Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Abdul Razak HR, Shaffiq Said Rahmat SM, Md Saad WM
    Quant Imaging Med Surg, 2013 Oct;3(5):256-61.
    PMID: 24273743 DOI: 10.3978/j.issn.2223-4292.2013.10.04
    The study aimed to investigate the effects of different tube potentials and concentrations of iodinated contrast media (CM) on the image enhancement, contrast-to-noise ratio (CNR) and noise in micro-computed tomography (µCT) images. A phantom containing of five polyethylene tube was filled with 2 mL of deionized water and iodinated CM (Omnipaque 300 mgI/mL) at four different concentrations: 5, 10, 15, and 20 mol/L, respectively. The phantom was scanned with a µCT machine (SkyScan 1176) using various tube potentials: 40, 50, 60, 70, 80, and 90 kVp, a fixed tube current; 100 µA, and filtration of 0.2 mm aluminum (Al). The percentage difference of image enhancement, CNR and noise of all images, acquired at different kVps and concentrations, were calculated. The image enhancement, CNR and noise curves with respect to tube potential and concentration were plotted and analysed. The highest image enhancement was found at the lowest tube potential of 40 kVp. At this kVp setting, the percentage difference of image enhancement [Hounsfield Unit (HU) of 20 mol/L iodine concentration over HU of deionized water] was 43%. By increasing the tube potential, it resulted with the reduction of HU, where only 17.5% different were noticed for 90 kVp. Across all iodine concentrations (5-20 M), CNR peaked at 80 kVp and then these values showed a slight decreasing pattern, which might be due insufficient tube current compensation. The percentage difference of image noise obtained at 40 and 90 kVp was 72.4%. Lower tube potential setting results in higher image enhancement (HU) in conjunction with increasing concentration of iodinated CM. Overall, the tube potential increment will substantially improve CNR and reduce image noise.
    Matched MeSH terms: X-Ray Microtomography
  2. Ahmed HM, Khamis MF, Gutmann JL
    Scanning, 2016 Nov;38(6):554-557.
    PMID: 26751249 DOI: 10.1002/sca.21299
    The root and root canal morphology of deciduous molars shows considerable variations. Consequently, a comprehensive understanding of the normal and unusual root and root canal configuration types in deciduous teeth is of prime importance. The purpose of this report is to describe a rare anatomical variation in a double-rooted maxillary deciduous molar examined by the dental operating microscope and micro-computed tomography. SCANNING 38:554-557, 2016. © 2016 Wiley Periodicals, Inc.
    Matched MeSH terms: X-Ray Microtomography/methods*
  3. Ahmed HMA, Ibrahim N, Mohamad NS, Nambiar P, Muhammad RF, Yusoff M, et al.
    Int Endod J, 2021 Jul;54(7):1056-1082.
    PMID: 33527452 DOI: 10.1111/iej.13486
    Adequate knowledge and accurate characterization of root and canal anatomy is an essential prerequisite for successful root canal treatment and endodontic surgery. Over the years, an ever-increasing body of knowledge related to root and canal anatomy of the human dentition has accumulated. To correct deficiencies in existing systems, a new coding system for classifying root and canal morphology, accessory canals and anomalies has been introduced. In recent years, micro-computed tomography (micro-CT) and cone beam computed tomography (CBCT) have been used extensively to study the details of root and canal anatomy in extracted teeth and within clinical settings. This review aims to discuss the application of the new coding system in studies using micro-CT and CBCT, provide a detailed guide for appropriate characterization of root and canal anatomy and to discuss several controversial issues that may appear as potential limitations for proper characterization of roots and canals.
    Matched MeSH terms: X-Ray Microtomography
  4. Ahmed HMA, Versiani MA, De-Deus G, Dummer PMH
    Int Endod J, 2017 Aug;50(8):761-770.
    PMID: 27578418 DOI: 10.1111/iej.12685
    Knowledge of root and root canal morphology is a prerequisite for effective nonsurgical and surgical endodontic treatments. The external and internal morphological features of roots are variable and complex, and several classifications have been proposed to define the various types of canal configurations that occur commonly. More recently, improvements in nondestructive digital image systems, such as cone-beam and micro-computed tomography, as well as the use of magnification in clinical practice, have increased the number of reports on complex root canal anatomy. Importantly, using these newer techniques, it has become apparent that it is not possible to classify many root canal configurations using the existing systems. The purpose of this article is to introduce a new classification system that can be adapted to categorize root and root canal configurations in an accurate, simple and reliable manner that can be used in research, clinical practice and training.
    Matched MeSH terms: X-Ray Microtomography
  5. Ahmed HMA, Versiani MA, De-Deus G, Dummer PMH
    Int Endod J, 2018 Oct;51(10):1182-1183.
    PMID: 30191599 DOI: 10.1111/iej.12928
    Matched MeSH terms: X-Ray Microtomography/methods
  6. Ahmed HMA, Rossi-Fedele G
    Eur Endod J, 2020 12;5(3):159-176.
    PMID: 33353923 DOI: 10.14744/eej.2020.88942
    OBJECTIVE: Consistent reporting of publications in a given topic is essential. This systematic review aimed to identify and evaluate the reporting items in previous publications related to root canal anatomy in major Endodontic journals.

