Displaying publications 1 - 20 of 617 in total

Abstract:
Sort:
  1. Kadir NHA, Murugan N, Khan AA, Sandrasegaran A, Khan AU, Alam M
    Microsc Res Tech, 2024 Mar;87(3):602-615.
    PMID: 38018343 DOI: 10.1002/jemt.24437
    This study aimed to investigate the characterization of zinc oxide nanoparticles (ZnONPs) produced from Cucurbita pepo L. (pumpkin seeds) and their selective cytotoxic effectiveness on human colon cancer cells (HCT 116) and African Green Monkey Kidney, Vero cells. The study also investigated the antioxidant activity of ZnONPs. The study also examined ZnONPs' antioxidant properties. This was motivated by the limited research on the comparative cytotoxic effects of ZnO NPs on normal and HCT116 cells. The ZnO NPs were characterized using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscope/Selected Area Electron Diffraction (TEM/SAED), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) for determination of chemical fingerprinting, heat stability, size, and morphology of the elements, respectively. Based on the results, ZnO NPs from pumpkins were found to be less than 5 μm and agglomerates in nature. Furthermore, the ZnO NPs fingerprinting and SEM-EDX element analysis were similar to previous literature, suggesting the sample was proven as ZnO NPs. The ZnO NPs also stable at a temperature of 380°C indicating that the green material is quite robust at 60-400°C. The cell viability of Vero cells and HCT 116 cell line were measured at two different time points (24 and 48 h) to assess the cytotoxicity effects of ZnO NP on these cells using AlamarBlue assay. Cytotoxic results have shown that ZnO NPs did not inhibit Vero cells but were slightly toxic to cancer cells, with a dose-response curve IC50 = ~409.7 μg/mL. This green synthesis of ZnO NPs was found to be non-toxic to normal cells but has a slight cytotoxicity effect on HCT 116 cells. A theoretical study used molecular docking to investigate nanoparticle interaction with cyclin-dependent kinase 2 (CDK2), exploring its mechanism in inhibiting CDK2's role in cancer. Further study should be carried out to determine suitable concentrations for cytotoxicity studies. Additionally, DPPH has a significant antioxidant capacity, with an IC50 of 142.857 μg/mL. RESEARCH HIGHLIGHTS: Pumpkin seed extracts facilitated a rapid, high-yielding, and environmentally friendly synthesis of ZnO nanoparticles. Spectrophotometric analysis was used to investigate the optical properties, scalability, size, shape, dispersity, and stability of ZnO NPs. The cytotoxicity of ZnO NPs on Vero and HCT 116 cells was assessed, showing no inhibition of Vero cells and cytotoxicity of cancer cells. The DPPH assay was also used to investigate the antioxidant potential of biogenic nanoparticles. A molecular docking study was performed to investigate the interaction of ZnO NPs with CDK2 and to explore the mechanism by which they inhibit CDK2's role in cancer.
    Matched MeSH terms: X-Ray Diffraction
  2. Hairil Anuar AH, Abd Ghafar SA, Hanafiah RM, Lim V, Mohd Pazli NFA
    Int J Nanomedicine, 2024;19:1339-1350.
    PMID: 38348172 DOI: 10.2147/IJN.S431499
    INTRODUCTION: This study aimed to characterize silver nanoparticles-kaempferol (AgNP-K) and its antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). Green synthesis method was used to synthesize AgNP-K under the influence of temperature and different ratios of silver nitrate (AgNO3 and kaempferol).

    METHODS: AgNP-K 1:1 was synthesized with 1 mM kaempferol, whereas AgNP-K 1:2 with 2 mM kaempferol. The characterization of AgNP-K 1:1 and AgNP-K 1:2 was performed using UV-visible spectroscopy (UV-Vis), Zetasizer, transmission electron microscopy (TEM), scanning electron microscopy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The antibacterial activities of five samples (AgNP-K 1:1, AgNP-K 1:2, commercial AgNPs, kaempferol, and vancomycin) at different concentrations (1.25, 2.5, 5, and 10 mg/mL) against MRSA were determined via disc diffusion assay (DDA), minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) assay, and time-kill assay.

