Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Bokhari RA, Lau SF, Mohamed S
    Menopause, 2018 02;25(2):202-210.
    PMID: 28926512 DOI: 10.1097/GME.0000000000000980
    OBJECTIVE: Orthosiphon stamineus (OS) or Misai Kucing (Java tea) is a popular herbal supplement from Southeast Asia for various metabolic, age-related diseases. This study investigated the potential use of OS leaf extracts to ameliorate osteoporosis in ovariectomized rats.

    METHODS: Fifty-six female Sprague-Dawley rats were randomly allocated into eight groups (n = 7): SHAM (healthy sham control); OVX (ovarietomized) nontreated rats (negative control); OVX + Remifemin (100 mg/kg body weight), and 2% green tea extract (positive controls); OVX + OS 50% ethanolic and aqueous extracts, both at either 150 or 300 mg/kg. After 16 weeks, the rats' bones and blood were evaluated for osteoporosis indicators (protein and mRNA expressions), micro-computed tomography for bone histomorphometry, and three-point bending test for tibia mechanical strength.

    RESULTS: The extracts dose-dependently and significantly (P 

    Matched MeSH terms: X-Ray Microtomography
  2. Amin Yavari S, van der Stok J, Chai YC, Wauthle R, Tahmasebi Birgani Z, Habibovic P, et al.
    Biomaterials, 2014 Aug;35(24):6172-81.
    PMID: 24811260 DOI: 10.1016/j.biomaterials.2014.04.054
    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone-implant biomechanics is, however, not trivial.
    Matched MeSH terms: X-Ray Microtomography
  3. Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, et al.
    J Cell Physiol, 2015 Dec;230(12):3009-18.
    PMID: 26016732 DOI: 10.1002/jcp.25033
    Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala(2) ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation, and Fourier-transform infrared microspectroscopy. [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide. Treatment of STZ-diabetic mice with [D-Ala(2) ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients.
    Matched MeSH terms: X-Ray Microtomography
  4. Mohamad NV, Ima-Nirwana S, Chin KY
    Biomed Pharmacother, 2021 May;137:111368.
    PMID: 33582449 DOI: 10.1016/j.biopha.2021.111368
    Tocotrienol has been shown to prevent bone loss in animal models of postmenopausal osteoporosis, but the low oral bioavailability might limit its use. A self-emulsifying drug delivery system (SEDDS) could increase the bioavailability of tocotrienol. However, evidence of this system in improving the skeletal effects of tocotrienol is scanty. This study aims to evaluate the therapeutic efficacy of annatto tocotrienol with SEDDS in a rat model of postmenopausal bone loss. Ten-month-old female Sprague Dawley rats were randomized into six groups. The baseline group was euthanatized at the onset of the study. Four other groups underwent ovariectomy to induce estrogen deficiency. The sham underwent similar surgery procedure, but their ovaries were retained. Eight weeks after surgery, the ovariectomized rats received one of the four different regimens orally daily: (a) SEDDS, (b) annatto tocotrienol [60 mg/kg body weight (b.w.)] without SEDDS, (c) annatto-tocotrienol (60 mg/kg b.w.) with SEDDS, (d) raloxifene (1 mg/kg b.w.). After eight weeks of treatment, blood was collected for the measurement of delta-tocotrienol level and oxidative stress markers. The rats were euthanized and their bones were harvested for the evaluation of the bone microstructure, calcium content and strength. Circulating delta-tocotrienol level was significantly higher in rats receiving annatto tocotrienol with SEDDS compared to the group receiving unformulated annatto-tocotrienol (p 
    Matched MeSH terms: X-Ray Microtomography
  5. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: X-Ray Microtomography
  6. Chin KY, Ima-Nirwana S
    Clin Interv Aging, 2014;9:1247-59.
    PMID: 25120355 DOI: 10.2147/CIA.S67016
    BACKGROUND: Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model.
    METHODS: Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined.
    RESULTS: There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05).
    CONCLUSION: AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
    KEYWORDS: bone remodeling; osteoporosis; testosterone; tocotrienol
    Matched MeSH terms: X-Ray Microtomography
  7. Leow SN, Luu CD, Hairul Nizam MH, Mok PL, Ruhaslizan R, Wong HS, et al.
    PLoS One, 2015;10(6):e0128973.
    PMID: 26107378 DOI: 10.1371/journal.pone.0128973
    To investigate the safety and efficacy of subretinal injection of human Wharton's Jelly-derived mesenchymal stem cells (hWJ-MSCs) on retinal structure and function in Royal College of Surgeons (RCS) rats.