    METHODS: A systematic review was undertaken following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive literature search was performed by 2 independent reviewers using a customized search strategy in major Endodontic journals through Scopus until November 2019. Studies investigating root and canal anatomy were included. The selected publications were divided into 7 categories according to the study design: micro-computed tomography (microCT) and cone-beam computed tomography (CBCT) experimental studies (extracted teeth), CBCT and 2D clinical studies, CBCT and 2D case reports in addition to others (i.e. staining and clearing method and root sectioning). The selected studies were evaluated according to three domains: 1) Criteria for study sample selection; 2) Criteria for methodological procedures and 3) Criteria for detection and evaluation.

    RESULTS: After the removal of duplicated and irrelevant papers, 137 articles were included. Results showed that microCT studies reported accurately the tooth type, number of teeth, classifications used, qualitative and/or quantitative analysis (if required) and the evaluation process. However, sample size calculation, calibration, and reproducibility were not reported in the majority of microCT studies. CBCT clinical studies presented information for the type of study, inclusion/exclusion criteria, number of patients, tooth type, and number of teeth. However, the majority did not report sample size calculation and calibration of examiners. Radiographic exposure descriptions and classifications used were not reported adequately in CBCT and 2D case reports. Sample size calculation, calibration and reproducibility were not reported in staining and clearing method.

    CONCLUSION: Despite accurate presentation of certain items, there is considerable inconsistent reporting of root and canal morphology regardless of the type of study and experimental procedure used. The PROUD checklist protocol presented in this systematic review aims to provide an accurate description of root canal anatomy in experimental, clinical, and case report publications.

    Matched MeSH terms: X-Ray Microtomography
  7. Al-Rammahi HM, Chai WL, Nabhan MS, Ahmed HMA
    BMC Oral Health, 2023 May 29;23(1):339.
    PMID: 37248469 DOI: 10.1186/s12903-023-03036-5
    BACKGROUND: A thorough understanding of root and canal anatomy is crucial for successful root canal treatment outcomes. This systematic review aims to explore the published micro-CT studies investigated the anatomy of root and canal system in permanent mandibular first molars.

    METHOD: An electronic search was performed on Web of science, PubMed, and Scopus. Micro-CT journal studies investigated the root and canal anatomy of permanent double-rooted mandibular first molars were included. Data on study characteristics, objectives of interest, specifications of the studies, and micro-CT specifications were extracted. Risk of bias assessment (ROB) of the included studies was performed using Anatomical Quality Assessment (AQUA) tool. The extracted data were presented in tables and figures to present and synthesise the results. A meta-analysis was performed for the studies related to the prevalence of Vertucci's canal configurations, middle mesial canal (MMC) configurations, and Fan's isthmus types.

