Displaying publications 1 - 20 of 122 in total

Abstract:
Sort:
  1. Khan MUA, Haider S, Raza MA, Shah SA, Razak SIA, Kadir MRA, et al.
    Int J Biol Macromol, 2021 Dec 01;192:820-831.
    PMID: 34648803 DOI: 10.1016/j.ijbiomac.2021.10.033
    Carbohydrate polymers are biological macromolecules that have sparked a lot of interest in wound healing due to their outstanding antibacterial properties and sustained drug release. Arabinoxylan (ARX), Chitosan (CS), and reduced graphene oxide (rGO) sheets were combined and crosslinked using tetraethyl orthosilicate (TEOS) as a crosslinker to fabricate composite hydrogels and assess their potential in wound dressing for skin wound healing. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and biological assays were used to evaluate the composite hydrogels. FTIR validated the effective fabrication of the composite hydrogels. The rough morphologies of the composite hydrogels were revealed by SEM and AFM (as evident from the Ra values). ATC-4 was discovered to have the roughest surface. TEM revealed strong homogeneous anchoring of the rGO to the polymer matrix. However, with higher amount of rGO agglomeration was detected. The % swelling at various pHs (1-13) revealed that the hydrogels were pH-sensitive. The controlled release profile for the antibacterial drug (Silver sulfadiazine) evaluated at various pH values (4.5, 6.8, and 7.4) in PBS solution and 37 °C using the Franz diffusion method revealed maximal drug release at pH 7.4 and 37 °C. The antibacterial efficacy of the composite hydrogels against pathogens that cause serious skin diseases varied. The MC3T3-E1 cell adhered, proliferated, and differentiated well on the composite hydrogels. MC3T3-E1 cell also illustrated excellent viability (91%) and proper cylindrical morphologies on the composite hydrogels. Hence, the composite hydrogels based on ARX, CS, and rGO are promising biomaterials for treating and caring for skin wounds.
    Matched MeSH terms: Wound Healing/drug effects
  2. Low JS, Mak KK, Zhang S, Pichika MR, Marappan P, Mohandas K, et al.
    Fitoterapia, 2021 Oct;154:105026.
    PMID: 34480992 DOI: 10.1016/j.fitote.2021.105026
    Wounds still pose a huge burden on human health and healthcare systems in many parts of the world. Phytomedicines are being used to heal the wounds since ancient times. Now-a-days also many researchers are exploring the wound healing activity of phytomedicines. Wound healing is a complex process thus, it is always a question mark regarding the best test model (in vivo, ex vivo and in vitro) model to assess the wound healing activity of phytomedicines. In general, the researchers would opt for in vivo model - probably because of closer physiological relevance to human wounds. However, in vivo experimental models are not suitable for high throughput screening and not ethical in terms of initial screening of the phytomedicines. The in vivo models are associated with difficulties in obtaining the ethical approvals, requires huge budget, and resources. We argue that judicious selection of cell types would serve the purpose of developing a physiologically relevant in vitro experimental model. A lot of progress has been made in molecular biology techniques to bridge the gap between in vitro models and their physiological relevance. The in vitro models are the best suited for high throughput screening and to elucidate the molecular mechanisms. The main aim of this review is to provide insights on selection of the cell types for developing physiologically relevant in vitro wound healing assays, which can be used to improve the value of phytomedicines further.
    Matched MeSH terms: Wound Healing/drug effects*
  3. Khan MUA, Iqbal I, Ansari MNM, Razak SIA, Raza MA, Sajjad A, et al.
    Molecules, 2021 Sep 30;26(19).
    PMID: 34641480 DOI: 10.3390/molecules26195937
    The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels' crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker-Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.
    Matched MeSH terms: Wound Healing/drug effects*
  4. Shah SA, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, et al.
    Int J Biol Macromol, 2021 Aug 31;185:350-368.
    PMID: 34171251 DOI: 10.1016/j.ijbiomac.2021.06.119
    Injectable hydrogel with multifunctional tunable properties comprising biocompatibility, anti-oxidative, anti-bacterial, and/or anti-infection are highly preferred to efficiently promote diabetic wound repair and its development remains a challenge. In this study, we report hyaluronic acid and Pullulan-based injectable hydrogel loaded with curcumin that could potentiate reepithelization, increase angiogenesis, and collagen deposition at wound microenvironment to endorse healing cascade compared to other treatment groups. The physical interaction and self-assembly of hyaluronic acid-Pullulan-grafted-pluronic F127 injectable hydrogel were confirmed using nuclear magnetic resonance (1H NMR) and Fourier transformed infrared spectroscopy (FT-IR), and cytocompatibility was confirmed by fibroblast viability assay. The CUR-laden hyaluronic acid-Pullulan-g-F127 injectable hydrogel promptly undergoes a sol-gel transition and has proved to potentiate wound healing in a streptozotocin-induced diabetic rat model by promoting 93% of wound closure compared to other groups having 35%, 38%, and 62%. The comparative in vivo study and histological examination was conducted which demonstrated an expeditious recovery rate by significantly reducing the wound healing days i.e. 35 days in a control group, 33 days in the CUR suspension group, 21 days in unloaded injectable, and 13 days was observed in CUR loaded hydrogel group. Furthermore, we suggest that the injectable hydrogel laden with CUR showed a prompt wound healing potential by increasing the cell proliferation and serves as a drug delivery platform for sustained and targeted delivery of hydrophobic moieties.
    Matched MeSH terms: Wound Healing/drug effects*
  5. Veeraperumal S, Qiu HM, Tan CS, Ng ST, Zhang W, Tang S, et al.
    J Ethnopharmacol, 2021 Jun 28;274:114024.
    PMID: 33727110 DOI: 10.1016/j.jep.2021.114024
    ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerotis (Cooke) Ryvarden cultivar TM02, also known as tiger's milk mushroom, is regarded as important folk medicine in Malaysia, while is used for the treatment of liver cancer, chronic hepatitis, gastric ulcer in traditional Chinese medicine. However, there is no compilation of scientific evidence that its protection for gastric, and no attempts have been made to understand how polysaccharides in Lignosus rhinocerotis might promote intestinal mucosal wound healing.