    Matched MeSH terms: X-Ray Microtomography
  8. Nikolaidou T, Cai XJ, Stephenson RS, Yanni J, Lowe T, Atkinson AJ, et al.
    PLoS One, 2015;10(10):e0141452.
    PMID: 26509807 DOI: 10.1371/journal.pone.0141452
    Heart failure is a major killer worldwide. Atrioventricular conduction block is common in heart failure; it is associated with worse outcomes and can lead to syncope and bradycardic death. We examine the effect of heart failure on anatomical and ion channel remodelling in the rabbit atrioventricular junction (AVJ). Heart failure was induced in New Zealand rabbits by disruption of the aortic valve and banding of the abdominal aorta resulting in volume and pressure overload. Laser micro-dissection and real-time polymerase chain reaction (RT-PCR) were employed to investigate the effects of heart failure on ion channel remodelling in four regions of the rabbit AVJ and in septal tissues. Investigation of the AVJ anatomy was performed using micro-computed tomography (micro-CT). Heart failure animals developed first degree heart block. Heart failure caused ventricular myocardial volume increase with a 35% elongation of the AVJ. There was downregulation of HCN1 and Cx43 mRNA transcripts across all regions and downregulation of Cav1.3 in the transitional tissue. Cx40 mRNA was significantly downregulated in the atrial septum and AVJ tissues but not in the ventricular septum. mRNA abundance for ANP, CLCN2 and Navβ1 was increased with heart failure; Nav1.1 was increased in the inferior nodal extension/compact node area. Heart failure in the rabbit leads to prolongation of the PR interval and this is accompanied by downregulation of HCN1, Cav1.3, Cx40 and Cx43 mRNAs and anatomical enlargement of the entire heart and AVJ.
    Matched MeSH terms: X-Ray Microtomography
  9. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T
    Regen Med, 2015;10(5):579-90.
    PMID: 26237702 DOI: 10.2217/rme.15.27
    To compare the effect of bovine bone derived porous hydroxyapatite (BDHA) scaffold on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hMSCs) compared with commercial hydroxyapatite (CHA) scaffold.
    Matched MeSH terms: X-Ray Microtomography
  10. Farzadi A, Solati-Hashjin M, Asadi-Eydivand M, Abu Osman NA
    PLoS One, 2014;9(9):e108252.
    PMID: 25233468 DOI: 10.1371/journal.pone.0108252
    Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z), on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.
    Matched MeSH terms: X-Ray Microtomography
  11. Sopyan I, Fadli A, Mel M
    J Mech Behav Biomed Mater, 2012 Apr;8:86-98.
    PMID: 22402156 DOI: 10.1016/j.jmbbm.2011.10.012
    This report presents physical characterization and cell culture test of porous alumina-hydroxyapatite (HA) composites fabricated through protein foaming-consolidation technique. Alumina and HA powders were mixed with yolk and starch at an adjusted ratio to make slurry. The resulting slip was poured into cylindrical shaped molds and followed by foaming and consolidation via 180 °C drying for 1 h. The obtained green bodies were burned at 600 °C for 1 h, followed by sintering at temperatures of 1200-1550 °C for 2 h. Porous alumina-HA bodies with 26-77 vol.% shrinkage, 46%-52% porosity and 0.1-6.4 MPa compressive strength were obtained. The compressive strength of bodies increased with the increasing sintering temperatures. The addition of commercial HA in the body was found to increase the compressive strength, whereas the case is reverse for sol-gel derived HA. Biocompatibility study of porous alumina-HA was performed in a stirred tank bioreactor using culture of Vero cells. A good compatibility of the cells to the porous microcarriers was observed as the cells attached and grew at the surface of microcarriers at 8-120 cultured hours. The cell growth on porous alumina microcarrier was 0.015 h(-1) and increased to 0.019 h(-1) for 0.3 w/w HA-to-alumina mass ratio and decreased again to 0.017 h(-1) for 1.0 w/w ratio.
    Matched MeSH terms: X-Ray Microtomography
  12. Syahrom A, Abdul Kadir MR, Abdullah J, Öchsner A
    Med Biol Eng Comput, 2011 Dec;49(12):1393-403.
