobax 20% BID, Galnobax 20% once daily (OD)+vehicle, or vehicle BID with standard of care. The primary efficacy end point was the reduction in area and volume of target ulcer from baseline to week 12 or wound closure, whichever was earlier. The wound duration was 12.5 weeks (5-49.1 weeks) and wound area 4.10 ± 2.41 cm2 at baseline. The ulcer area reduction was 86.56%, 95.80%, 80.67%, and 82.58% (p = 0.47) in the Galnobax 14%, Galnobax 20%, Galnobax20%+vehicle, and vehicle only groups, respectively. Ulcer volume reduction was 99.40% in the Galnobax14%, 83.36% in Galnobax20%, 55.41% in the Galnobax20%+vehicle, and 84.57% in vehicle group (p = 0.86). The systemic concentration of esmolol was below the quantification limit (10 ng/mL) irrespective of doses of Galnobax (Cmax esmolol acid 340 ng/mL for 14% Galnobax, AUC 2.99 ± 4.31 h*μg/mL after single dose). This is the first clinical study of the short acting beta blocker esmolol hydrochloride used as novel formulation for healing of DFU. We found that esmolol when applied topically over wounds had minimal systemic concentration establishing its safety for wound healing in patients with diabetes. Esmolol hydrochloride is a safe novel treatment for DFU.
    Matched MeSH terms: Wound Healing
  14. Kurz P, Danner G, Lembelembe JP, Nair HKR, Martin R
    Int Wound J, 2023 Aug;20(6):2053-2061.
    PMID: 36601702 DOI: 10.1111/iwj.14071
    Evidence shows that Electrical Stimulation Therapy (EST) accelerates healing and reduces pain, but EST has yet to become widely used. One reason is the historical use of complex, clinic-based EST devices. This evaluation assessed the early response of different hard-to-heal wounds to a simple, wearable, single-use, automated microcurrent EST device (Accel-Heal, Accel-Heal Technologies Limited - Hever, UK). Forty wounds (39 patients: 18 female - 21 male), mean age 68.9 ± 14.0 years comprised of: seven post-surgical, three trauma, 12 diabetic foot (DFU), 10 venous (VLU), four pressure injuries (PI), four mixed venous or arterial ulcers (VLU/arterial) received automated microcurrent EST for 12 days. Early clinical responses were scored on a 0-5 scale (5-excellent-0-no response). Pain was assessed at 48 h, seven days, and 14 days on a 0-10 visual analogue scale (VAS). Overall, 78% of wounds showed a marked positive clinical response (scores of 5 and 4). Sixty eight percent of wounds were painful with a mean VAS score of 5.5. Almost every patient (96%) with pain experienced reduction within 48 h. All patients with painful wounds experienced pain reduction after seven days: 2.50 VAS (45% reduction) and further pain reduction after 14 days: 1.83 VAS (33%).
    Matched MeSH terms: Wound Healing/physiology
  15. Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A
    AAPS PharmSciTech, 2023 Jul 20;24(6):155.
    PMID: 37468691 DOI: 10.1208/s12249-023-02616-6
    The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
    Matched MeSH terms: Wound Healing
  16. Hosseinzadeh A, Zamani A, Johari HG, Vaez A, Golchin A, Tayebi L, et al.
    Cell Biochem Funct, 2023 Jul;41(5):517-541.
    PMID: 37282756 DOI: 10.1002/cbf.3816
    Hyperglycemia, a distinguishing feature of diabetes mellitus that might cause a diabetic foot ulcer (DFU), is an endocrine disorder that affects an extremely high percentage of people. Having a comprehensive understanding of the molecular mechanisms underlying the pathophysiology of diabetic wound healing can help researchers and developers design effective therapeutic strategies to treat the wound healing process in diabetes patients. Using nanoscaffolds and nanotherapeutics with dimensions ranging from 1 to 100 nm represents a state-of-the-art and viable therapeutic strategy for accelerating the wound healing process in diabetic patients, particularly those with DFU. Nanoparticles can interact with biological constituents and infiltrate wound sites owing to their reduced diameter and enhanced surface area. Furthermore, it is noteworthy that they promote the processes of vascularization, cellular proliferation, cell signaling, cell-to-cell interactions, and the formation of biomolecules that are essential for effective wound healing. Nanomaterials possess the ability to effectively transport and deliver various pharmacological agents, such as nucleic acids, growth factors, antioxidants, and antibiotics, to specific tissues, where they can be continuously released and affect the wound healing process in DFU. The present article elucidates the ongoing endeavors in the field of nanoparticle-mediated therapies for the management of DFU.