    RESULTS: The presence of a dark brown colour in the solution indicated the formation of AgNP-K. The UV-visible absorption spectrum of the synthesized AgNP-K exhibited a broad peak at 447 nm. TEM, Zetasizer, and SEM-EDX results showed that the morphology and size of AgNP-K were nearly spherical in shape with 16.963 ± 6.0465 nm in size. XRD analysis confirmed that AgNP-K had a crystalline phase structure, while FTIR showed the absence of (-OH) group, indicating that kaempferol was successfully incorporated with silver. In DDA analysis, AgNP-K showed the largest inhibition zone (16.67 ± 1.19 mm) against MRSA as compared to kaempferol and commercial AgNPs. The MIC and MBC values for AgNP-K against MRSA were 1.25 and 2.50 mg/mL, respectively. The time-kill assay results showed that AgNP-K displayed bacteriostatic activity against MRSA. AgNP-K exhibited better antibacterial activity against MRSA when compared to commercial AgNPs or kaempferol alone.

    Matched MeSH terms: X-Ray Diffraction
  3. Loo YS, Zahid NI, Madheswaran T, Ikeno S, Nurdin A, Mat Azmi ID
    Mol Pharm, 2023 Sep 04;20(9):4611-4628.
    PMID: 37587099 DOI: 10.1021/acs.molpharmaceut.3c00333
    Lyotropic liquid crystalline nanoassemblies (LLCNs) are internally self-assembled (ISA)-somes formed by amphiphilic molecules in a mixture comprising a lipid, stabilizer, and/or surfactant and aqueous media/dispersant. LLCNs are unique nanoassemblies with versatile applications in a wide range of biomedical functions. However, they comprise a nanosystem that is yet to be fully explored for targeted systemic treatment of breast cancer. In this study, LLCNs proposed for gemcitabine and thymoquinone (Gem-TQ) co-delivery were prepared from soy phosphatidylcholine (SPC), phytantriol (PHYT), or glycerol monostearate (MYVR) in optimized ratios containing a component of citric and fatty acid ester-based emulsifier (Grinsted citrem) or a triblock copolymer, Pluronic F127 (F127). Hydrodynamic particle sizes determined were below 400 nm (ranged between 96 and 365 nm), and the series of nanoformulations displayed negative surface charge. Nonlamellar phases identified by small-angle X-ray scattering (SAXS) profiles comprise the hexagonal, cubic, and micellar phases. In addition, high entrapment efficiency that accounted for 98.3 ± 0.1% of Gem and 99.5 ± 0.1% of TQ encapsulated was demonstrated by the coloaded nanocarrier system, SPC/citrem/Gem-TQ hexosomes. Low cytotoxicity of SPC-citrem hexosomes was demonstrated in MCF10A cells consistent with hemo- and biocompatibility observed in zebrafish (Danio rerio) embryos for up to 96 h postfertilization (hpf). SPC/citrem/Gem-TQ hexosomes demonstrated IC50 of 24.7 ± 4.2 μM in MCF7 breast cancer cells following a 24 h treatment period with the moderately synergistic interaction between Gem and TQ retained (CI = 0.84). Taken together, biocompatible SPC/citrem/Gem-TQ hexosomes can be further developed as a multifunctional therapeutic nanodelivery approach, plausible for targeting breast cancer cells by incorporation of targeting ligands.
    Matched MeSH terms: X-Ray Diffraction
  4. Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Cheah PL, Chiew SF, Pathmanathan D, et al.
    Prog Biophys Mol Biol, 2023 Sep;182:59-74.
    PMID: 37307955 DOI: 10.1016/j.pbiomolbio.2023.06.002
    Amyloidosis is a deleterious condition caused by abnormal amyloid fibril build-up in living tissues. To date, 42 proteins that are linked to amyloid fibrils have been discovered. Amyloid fibril structure variation can affect the severity, progression rate, or clinical symptoms of amyloidosis. Since amyloid fibril build-up is the primary pathological basis for various neurodegenerative illnesses, characterization of these deadly proteins, particularly utilising optical techniques have been a focus. Spectroscopy techniques provide significant non-invasive platforms for the investigation of the structure and conformation of amyloid fibrils, offering a wide spectrum of analyses ranging from nanometric to micrometric size scales. Even though this area of study has been intensively explored, there still remain aspects of amyloid fibrillization that are not fully known, a matter hindering progress in treating and curing amyloidosis. This review aims to provide recent updates and comprehensive information on optical techniques for metabolic and proteomic characterization of β-pleated amyloid fibrils found in human tissue with thorough literature analysis of publications. Raman spectroscopy and SAXS are well established experimental methods for study of structural properties of biomaterials. With suitable models, they offer extended information for valid proteomic analysis under physiologically relevant conditions. This review points to evidence that despite limitations, these techniques are able to provide for the necessary output and proteomics indication in order to extrapolate the aetiology of amyloid fibrils for reliable diagnostic purposes. Our metabolic database may also contribute to elucidating the nature and function of the amyloid proteome in development and clearance of amyloid diseases.