    RESULTS: Amongst 1358 identified studies, thirty met the inclusion criteria. In terms of the objectives, the selected studies showed high anatomical variability in mandibular first molars. Twenty-two (73%), 25 (83%), and 12 (40%) of the studies reported the population/ethnicity, micro-CT specifications, and ethical approval, respectively. 28 (93%) studies did not disclose the method of sample size estimation. In only 6 (20%) of the studies, the authors had calibrated the assessment approaches. Mostly, a potential ROB was reported in domain 1 (objective(s) and subject characteristics) and domain 3 (methodology characterization). Whilst, low risk was reported in domains 2 (study design), 4 (descriptive anatomy), and 5 (reporting of results). The overall ROB was reported to be ''moderate'' in the vast majority of the studies (27/30). Meta-analysis results showed high levels of heterogeneity among the studies related to MMCs (I2 = 86%) and Fan's isthmus (I2 = 87%). As for the root canal configuration, pooled prevalence showed that Vertucci type IV and type I were the most prevalent in mesial and distal root canals, respectively.

    CONCLUSION: Based on moderate risk of bias level of evidence, micro-CT studies have shown wide range of qualitative and quantitative data presentations of the roots and canals in mandibular first molars. Protocol and registration. The protocol of this systematic review was prospectively registered in the Open Science Framework database ( https://osf.io ) on 2022-06-20 with the registration number 10.17605/OSF.IO/EZP7K.

    Matched MeSH terms: X-Ray Microtomography
  8. Alavi R, Akbarzadeh AH, Hermawan H
    J Mech Behav Biomed Mater, 2021 05;117:104413.
    PMID: 33640846 DOI: 10.1016/j.jmbbm.2021.104413
    In-depth analyses of post-corrosion mechanical properties and architecture of open cell iron foams with hollow struts as absorbable bone scaffolds were carried out. Variations in the architectural features of the foams after 14 days of immersion in a Hanks' solution were investigated using micro-computed tomography and scanning electron microscope images. Finite element Kelvin foam model was developed, and the numerical modeling and experimental results were compared against each other. It was observed that the iron foam samples were mostly corroded in the periphery regions. Except for quasi-elastic gradient, other mechanical properties (i.e. compressive strength, yield strength and energy absorbability) decreased monotonically with immersion time. Presence of adherent corrosion products enhanced the load-bearing capacity of the open cell iron foams at small strains. The finite element prediction for the quasi-elastic response of the 14-day corroded foam was in an agreement with the experimental results. This study highlights the importance of considering corrosion mechanism when designing absorbable scaffolds; this is indispensable to offer desirable mechanical properties in porous materials during degradation in a biological environment.
    Matched MeSH terms: X-Ray Microtomography
  9. Alyessary AS, Yap AUJ, Othman SA, Ibrahim N, Rahman MT, Radzi Z
    Am J Orthod Dentofacial Orthop, 2018 Aug;154(2):260-269.
    PMID: 30075928 DOI: 10.1016/j.ajodo.2017.11.031
    INTRODUCTION: In this study, we evaluated the effect of bone-borne accelerated expansion protocols on sutural separation and sutural bone modeling using a microcomputed tomography system. We also determined the optimum instant sutural expansion possible without disruption of bone modeling.

    METHODS: Sixteen New Zealand white rabbits, 20 to 24 weeks old, were randomly divided into 4 experimental groups. Modified hyrax expanders were placed across their interfrontal sutures and secured with miniscrew implants located bilaterally in the frontal bone. The hyrax appliances were activated as follows: group 1 (control), 0.5-mm per day expansion for 12 days; group 2, 1-mm instant expansion followed by 0.5 mm per day for 10 days; group 3, 2.5-mm instant expansion followed by 0.5 mm per day for 7 days, and group 4, 4-mm instant expansion followed by 0.5 mm per day for 4 days. After 6 weeks of retention, sutural separation and sutural bone modeling were assessed by microcomputed tomography and quantified. Statistical analysis was performed using Kruskal Wallis and Mann-Whitney U tests and the Spearman rho correlation (P <0.05).