    AIM OF THE STUDY: This study aimed to investigate the effect and mechanism of β-glucan prepared from L. rhinocerotis using an enzymatic method on epithelial restitution during intestinal mucosal damage.

    MATERIALS AND METHODS: Based on FT-IR, MALDI-TOF-MS, HPSEC-MALLS-RID, and AFM, the structure of polysaccharides from L. rhinocerotis was analysed. In addition, polysaccharides were used to test for wound healing activity in IEC-6 cells by measuring cell migration, proliferation, and expression of cell division control protein 42, Rac-1, RhoA, and Par-3.

    RESULTS: β-glucan was extracted using enzyme-assisted extraction, and a yield of approximately 8.5 ± 0.8% was obtained from the dried biomass. The β-glucan extracted by enzyme-assisted extraction (EAE) of polysaccharides was composed entirely of D-glucose with a total carbohydrate content of 95.5 ± 3.2%. The results of HPLC, FTIR, and MALDI-TOF-MS analyses revealed EAEP to be confirmed as β-glucan. The molecular weight of prepared β-glucan was found to be 5.315 × 104 g/mol by HPSEC-MALLS-RID. Furthermore, mucosal wound healing studies showed that the treatment of IEC-6 with a β-glucan concentration of 200 μg/mL promoted cell migration and proliferation, and it enhanced the protein expression of cell division control protein 42, Rac-1, RhoA, and Par-3.

    CONCLUSIONS: The present study reveals that the prepared β-glucan accelerates intestinal epithelial cell proliferation and migration via activation of Rho-dependent pathway. Hence, β-glucan can be employed as a prospective therapeutic agent for the treatment of diseases associated with gastrointestinal mucosal damage, such as peptic ulcers and inflammatory bowel disease.