    Matched MeSH terms: Wound Healing
  17. Nair HKR, Chong SSY, Selvaraj DDJ
    Int J Low Extrem Wounds, 2023 Jun;22(2):278-282.
    PMID: 33973828 DOI: 10.1177/15347346211004186
    "Light amplification by stimulated emission of radiation" or more commonly known as Laser has become very popular in the field of dermatology and aesthetic medicine over the past decades. For the treatment of wound healing, a combination of different wavelengths for laser therapy has been introduced which includes 660, 800, and 970 nm. The aim of this study was to note wound healing utilizing photobiomodulation as an adjunct therapy by measuring the wound size in terms of length and width (area measurement). Study participants were selected randomly from a pool of patients who were attending for their routine follow-up visits in the Wound Care Unit in Hospital Kuala Lumpur. Eleven patients with chronic wounds of different etiologies, ie, diabetic foot ulcer and nonhealing ulcer, were recruited for this study . Wound assessment was done prior to cleansing using distilled water and followed by debridement if necessary. Subsequently, the laser technician and patients used protective goggles before applying a super intense continuous flow of laser with 3 wavelengths, ie, 660, 800, and 970 nm with 30 kJ of energy with the handpiece over a 3 min period whereby it is focused on the wound milieu and then rotated around the periwound area. There were 9 diabetic foot ulcers and 2 nonhealing ulcers treated with photobiomodulation as an adjunct therapy. All wounds were managed with the standard of care. Three wounds ie, 3 diabetic foot ulcers and 1 nonhealing ulcer were closed completely. Meanwhile, the other 7 ulcers are at 68.2% to 99% in terms of wound area reduction and new granulomatous tissue was present indicating high healing potential. Therefore, the photobiomodulation was effective as an adjunct in the management of diabetic foot and nonhealing ulcers in this case series. A larger sample size would be able to show the significance of this finding.
    Matched MeSH terms: Wound Healing
  18. Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S
    Int J Biol Macromol, 2023 Apr 15;234:123696.
    PMID: 36801273 DOI: 10.1016/j.ijbiomac.2023.123696
    The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
    Matched MeSH terms: Wound Healing
  19. Suardi N, Germanam SJ, Rahim NAYM
    Lasers Med Sci, 2023 Apr 14;38(1):99.
    PMID: 37059895 DOI: 10.1007/s10103-023-03766-6
    Although positive photobiomodulation response on wound healing, tissue repair, and therapeutic treatment has been widely reported, additional works are still needed to understand its effects on human blood. This research carried out acoustic measurements using A-scan (GAMPT) ultrasonic techniques to elucidate the photobiomodulation effects on in vitro human blood samples as therapeutic treatment measures. The human blood samples were irradiated using a 532-nm laser with different output laser powers (60 and 80 mW) at various exposure times. The ultrasonic velocity measured in the human blood samples after laser irradiation showed significant changes, most of which were within the acceptance limit for soft tissues (1570 [Formula: see text] 30 m/s). Abnormal cells (echinocyte and crenation) were observed due to excessive exposure during laser treatment.
    Matched MeSH terms: Wound Healing/radiation effects
  20. Castro Mora MP, Palacio Varona J, Perez Riaño B, Laverde Cubides C, Rey-Rodriguez DV
    Arch Soc Esp Oftalmol (Engl Ed), 2023 Apr;98(4):220-232.
    PMID: 36871851 DOI: 10.1016/j.oftale.2023.03.007
    The Purpose is to identify, through a systematic literature review, the current evidence regarding the effectiveness of topical insulin treatment in ocular surface pathologies. A literature search was implemented in Medline (Pubmed), Embase and Web Of Science medical indexing databases by using keywords such as "insulin" AND "cornea" OR "corneal" OR "dry eye" in published papers in English or Spanish within the last eleven years (2011-2022). Nine papers were identified with 180 participants from the United States, Spain, Ireland, Canada, Portugal and Malaysia, with persistent refractory epithelial defects and secondary to vitrectomy, whose extension of the lesion was from 3,75mm2 to 65.47mm2. The preparation was dissolved with artificial tears and the insulin concentration ranged from 1 IU/ml to 100 IU/ml. In all cases, the resolution of the clinical picture was complete with a healing time from 2.5 days to 60.9 days, the latter being a secondary case to a difficult-to-control caustic burn. Topical insulin has been effective for the treatment of persistent epithelial defects. The intermediate action and low concentrations showed a shorter resolution time in neurotrophic ulcers and induced during vitreoretinal surgery.
    Matched MeSH terms: Wound Healing
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links