    RESULTS: Median amounts of sutural separation ranged from 2.84 to 4.41 mm for groups 1 and 4, respectively. Median bone volume fraction ranged from 59.96% to 69.15% for groups 4 and 3, respectively. A significant correlation (r = 0.970; P <0.01) was observed between the amounts of instant expansion and sutural separation.

    CONCLUSIONS: Pending histologic verifications, our findings suggest that the protocol involving 2.5 mm of instant expansion followed by 0.5 mm per day for 7 days is optimal for accelerated sutural expansion. When 4 mm of instant expansion was used, the sutural bone volume fraction was decreased.

    Matched MeSH terms: X-Ray Microtomography*
  10. Alyessary AS, Yap AUJ, Othman SA, Rahman MT, Radzi Z
    J Oral Maxillofac Surg, 2018 03;76(3):616-630.
    PMID: 28893543 DOI: 10.1016/j.joms.2017.08.018
    PURPOSE: The present study investigated the effect of piezoelectric sutural ostectomies on accelerated bone-borne sutural expansion.

    MATERIALS AND METHODS: Sixteen male New Zealand white rabbits (20 to 24 weeks old) were randomly divided into 4 experimental groups (n = 4): group 1, conventional rapid sutural expansion; group 2, accelerated sutural expansion; group 3, accelerated sutural expansion with continuous ostectomy; and group 4, accelerated sutural expansion with discontinuous ostectomy. All sutural ostectomies were performed using a piezoelectric instrument (Woodpecker DTE, DS-II, Guangxi, China) before expander application with the rabbits under anesthesia. Modified hyrax expanders were placed across the midsagittal sutures of the rabbits and secured with miniscrew implants located bilaterally in the frontal bone. The hyrax expanders were activated 0.5 mm/day for 12 days (group 1) or with a 2.5-mm initial expansion, followed by 0.5 mm/day for 7 days (groups 2 to 4). After 6 weeks of retention, the bone volume fraction, sutural separation, and new bone formation were evaluated using micro-computed tomography and histomorphometry. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U tests and Spearman's rho correlation (P 