    Matched MeSH terms: X-Ray Diffraction
  5. Sun Y, Jia X, Tan CP, Zhang B, Fu X, Huang Q
    Int J Biol Macromol, 2023 Apr 30;235:123886.
    PMID: 36870635 DOI: 10.1016/j.ijbiomac.2023.123886
    The formation of inclusion complexes (ICs) between V-type starch and flavors is traditionally conducted in an aqueous system. In this study, limonene was solid encapsulated into V6-starch under ambient pressure (AP) and high hydrostatic pressure (HHP). The maximum loading capacity reached 639.0 mg/g after HHP treatment, and the highest encapsulation efficiency was 79.9 %. X-ray Diffraction (XRD) results showed that the ordered structure of V6-starch was ameliorated with limonene, which avoided the reduction of the space between adjacent helices within V6-starch generated by HHP treatment. Notably, HHP treatment may force molecular permeation of limonene from amorphous regions into inter-crystalline amorphous regions and crystalline regions as the Small-angle X-ray scattering (SAXS) patterns indicated, leading to better controlled-release behavior. Thermogravimetry analysis (TGA) revealed that the solid encapsulation of V-type starch improved the thermal stability of limonene. Further, the release kinetics study showed that a complex prepared with a mass ratio of 2:1 under HHP treatment sustainably released limonene over 96 h and exhibited a preferable antimicrobial effect, which could extend the shelf life of strawberries.
    Matched MeSH terms: X-Ray Diffraction
  6. Yusefi M, Shameli K, Lee-Kiun MS, Teow SY, Moeini H, Ali RR, et al.
    Int J Biol Macromol, 2023 Apr 01;233:123388.
    PMID: 36706873 DOI: 10.1016/j.ijbiomac.2023.123388
    Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.
    Matched MeSH terms: X-Ray Diffraction
  7. Anasdass JR, Kannaiyan P, Gopinath SCB
    Biotechnol Appl Biochem, 2022 Dec;69(6):2780-2793.
    PMID: 35293654 DOI: 10.1002/bab.2323
    We demonstrate a green chemistry approach to synthesize narrow-sized zerovalent iron (nZVI) nanoparticles using Artocarpus heterophyllus Lam. leaf extract as reducing and capping agent. The produced nZVI was characterized by various instrumental methods including ultraviolet-visible spectra, transmission electron microscopy, vibrating sample magnetometer (VSM), X-ray diffraction, and Fourier transform infrared spectroscopy. Based on the electron microscopy observations, the particle size was estimated to be ∼30 nm. In VSM, the saturation point of magnetization was observed to be 0.6 emu g-1 under a magnetic field of 0 ± 30 kOe. The synthesized nZVI was amorphous in nature as per the XRD results. The catalytic activity of the nZVI was employed for the catalytic reduction of 4-nitrophenol (4-NP) and decoloration of textile dyes such as methylene blue, methyl orange, and malachite green, respectively. The proposed nZVI synthesis method exhibited better catalytic performance toward reduction of 4-NP and degradation of dyes within 4 min for 0.1 mg of catalyst. Moreover, the synthesized catalyst nZVI can be recoverable and reutilized in many cycles without loss of its significant catalytic activity. The synthesized nZVI could be a promising material to treat industrial wastewater via profitable, sustainable, and ecofriendly approaches.
    Matched MeSH terms: X-Ray Diffraction
  8. Low ZX, Teo MYM, Nordin FJ, Dewi FRP, Palanirajan VK, In LLA
    Int J Mol Sci, 2022 Oct 25;23(21).