    Matched MeSH terms: Wound Healing/drug effects*
  6. Subramaniam T, Fauzi MB, Lokanathan Y, Law JX
    Int J Mol Sci, 2021 Jun 17;22(12).
    PMID: 34204292 DOI: 10.3390/ijms22126486
    Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings.
    Matched MeSH terms: Wound Healing/drug effects
  7. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Wound Healing/drug effects
  8. Asiri A, Saidin S, Sani MH, Al-Ashwal RH
    Sci Rep, 2021 Mar 11;11(1):5634.
    PMID: 33707606 DOI: 10.1038/s41598-021-85149-x
    In this study, single, mix, multilayer Polyvinyl alcohol (PVA) electrospun nanofibers with epidermal growth factor (EGF) and fibroblast growth factor (FGF) were fabricated and characterized as a biological wound dressing scaffolds. The biological activities of the synthesized scaffolds have been verified by in vitro and in vivo studies. The chemical composition finding showed that the identified functional units within the produced nanofibers (O-H and N-H bonds) are attributed to both growth factors (GFs) in the PVA nanofiber membranes. Electrospun nanofibers' morphological features showed long protrusion and smooth morphology without beads and sprayed with an average range of 198-286 nm fiber diameter. The fiber diameters decrement and the improvement in wettability and surface roughness were recorded after GFs incorporated within the PVA Nanofibers, which indicated potential good adoption as biological dressing scaffolds due to the identified mechanical properties (Young's modulus) in between 18 and 20 MPa. The MTT assay indicated that the growth factor release from the PVA nanofibers has stimulated cell proliferation and promoted cell viability. In the cell attachment study, the GFs incorporated PVA nanofibers stimulated cell proliferation and adhered better than the PVA control sample and presented no cytotoxic effect. The in vivo studies showed that compared to the control and single PVA-GFs nanofiber, the mix and multilayer scaffolds gave a much more wound reduction at day 7 with better wound repair at day 14-21, which indicated to enhancing tissue regeneration, thus, could be a projected as a suitable burn wound dressing scaffold.
    Matched MeSH terms: Wound Healing/drug effects
  9. Rezvanian M, Ng SF, Alavi T, Ahmad W
    Int J Biol Macromol, 2021 Feb 28;171:308-319.
    PMID: 33421467 DOI: 10.1016/j.ijbiomac.2020.12.221
    Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p wound closure was ~99% without any adverse systemic reactions. Histological analysis qualitatively revealed an enhanced re-epithelialization and collagen deposition. Moreover, results also showed an improved rate of collagen synthesis and angiogenesis in the group treated with the hydrogel film loaded with Simvastatin. Thus, the present study demonstrated that developed film holds great potential for the acceleration of diabetic wound healing by its pro-angiogenic effect, faster re-epithelialization and increased collagen deposition.
    Matched MeSH terms: Wound Healing/drug effects*
  10. Rajoo A, Ramanathan S, Mansor SM, Sasidharan S
    J Ethnopharmacol, 2021 Feb 10;266:113414.
    PMID: 32980488 DOI: 10.1016/j.jep.2020.113414
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants are crucial to healing numerous illnesses. Elaeis guineensis Jacq (family Arecaceae) is a medicinal plant traditionally used for the treatment of wounds.

    AIM OF THE STUDY: However, there are no scientific reports documented on the wound healing activities of this plant against Staphylococcus aureus infections in the Sprague Dawley male rat model. Thus, the present study was conducted to evaluate the wound healing potential of E. guineensis extract leaves.

    MATERIALS AND METHODS: The crude extract was prepared in 10% (w/w) ointment and evaluated for wound healing activity using excision and infected wound models in Sprague Dawley rats. The wound healing activity was evaluated from wound closure rate, CFU reduction, histological analysis of granulation tissue and matrix metalloprotease expression.

    RESULTS: The results show that the E. guineensis extract has potent wound healing ability, as manifest from improved wound closure and tissue regeneration supported by histopathological parameters. Assessment of granulation tissue every fourth day showed a significant reduction in the microbial count. The expression of matrix metalloproteinases was well correlated with the other results, hence confirming E. guineensis wound healing activity's effectiveness.

    CONCLUSIONS: E. guineensis enhanced infected wound healing in rats, thus supporting its traditional use.