    Matched MeSH terms: X-Ray Microtomography
  11. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, et al.
    Biomaterials, 2014 Aug;35(24):6172-81.
    PMID: 24811260 DOI: 10.1016/j.biomaterials.2014.04.054
    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.
    Matched MeSH terms: X-Ray Microtomography
  12. Anderson PJ, Yong R, Surman TL, Rajion ZA, Ranjitkar S
    Aust Dent J, 2014 Jun;59 Suppl 1:174-85.
    PMID: 24611727 DOI: 10.1111/adj.12154
    Following the invention of the first computed tomography (CT) scanner in the early 1970s, many innovations in three-dimensional (3D) diagnostic imaging technology have occurred, leading to a wide range of applications in craniofacial clinical practice and research. Three-dimensional image analysis provides superior and more detailed information compared with conventional plain two-dimensional (2D) radiography, with the added benefit of 3D printing for preoperative treatment planning and regenerative therapy. Current state-of-the-art multidetector CT (MDCT), also known as medical CT, has an important role in the diagnosis and management of craniofacial injuries and pathology. Three-dimensional cone beam CT (CBCT), pioneered in the 1990s, is gaining increasing popularity in dental and craniofacial clinical practice because of its faster image acquisition at a lower radiation dose, but sound guidelines are needed to ensure its optimal clinical use. Recent innovations in micro-computed tomography (micro-CT) have revolutionized craniofacial biology research by enabling higher resolution scanning of teeth beyond the capabilities of MDCT and CBCT, presenting new prospects for translational clinical research. Even after four decades of refinement, CT technology continues to advance and broaden the horizons of craniofacial clinical practice and phenomics research.
    Matched MeSH terms: X-Ray Microtomography/methods
  13. Arumugam S, Yew HZ, Baharin SA, Qamaruz Zaman J, Muchtar A, Kanagasingam S
    Aust Endod J, 2021 Dec;47(3):520-530.
    PMID: 33956372 DOI: 10.1111/aej.12516
    This study aimed to evaluate and compare the frequency of microcracks and its severity at different root canal dentin locations, after preparation with thermomechanically heat-treated engine-driven nickel-titanium instruments. Forty mandibular premolars were assigned to four experimental groups (n = 10): ProTaper Next, ProTaper Gold, WaveOne Gold and Reciproc Blue. After pre-instrumentation micro-computed tomography scans, the root canals were prepared to size 25. Following post-instrumentation scans, pre- and post-instrumentation scanned images were analysed for the presence and extent of dentinal defects. A total of 56 500 cross-sectional images were obtained, showing that less than 2.3% with pre-existing dentinal microcracks. No new microcracks were identified during the post-instrumentation analyses. No significant association was found between the types of dentinal defects, file motions and sequences. Thermomechanically heat-treated rotary files did not induce the formation of new microcracks. There was also no association between the kinematic motions and sequences of the rotary instruments to the types of dentinal defects.
    Matched MeSH terms: X-Ray Microtomography
  14. Athanasios Mantalaris, Alexander Bismarck, Saiful Irwan Zubairi
    Sains Malaysiana, 2015;44:1351-1356.
    Polyhydroxyalkanoates (PHAs) has been investigated for more than eighty years. Ever since then, the scientists are kept on synthesizing and developing new polymers and application to suit human interests nowadays. The resourcefulness of PHAs has made them a good candidates for the study of their potential in a variety of areas from biomedical/medical fields to food, packaging, textile and household material. In medical field (specifically in tissue engineering application), producing a biocompatible 3-D scaffold with adaptable physical properties are essential. However, to the best of our knowledge, scaffolds from PHB and PHBV with thickness greater than 1 mm have not been produced yet. In this work, PHB and PHBV porous 3-D scaffolds with an improved thickness greater than 4 mm was fabricated using conventional method of solvent-casting particulate-leaching (SCPL). A preliminary assessment on the improved thickness 3-D scaffolds was carried out to examine its pore interconnectivity by using non-invasive color staining method. The vertical cross sections image of the stained scaffolds was analyzed by image analyzer software. This technique was considered simple, fast and cost effective method prior to the usage of super accurate analytical instruments (micro-computed tomography). The results showed that over 80% of the pores have been interconnected with the adjacent pores. Moreover, there was a good correlation between the predicted pore interconnectivity and porosity. These results indicated how well a simple technique can do by giving an overview of the internal morphology of a porous 3-D structure material.
    Matched MeSH terms: X-Ray Microtomography
  15. Bokhari RA, Lau SF, Mohamed S
    Menopause, 2018 02;25(2):202-210.
    PMID: 28926512 DOI: 10.1097/GME.0000000000000980
    OBJECTIVE: Orthosiphon stamineus (OS) or Misai Kucing (Java tea) is a popular herbal supplement from Southeast Asia for various metabolic, age-related diseases. This study investigated the potential use of OS leaf extracts to ameliorate osteoporosis in ovariectomized rats.

    METHODS: Fifty-six female Sprague-Dawley rats were randomly allocated into eight groups (n = 7): SHAM (healthy sham control); OVX (ovarietomized) nontreated rats (negative control); OVX + Remifemin (100 mg/kg body weight), and 2% green tea extract (positive controls); OVX + OS 50% ethanolic and aqueous extracts, both at either 150 or 300 mg/kg. After 16 weeks, the rats' bones and blood were evaluated for osteoporosis indicators (protein and mRNA expressions), micro-computed tomography for bone histomorphometry, and three-point bending test for tibia mechanical strength.