    PMID: 36361655 DOI: 10.3390/ijms232112866
    Curcumin (CUR), a curcuminoid originating from turmeric root, possesses diverse pharmacological applications, including potent anticancer properties. However, the use of this efficacious agent in cancer therapy has been limited due to low water solubility and poor bioavailability. To overcome these problems, a drug delivery system was established as an excipient allowing improved dispersion in aqueous media coupled with enhanced in vitro anticancer effects. Different analyses such as UV-vis spectroscopy, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), solubility and dissolution assays were determined to monitor the successful encapsulation of CUR within the inner cavity of a β-cyclodextrin (β-CD) complex. The results indicated that water solubility was improved by 205.75-fold compared to pure CUR. Based on cytotoxicity data obtained from MTT assays, the inclusion complex exhibited a greater decrease in cancer cell viability compared to pure CUR. Moreover, cancer cell migration rates were decreased by 75.5% and 38.92%, invasion rates were decreased by 37.7% and 35.7%, while apoptosis rates were increased by 26.3% and 14.2%, and both caused caspase 3 activation toward colorectal cancer cells (SW480 and HCT116 cells). This efficacious formulation that enables improved aqueous dispersion is potentially useful and can be extended for various chemotherapeutic applications. Preliminary toxicity evaluation also indicated that its composition can be safely used in humans for cancer therapy.
    Matched MeSH terms: X-Ray Diffraction
  9. Hussein-Al-Ali SH, Abudoleh SM, Abualassal QIA, Abudayeh Z, Aldalahmah Y, Hussein MZ
    IET Nanobiotechnol, 2022 May;16(3):92-101.
    PMID: 35332980 DOI: 10.1049/nbt2.12081
    Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro-AgNPs nanocomposite. The characteristics of the Cipro-AgNPs nanocomposite were studied by X-ray diffraction (XRD), UV-Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier-transform infra-red analysis (FT-IR) and zeta potential analyses. The XRD of AgNPs and Cipro-AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT-IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro-AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro-AgNPs nanocomposites confirmed the needle-lumpy shape. The zeta potential for Cipro-AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro-AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro-AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson-Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro-AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro-AgNPs are suitable for drug delivery.
    Matched MeSH terms: X-Ray Diffraction
  10. Gaddam SA, Kotakadi VS, Subramanyam GK, Penchalaneni J, Challagundla VN, Dvr SG, et al.
    Sci Rep, 2021 11 09;11(1):21969.
    PMID: 34753977 DOI: 10.1038/s41598-021-01281-8
    The current investigation highlights the green synthesis of silver nanoparticles (AgNPs) by the insectivorous plant Drosera spatulata Labill var. bakoensis, which is the first of its kind. The biosynthesized nanoparticles revealed a UV visible surface plasmon resonance (SPR) band at 427 nm. The natural phytoconstituents which reduce the monovalent silver were identified by FTIR. The particle size of the Ds-AgNPs was detected by the Nanoparticle size analyzer confirms that the average size of nanoparticles was around 23 ± 2 nm. Ds-AgNPs exhibit high stability because of its high negative zeta potential (- 34.1 mV). AFM studies also revealed that the Ds-AgNPs were spherical in shape and average size ranges from 10 to 20 ± 5 nm. TEM analysis also revealed that the average size of Ds-AgNPs was also around 21 ± 4 nm and the shape is roughly spherical and well dispersed. The crystal nature of Ds-AgNPs was detected as a face-centered cube by the XRD analysis. Furthermore, studies on antibacterial and antifungal activities manifested outstanding antimicrobial activities of Ds-AgNPs compared with standard antibiotic Amoxyclav. In addition, demonstration of superior free radical scavenging efficacy coupled with potential in vitro cytotoxic significance on Human colon cancer cell lines (HT-29) suggests that the Ds-AgNPs attain excellent multifunctional therapeutic applications.
    Matched MeSH terms: X-Ray Diffraction
  11. Lai D, Zhou A, Tan BK, Tang Y, Sarah Hamzah S, Zhang Z, et al.
    Food Chem, 2021 Nov 01;361:130117.