    Matched MeSH terms: Wound Healing/drug effects*
  11. Dasrilsyah RA, Kalok A, Ng BK, Ali A, Teik Chew K, Lim PS
    J Obstet Gynaecol, 2021 Feb;41(2):242-247.
    PMID: 32530340 DOI: 10.1080/01443615.2020.1740917
    This was a prospective randomised controlled trial comparing the effects of first-degree perineal tear repair using adhesive glue versus conventional suturing in terms of pain score, wound complication and patient's satisfaction. One hundred and twenty one women were randomised. The skin adhesive group had a significantly lower pain score at rest as well as during sitting, walking and micturition during the first week of delivery compared to the suture group. The time taken to become pain free was significantly shorter in the tissue adhesive group (3.18 vs. 8.65 days, p < .001). Only two patients who had skin glue experienced wound gaping. No significant difference was observed in the level of satisfaction between the adhesive and suture groups. Tissue adhesive is better than subcuticular suture for repairing first-degree perineal tear as it causes less pain and has shorter recovery time.Impact statementWhat is already known on this subject. First- and second-degree tears following vaginal delivery are common and involved a third of women. Suturing of these tears is advocated to avoid wound gaping and poor healing.What the results of this study add. For first-degree tear repair, tissue adhesive is better than conventional suture in terms of pain reduction and recovery time.What the implications are of these findings for clinical practice and/or further research. Skin adhesive is an ideal method for first-degree perineal tear repair especially in out of hospital settings such as home birth or midwifery-led centre. A larger scale study is needed to establish its feasibility for second- and third-degree tears repair.
    Matched MeSH terms: Wound Healing/drug effects
  12. Aslam Khan MU, Abd Razak SI, Al Arjan WS, Nazir S, Sahaya Anand TJ, Mehboob H, et al.
    Molecules, 2021 Jan 25;26(3).
    PMID: 33504080 DOI: 10.3390/molecules26030619
    The polymeric composite material with desirable features can be gained by selecting suitable biopolymers with selected additives to get polymer-filler interaction. Several parameters can be modified according to the design requirements, such as chemical structure, degradation kinetics, and biopolymer composites' mechanical properties. The interfacial interactions between the biopolymer and the nanofiller have substantial control over biopolymer composites' mechanical characteristics. This review focuses on different applications of biopolymeric composites in controlled drug release, tissue engineering, and wound healing with considerable properties. The biopolymeric composite materials are required with advanced and multifunctional properties in the biomedical field and regenerative medicines with a complete analysis of routine biomaterials with enhanced biomedical engineering characteristics. Several studies in the literature on tissue engineering, drug delivery, and wound dressing have been mentioned. These results need to be reviewed for possible development and analysis, which makes an essential study.
    Matched MeSH terms: Wound Healing/drug effects
  13. Che Zain MS, Lee SY, Nasir NM, Fakurazi S, Shaari K
    Molecules, 2020 Nov 30;25(23).
    PMID: 33265992 DOI: 10.3390/molecules25235636
    Oil palm (Elaeis guineensis Jacq.) leaflets (OPLs) are one of the major agricultural by-products generated from the massive cultivation of Malaysian palm oil. This biomass is also reported to be of potential value based on its health-improving effects. By employing proton nuclear magnetic resonance (1H-NMR) spectroscopy combined with multivariate data analysis (MVDA), the metabolite profile of OPLs was characterized and correlated with their antioxidant and wound healing properties. Principal component analysis (PCA) classified four varieties of extracts, prepared using solvents ranging from polar to medium polarity, into three distinct clusters. Cumulatively, six flavonoids, eight organic acids, four carbohydrates, and an amine were identified from the solvent extracts. The more polar extracts, such as, the ethyl acetate-methanol, absolute methanol, and methanol-water, were richer in phytochemicals. Based on partial least square (PLS) analysis, the constituents in these extracts, such as (+)-catechin, (-)-epicatechin, orientin, isoorientin, vitexin, and isovitexin, were strongly correlated with the measured antioxidant activities, comprising ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and nitric oxide (NO) free radical scavenging activities, as well as with cell proliferation and migration activities. This study has provided crucial evidence on the importance of these natural antioxidant compounds on the wound healing properties of OPL.
    Matched MeSH terms: Wound Healing/drug effects*
  14. Abudula T, Gauthaman K, Mostafavi A, Alshahrie A, Salah N, Morganti P, et al.
    Sci Rep, 2020 11 24;10(1):20428.
    PMID: 33235239 DOI: 10.1038/s41598-020-76971-w
    Non-healing wounds have placed an enormous stress on both patients and healthcare systems worldwide. Severe complications induced by these wounds can lead to limb amputation or even death and urgently require more effective treatments. Electrospun scaffolds have great potential for improving wound healing treatments by providing controlled drug delivery. Previously, we developed fibrous scaffolds from complex carbohydrate polymers [i.e. chitin-lignin (CL) gels]. However, their application was limited by solubility and undesirable burst drug release. Here, a coaxial electrospinning is applied to encapsulate the CL gels with polycaprolactone (PCL). Presence of a PCL shell layer thus provides longer shelf-life for the CL gels in a wet environment and sustainable drug release. Antibiotics loaded into core-shell fibrous platform effectively inhibit both gram-positive and -negative bacteria without inducting observable cytotoxicity. Therefore, PCL coated CL fibrous gel platforms appear to be good candidates for controlled drug release based wound dressing applications.
    Matched MeSH terms: Wound Healing/drug effects
  15. Maarof M, Chowdhury SR, Saim A, Bt Hj Idrus R, Lokanathan Y
    Int J Mol Sci, 2020 Apr 22;21(8).