    RESULTS: The extracts dose-dependently and significantly (P 

    Matched MeSH terms: X-Ray Microtomography
  16. Chin KY, Ima-Nirwana S
    Clin Interv Aging, 2014;9:1247-59.
    PMID: 25120355 DOI: 10.2147/CIA.S67016
    BACKGROUND: Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.
    METHODS: Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.
    RESULTS: There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).
    CONCLUSION: AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
    KEYWORDS: bone remodeling; osteoporosis; testosterone; tocotrienol
    Matched MeSH terms: X-Ray Microtomography
  17. Dalzell O, Mohd Ariffin S, Patrick CJ, Hardiman R, Manton DJ, Parashos P, et al.
    Eur Arch Paediatr Dent, 2021 Oct;22(5):911-927.
    PMID: 34146251 DOI: 10.1007/s40368-021-00641-2
    PURPOSE: Pulpectomy may be indicated in restorable primary teeth exhibiting irreversible pulpitis or pulpal necrosis. The purpose of this study was to compare the cleaning and shaping efficacy of NiTi systems (Reciproc® Blue and MTwo®) with manual stainless-steel instrumentation in primary molars using micro-CT analysis.

    METHODS: Fifty-seven maxillary second primary molars were scanned using micro-CT. Teeth with three divergent roots were divided randomly (n = 15) according to instrument type (K file, MTwo®, and Reciproc® Blue). Teeth with root fusion were instrumented manually as a separate group (n = 12). Pre- and post-instrumentation micro-CT images were superimposed, and the instrumentation area (IA) and procedural complications were recorded.

    RESULTS: No statistically significant differences in IA between file systems was observed in the non-fused teeth. The mean IA of fused roots was significantly lower than in the non-fused distobuccal (p = 0.003) and palatal (p  60%) occurred in both non-fused and fused primary teeth with fewer procedural complications observed after manual instrumentation.

    Matched MeSH terms: X-Ray Microtomography
  18. Effendy NM, Khamis MF, Soelaiman IN, Shuid AN
    J Xray Sci Technol, 2014;22(4):503-18.
    PMID: 25080117 DOI: 10.3233/XST-140441
    Postmenopausal osteoporosis is best treated and prevented by estrogen replacement therapy (ERT). Although effective, ERT may cause breast cancer, uterine cancer and cardiovascular problems. Labisia pumila var. alata (LP), a herb with phytoestrogenic, antioxidative and anti-inflammatory effects has potential as an ERT alternative.
    Matched MeSH terms: X-Ray Microtomography/methods*
  19. Effendy NM, Khamis MF, Shuid AN
    Curr Drug Targets, 2013 Dec;14(13):1542-51.
    PMID: 24010967
    Bone quality assessment is important in assessments of potential agents for the prevention and treatment of osteoporosis. Bone density, microarchitecture and strength are important determinants in osteoporotic study which are widely studied using Dual-Energy X-ray Absorptiometry (DXA), histomorphometry and radiological imaging techniques. In recent years, high resolution micro-CT has become feasible for in vitro or in vivo evaluation of bone architecture. Three-dimensional images of micro-CT reflected high correlations with the conventional histomorphometry and DXA. In comparison to other imaging techniques, micro-CT is the most effective tool in detecting early bone changes for fracture prediction and assessments of potential anti-osteoporotic agents. It is crucial to define an ideal setting with safe radiation doses and appropriate methods for image reconstruction and segmentation to obtain high resolution images. Micro-CT evaluation provides a better insight of bone structure as well as non-metric parameters such as connectivity density, structural model index (SMI) and degree of anisotropy (DA). This non- invasive imaging technique is also equipped with finite element analysis for evaluation of bone biomechanical strength. Micro-CT allows a compressive understanding of the relationships between bone density, microarchitecture and strength which is fundamental to development of pharmacological interventions.
    Matched MeSH terms: X-Ray Microtomography*
  20. Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Abu Osman NA
    PLoS One, 2014;9(9):e108252.
    PMID: 25233468 DOI: 10.1371/journal.pone.0108252
    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.
    Matched MeSH terms: X-Ray Microtomography
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links