    PMID: 34058659 DOI: 10.1016/j.foodchem.2021.130117
    To overcome the poor water solubility of curcumin, a curcumin-β-cyclodextrin (Cur-β-CD) complex was prepared as a novel photosensitizer. Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to verify the formation of Cur-β-CD. Furthermore, the ROS generation capacity and photodynamic bactericidal effect were measured to confirm this Cur-β-CD complex kept photodynamic activity of curcumin. The result showed Cur-β-CD could effectively generate ROS upon blue-light irradiation. The plate count assay demonstrated Cur-β-CD complex possess desirable photodynamic antibacterial effect against food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Escherichia coli. The cell morphology determined by scanning electron microscope (SEM) and transmission electron microscope (TEM) showed Cur-β-CD could cause cell deformation, surface collapse and cell structure damage of the bacteria, resulting in the leakage of cytoplasmic; while agarose gel electrophoresis and SDS-PAGE further illustrated the inactivation mechanisms by Cur-β-CD involve bacterial DNA damage and protein degradation.
    Matched MeSH terms: X-Ray Diffraction
  12. Malek NNA, Jawad AH, Ismail K, Razuan R, ALOthman ZA
    Int J Biol Macromol, 2021 Oct 31;189:464-476.
    PMID: 34450144 DOI: 10.1016/j.ijbiomac.2021.08.160
    A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
    Matched MeSH terms: X-Ray Diffraction
  13. Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Jain SK, et al.
    Int J Biol Macromol, 2021 Oct 31;189:744-757.
    PMID: 34464640 DOI: 10.1016/j.ijbiomac.2021.08.170
    The role of mushroom polysaccharides and probiotics as pharmaceutical excipients for development of nanocarriers has never been explored. In the present study an attempt has been made to explore Ganoderma lucidum extract powder (GLEP) containing polysaccharides and probiotics to convert liquid self nanoemulsifying drug delivery system (SNEDDS) into solid free flowing powder. Two lipophilic drugs, curcumin and quercetin were used in this study due to their dissolution rate limited oral bioavailability and poor permeability. These were loaded into liquid SNEDDS by dissolving them into isotropic mixture of Labrafill M1944CS, Capmul MCM, Tween-80 and Transcutol P. The liquid SNEDDS were solidified using probiotics and mushroom polysaccharides as carriers and Aerosil-200 as coating agent. The solidification was carried out using spray drying process. The process and formulation variables for spray drying process of liquid SNEDDS were optimized using Box Behnken Design to attain required powder properties. The release of both drugs from the optimized spray dried (SD) formulation was found to be more than 90%, whereas, it was less than 20% for unprocessed drugs. The results of DSC, PXRD and SEM, showed that the developed L-SNEDDS preconcentrate was successfully loaded onto the porous surface of probiotics, mushroom polysaccharides and Aerosil-200.
    Matched MeSH terms: X-Ray Diffraction
  14. Ikram M, Mahmood A, Haider A, Naz S, Ul-Hamid A, Nabgan W, et al.
    Int J Biol Macromol, 2021 Aug 31;185:153-164.
    PMID: 34157328 DOI: 10.1016/j.ijbiomac.2021.06.101
    Various concentrations of Mg into fixed amount of cellulose nanocrystals (CNC)-doped ZnO were synthesized using facile chemical precipitation. The aim of present study is to remove dye degradation of methylene blue (MB) and bactericidal behavior with synthesized product. Phase constitution, functional group analysis, optical behavior, elemental composition, morphology and microstructure were examined using XRD, FTIR, UV-Vis spectrophotometer, EDS and HR-TEM. Highly efficient photocatalytic performance was observed in basic medium (98%) relative to neutral (65%), and acidic (83%) was observed upon Mg and CNC co-doping. Significant bactericidal activity of doped ZnO nanoparticles depicted inhibition zones for G -ve and +ve bacteria ranging (2.20 - 4.25 mm) and (5.80-7.25 mm) for E. coli and (1.05 - 2.75 mm) and (2.80 - 4.75 mm) for S. aureus at low and high doses, respectively. Overall, doped nanostructures showed significant (P 
    Matched MeSH terms: X-Ray Diffraction
  15. Dalle Vacche S, Karunakaran V, Patrucco A, Zoccola M, Douard L, Ronchetti S, et al.
    Molecules, 2021 Aug 04;26(16).