    PMID: 32331278 DOI: 10.3390/ijms21082929
    Fibroblasts secrete many essential factors that can be collected from fibroblast culture medium, which is termed dermal fibroblast conditioned medium (DFCM). Fibroblasts isolated from human skin samples were cultured in vitro using the serum-free keratinocyte-specific medium (Epilife (KM1), or define keratinocytes serum-free medium, DKSFM (KM2) and serum-free fibroblast-specific medium (FM) to collect DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively). We characterised and evaluated the effects of 100-1600 µg/mL DFCM on keratinocytes based on attachment, proliferation, migration and gene expression. Supplementation with 200-400 µg/mL keratinocyte-specific DFCM-KM1 and DFCM-KM2 enhanced the attachment, proliferation and migration of sub-confluent keratinocytes, whereas 200-1600 µg/mL DFCM-FM significantly increased the healing rate in the wound healing assay, and 400-800 µg/mL DFCM-FM was suitable to enhance keratinocyte attachment and proliferation. A real-time (RT2) profiler polymerase chain reaction (PCR) array showed that 42 genes in the DFCM groups had similar fold regulation compared to the control group and most of the genes were directly involved in wound healing. In conclusion, in vitro keratinocyte re-epithelialisation is supported by the fibroblast-secreted proteins in 200-400 µg/mL DFCM-KM1 and DFCM-KM2, and 400-800 µg/mL DFCM-FM, which could be useful for treating skin injuries.
    Matched MeSH terms: Wound Healing/drug effects*
  16. Bakhsheshi-Rad HR, Ismail AF, Aziz M, Akbari M, Hadisi Z, Omidi M, et al.
    Int J Biol Macromol, 2020 Apr 15;149:513-521.
    PMID: 31954780 DOI: 10.1016/j.ijbiomac.2020.01.139
    Skin and soft tissue infections are major concerns with respect to wound repair. Recently, anti-bacterial wound dressings have been emerging as promising candidates to reduce infection, thus accelerating the wound healing process. This paper presents our work to develop and characterize poly(vinyl alcohol) (PVA)/chitosan (CS)/silk sericin (SS)/tetracycline (TCN) porous nanofibers, with diameters varying from 305 to 425 nm, both in vitro and in vivo for potential applications as wound dressings. The fabricated nanofibers possess a considerable capacity to take up water through swelling (~325-650%). Sericin addition leads to increased hydrophilicity and elongation at break while decreasing fiber diameter and mechanical strength. Moreover, fibroblasts (L929) cultured on the nanofibers with low sericin content (PVA/CS/1-2SS) displayed greater proliferation compared to those on nanofibers without sericin (PVA/CS). Nanofibers loaded with high sericin and tetracycline content significantly inhibited the growth of Escherichia coli and Staphylococcus aureus. In vivo examination revealed that PVA/CS/2SS-TCN nanofibers enhance wound healing, re-epithelialization, and collagen deposition compared to traditional gauze and nanofibers without sericin. The results of this study demonstrate that the PVA/CS/2SS-TCN nanofiber creates a promising alternative to traditional wound dressing materials.
    Matched MeSH terms: Wound Healing/drug effects*
  17. Ong JS, Taylor TD, Yong CC, Khoo BY, Sasidharan S, Choi SB, et al.
    Probiotics Antimicrob Proteins, 2020 03;12(1):125-137.
    PMID: 30659503 DOI: 10.1007/s12602-018-9505-9
    This study aimed to elucidate the targets and mechanisms of anti-staphylococcal effects from bioactive metabolites produced by lactic acid bacteria. We aimed to better understand the safety and efficacy of these bioactive metabolites in in vivo systems, typically at topical sites. The cell-free supernatant and protein-rich fraction from Lactobacillus plantarum USM8613 inhibited staphyloxanthin biosynthesis, reduced (p wound healing properties via direct inhibition of S. aureus and promoted innate immunity, in which the expression of β-defensin was significantly (p wound recovery. Using ∆atl S. aureus, the protein-rich fraction from L. plantarum USM8613 exerted inhibitory activity via targeting the atl gene in S. aureus. Taken altogether, our present study illustrates the potential of L. plantarum USM8613 in aiding wound healing, suppressing of S. aureus infection at wound sites and promoting host innate immunity.
    Matched MeSH terms: Wound Healing/drug effects
  18. Naaz F, Ahmad F, Lone BA, Pokharel YR, Fuloria NK, Fuloria S, et al.
    Bioorg Chem, 2020 01;95:103519.
    PMID: 31884140 DOI: 10.1016/j.bioorg.2019.103519
    A set of two series of 1,3,4-oxadiazole (11a-n) and 1,2,4-Triazole (12a, c, e, g, h, j-n) based topsentin analogues were prepared by replacing imizadole moiety of topsentin through a multistep synthesis starting from indole. All the compounds synthesized were submitted for single dose (10 µM) screening against a NCI panel of 60-human cancer cell lines. Among all cancer cell lines, colon (HCC-2998) and Breast (MCF-7, T-47D) cancer cell lines were found to be more susceptible for this class of compounds. Among the compounds tested, compounds 11a, 11d, 11f, 12e and 12h, were exhibited good anti-proliferative activity against various cancer cell lines. Compounds 11d, 12e and 12h demonstrated better activity with IC50 2.42 µM, 3.06 µM, and 3.30 µM respectively against MCF-7 human cancer cell line than that of the standard drug doxorubicin IC50 6.31 µM. Furthermore, 11d induced cell cycle arrest at G0/G1 phase and also disrupted mitochondrial membrane potential with reducing cell migration potential of MCF-7 cells in dose dependent manner. In vitro microtubule polymerization assays found that compound 11d disrupt tubulin dynamics by inhibiting tubulin polymerization with IC50 3.89 μM compared with standard nocodazole (IC50 2.49 μM). In silico docking studies represented that 11d was binding at colchicine binding site of β-tubulin. Compound 11d emerged as lead molecule from the library of compounds tested and this may serve as a template for further drug discovery.
    Matched MeSH terms: Wound Healing/drug effects
  19. Kwan SH, Abdul Aziz NHK, Ismail MN
    Protein Pept Lett, 2020;27(1):48-59.
    PMID: 31362651 DOI: 10.2174/0929866526666190730121711
    BACKGROUND: Channa striata are speculated to contain bioactive proteins with the ability to enhancing wound healing. It is commonly consumed after surgery for a faster recovery of the wound.

    OBJECTIVE: To identify the bioactive proteins and evaluate their ability in cell proliferation and angiogenesis promotion.

    MATERIAL AND METHODS: Freeze-Dried Water Extracts (FDWE) and Spray-Dried Water Extracts (SDWE) of C. striata were tested with MTT assay using EA.hy926 endothelial cell line and ex-vivo aortic ring assay. Later the proteins were fractionated and analysed using an LC-QTOF mass spectrometer. The data generated were matched with human gene database for protein similarity and pathway identification.

    RESULTS: Both samples have shown positive cell proliferation and pro-angiogenic activity. Four essential proteins/genes were identified, which are collagen type XI, actin 1, myosin light chain and myosin heavy chain. The pathways discovered that related to these proteins are integrin pathway, Slit-Robo signalling pathway and immune response C-C Chemokine Receptor-3 signalling pathway in eosinophils, which contribute towards wound healing mechanism.

    CONCLUSIONS: The results presented have demonstrated that C. striata FDWE and SDWE protein fractions contain bioactive proteins that are highly similar to human proteins and thus could be involved in the wound healing process via specific biological pathways.

    Matched MeSH terms: Wound Healing/drug effects*
  20. Fui LW, Lok MPW, Govindasamy V, Yong TK, Lek TK, Das AK
    J Tissue Eng Regen Med, 2019 12;13(12):2218-2233.
    PMID: 31648415 DOI: 10.1002/term.2966
    Mesenchymal stem cells (MSCs) transplantation seems to be a promising new therapy for diabetic wound healing (DWH), and currently, arrays of MSCs from various sources ranging from umbilical, adipose to dental sources are available as a treatment modality for this disease. However, it now appears that only a fraction of transplanted cells actually assimilate and survive in host tissues suggesting that the major mechanism by which stem cells participate in tissue repair are most likely related to their secretome level. These include a wide range of growth factors, cytokines, and chemokines, which can be found from the conditioned medium (CM) used to culture the cells. Basic studies and preclinical work confirm that the therapeutic effect of CMs are comparable with the application of stem cells. This review describes in detail the wound healing process in diabetes and the cellular and biological factors that influence the process. Subsequently, through a comprehensive literature search of studies related to wound healing in diabetics, we aim to provide an overview of scientific merits of using MSCs-CM in the treatment of diabetic wound as well as the significant caveats, which restricts its potential use in clinical set-ups. To our best knowledge, this is one of the first review papers that collect the importance of stem cells as an alternative treatment to the DWH. We anticipate that the success of this treatment will have a significant clinical impact on diabetic wounds.
    Matched MeSH terms: Wound Healing/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links