    PMID: 34443315 DOI: 10.3390/molecules26164723
    Nanocellulose was extracted from short bast fibers, from hemp (Cannabis sativa L.) plants harvested at seed maturity, non-retted, and mechanically decorticated in a defibering apparatus, giving non-aligned fibers. A chemical pretreatment with NaOH and HCl allowed the removal of most of the non-cellulosic components of the fibers. No bleaching was performed. The chemically pretreated fibers were then refined in a beater and treated with a cellulase enzyme, followed by mechanical defibrillation in an ultrafine friction grinder. The fibers were characterized by microscopy, infrared spectroscopy, thermogravimetric analysis and X-ray diffraction after each step of the process to understand the evolution of their morphology and composition. The obtained nanocellulose suspension was composed of short nanofibrils with widths of 5-12 nm, stacks of nanofibrils with widths of 20-200 nm, and some larger fibers. The crystallinity index was found to increase from 74% for the raw fibers to 80% for the nanocellulose. The nanocellulose retained a yellowish color, indicating the presence of some residual lignin. The properties of the nanopaper prepared with the hemp nanocellulose were similar to those of nanopapers prepared with wood pulp-derived rod-like nanofibrils.
    Matched MeSH terms: X-Ray Diffraction
  16. Bera H, Abbasi YF, Gajbhiye V, Ping LL, Salve R, Kumar P, et al.
    Int J Biol Macromol, 2021 Jun 30;181:169-179.
    PMID: 33775757 DOI: 10.1016/j.ijbiomac.2021.03.152
    Curdlan (CN)-doped montmorillonite/poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide) [CN/MT/P(NIPA-co-MBA)] smart nanocomposites (NCs) were developed for efficient erlotinib HCl (ERL) delivery to lung cancer cells. The placebo NCs demonstrated excellent biodegradability, pH/thermo-responsive swelling profiles and declined molar mass (M¯c) between the crosslinks with increasing temperature. The XRD, FTIR, DSC, TGA, and SEM analyses revealed the architectural chemistry of these NC scaffolds. The NCs loaded with ERL (F-1-F-3) displayed acceptable diameter (734-1120 nm) and zeta potential (+1.16 to -11.17 mV), outstanding drug entrapping capability (DEE, 78-99%) and sustained biphasic ERL elution patterns (Q8h, 53-91%). The ERL release kinetics of the optimal matrices (F-3) obeyed Higuchi model and their transport occurred through anomalous diffusion. The mucin adsorption behaviour of these matrices followed Freudlich isotherms. As compared to pure ERL, the formulation (F-3) displayed an improved anti-proliferative potential and induced apoptosis more effectively on A549 cells. Thus, the CN-doped smart NCs could be utilized as promising drug-cargoes for lung cancer therapy.
    Matched MeSH terms: X-Ray Diffraction
  17. Mohanadas D, Mohd Abdah MAA, Azman NHN, Ravoof TBSA, Sulaiman Y
    Sci Rep, 2021 Jun 03;11(1):11747.
    PMID: 34083589 DOI: 10.1038/s41598-021-91100-x
    A novel poly(3,4-ethylenedioxythiophene)-reduced graphene oxide/copper-based metal-organic framework (PrGO/HKUST-1) has been successfully fabricated by incorporating electrochemically synthesized poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (PrGO) and hydrothermally synthesized copper-based metal-organic framework (HKUST-1). The field emission scanning microscopy (FESEM) and elemental mapping analysis revealed an even distribution of poly(3,4-ethylenedioxythiophene) (PEDOT), reduced graphene oxide (rGO) and HKUST-1. The crystalline structure and vibration modes of PrGO/HKUST-1 were validated utilizing X-ray diffraction (XRD) as well as Raman spectroscopy, respectively. A remarkable specific capacitance (360.5 F/g) was obtained for PrGO/HKUST-1 compared to HKUST-1 (103.1 F/g), PrGO (98.5 F/g) and PEDOT (50.8 F/g) using KCl/PVA as a gel electrolyte. Moreover, PrGO/HKUST-1 composite with the longest charge/discharge time displayed excellent specific energy (21.0 Wh/kg), specific power (479.7 W/kg) and an outstanding cycle life (95.5%) over 4000 cycles. Thus, the PrGO/HKUST-1 can be recognized as a promising energy storage material.
    Matched MeSH terms: X-Ray Diffraction
  18. Supramaniam J, Low DYS, Wong SK, Tan LTH, Leo BF, Goh BH, et al.
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071337 DOI: 10.3390/ijms22115781
    Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.
    Matched MeSH terms: X-Ray Diffraction
  19. Al-Salih M, Samsudin S, Arshad SS
    J Genet Eng Biotechnol, 2021 May 18;19(1):76.
    PMID: 34003402 DOI: 10.1186/s43141-021-00161-y
    BACKGROUND: Environmental contamination by microbes is a major public health concern. A damp environment is one of the potential sources for microbe proliferation. Smart synthesis nanocatalytic coatings on surfaces, food, and material from different pathogen bacteria can inhibit using the Fe3O4/CNTs as anti-microbial growth can effectively curb this growing threat. In this present work, the anti-microbial efficacy of synthesis of a compound nanoparticle-containing iron oxide-multi-walled carbon nanotube was combined by laser ablation PLAL and explored the anti-bacterial action of colloidal solution of Fe3O4/CNTs NPs that was evaluated against bacteria which is classified as gram-negative (Escherichia coli (E. coli), Klebsiella pneumonia (K. pneumonia), and also that is identified as gram-positive (Streptococcus pyogenes (S .pyogenes) and Staphylococcus aureus (S. aureus) under visible light irradiation.

    RESULTS: Doping of a minute fraction of iron(III) salt (0.5 mol%) in a volatile solvent (ethanol) was carried out via the sol-gel technique. Fe3O4 was further calcined at various temperatures (in the range of 500-700 °C) to evaluate the thermal stability of the Fe3O4 nanoporous oxidizer nanoparticles. The physicochemical properties of the samples were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and UV-Visible spectroscopy techniques. XRD results revealed that the nanoparticles framework of Fe3O4 was maintained well up to 650 °C by the Fe dopant. UV-Vis results suggested that absorption property of combination Fe3O4/CNTs nanopowder by PLAL was enhanced and the band gap is reduced into 2.0 eV.

    CONCLUSIONS: Density functional theory (DFT) studies emphasize the introduction of Fe+ and Fe2+ ions by replacing other ions in the CNT lattice, therefore creating oxygen vacancies. These further promoted anti-microbial efficiency. A significantly high bacterial inactivation that indicates results was evaluated and that the mean estimations of restraint were determined from triple assessment in every appraisal at 400 ml which represent the best anti-bacterial action against gram-positive and gram-negative microbes.

    Matched MeSH terms: X-Ray Diffraction
  20. Abdullah CK, Ismail I, Nurul Fazita MR, Olaiya NG, Nasution H, Oyekanmi AA, et al.
    Polymers (Basel), 2021 May 17;13(10).
    PMID: 34067604 DOI: 10.3390/polym13101615
    The effect of incorporating different loadings of oil palm bio-ash nanoparticles from agriculture waste on the properties of phenol-formaldehyde resin was investigated in this study. The bio-ash filler was used to enhance the performance of phenol-formaldehyde nanocomposites. Phenol-formaldehyde resin filled with oil palm bio-ash nanoparticles was prepared via the in-situ polymerization process to produce nanocomposites. The transmission electron microscope and particle size analyzer result revealed that oil palm bio-ash nanoparticles had a spherical geometry of 90 nm. Furthermore, X-ray diffraction results confirmed the formation of crystalline structure in oil palm bio-ash nanoparticles and phenol-formaldehyde nanocomposites. The thermogravimetric analysis indicated that the presence of oil palm bio-ash nanoparticles enhanced the thermal stability of the nanocomposites. The presence of oil palm bio-ash nanoparticles with 1% loading in phenol-formaldehyde resin enhanced the internal bonding strength of plywood composites. The scanning electron microscope image revealed that phenol-formaldehyde nanocomposites morphology had better uniform distribution and dispersion with 1% oil palm bio-ash nanoparticle loading than other phenol-formaldehyde nanocomposites produced. The nanocomposite has potential use in the development of particle and panel board for industrial applications.
    Matched MeSH terms: X-Ray Diffraction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links