    PMID: 21947767 DOI: 10.1007/s11517-011-0833-0
    The relationship between microarchitecture to the failure mechanism and mechanical properties can be assessed through experimental and computational methods. In this study, both methods were utilised using bovine cadavers. Twenty four samples of cancellous bone were extracted from fresh bovine and the samples were cleaned from excessive marrow. Uniaxial compression testing was performed with displacement control. After mechanical testing, each specimen was ashed in a furnace. Four of the samples were exemplarily scanned using micro-computed tomography (μCT) and three dimensional models of the cancellous bones were reconstructed for finite element simulation. The mechanical properties and the failure modes obtained from numerical simulations were then compared to the experiments. Correlations between microarchitectural parameters to the mechanical properties and failure modes were then made. The Young's modulus correlates well with the bone volume fraction with R² = 0.615 and P value 0.013. Three different types of failure modes of cancellous bone were observed: oblique fracture (21.7%), perpendicular global fracture (47.8%), and scattered localised fracture (30.4%). However, no correlations were found between the failure modes to the morphological parameters. The percentage of error between computer predictions and the actual experimental test was from 6 to 12%. These mechanical properties and information on failure modes can be used for the development of synthetic cancellous bone.
    Matched MeSH terms: X-Ray Microtomography
  13. Omar FN, Hanipah SH, Xiang LY, Mohammed MAP, Baharuddin AS, Abdullah J
    J Mech Behav Biomed Mater, 2016 09;62:106-118.
    PMID: 27183430 DOI: 10.1016/j.jmbbm.2016.04.043
    Experimental and numerical investigation was conducted to study the micromechanics of oil palm empty fruit bunch fibres containing silica bodies. The finite viscoelastic-plastic material model called Parallel Rheological Network model was proposed, that fitted well with cyclic and stress relaxation tensile tests of the fibres. Representative volume element and microstructure models were developed using finite element method, where the models information was obtained from microscopy and X-ray micro-tomography analyses. Simulation results showed that difference of the fibres model with silica bodies and those without ones is larger under shear than compression and tension. However, in comparison to geometrical effect (i.e. silica bodies), it is suggested that ultrastructure components of the fibres (modelled using finite viscoelastic-plastic model) is responsible for the complex mechanical behaviour of oil palm fibres. This can be due to cellulose, hemicellulose and lignin components and the interface behaviour, as reported on other lignocellulosic materials.
    Matched MeSH terms: X-Ray Microtomography
  14. See GL, Arce F, Dahlizar S, Okada A, Fadli MFBM, Hijikuro I, et al.
    J Control Release, 2020 Sep 10;325:1-9.
    PMID: 32598958 DOI: 10.1016/j.jconrel.2020.06.028
    Intranasal administration is poised as a competent method in delivering drugs to the brain, because the nasal route has a direct link with the central nervous system bypassing the formidable blood-brain barrier. C17-monoglycerol ester (MGE) and glyceryl monooleate (GMO) as liquid crystal (LC)-forming lipids possess desirable formulation characteristics as drug carriers for intranasally administered drugs. This study investigated the effect of LC formulations on the pharmacokinetics of tranilast (TL), a lipophilic model drug, and its distribution in the therapeutic target regions of the brain in rats. The anatomical biodistribution of LC formulations was monitored using micro-computed tomography tandem in vivo imaging systems. MGE and GMO effectively formed LC with suitable particle size, zeta potential, and viscosity supporting the delivery of TL to the brain. MGE and GMO LC formulations enhanced brain uptake by 10- to 12-fold and 2- to 2.4- fold, respectively, compared with TL solution. The olfactory bulb had the highest TL concentration and fluorescent signals among all the brain regions, indicating a direct nose-to-brain delivery pathway of LC formulations. LC-forming lipids, MGE and GMO, are potential biomaterials in formulations intended for intranasal administration.
    Matched MeSH terms: X-Ray Microtomography
  15. Omar NI, Baharin B, Lau SF, Ibrahim N, Mohd N, Ahmad Fauzi A, et al.
    Vet Med Int, 2020;2020:8862489.
    PMID: 33456747 DOI: 10.1155/2020/8862489
    Ficus deltoidea has been shown to possess antioxidant properties that could prevent the development of chronic inflammatory bone diseases. In this study, the efficacy of F. deltoidea in preventing alveolar bone resorption in osteoporotic rats induced by ovariectomy (OVX) was investigated. Twenty-four female Wistar rats were divided into four groups (n = 6) consisting of sham-operated (SO), ovariectomized control (OVXN), ovariectomized treated with estrogen (OVXP), and ovariectomized treated with F. deltoidea extract (OVXF). At the beginning of the study, two nonovariectomized, healthy rats were sacrificed to serve as baseline (BL). Treatment of the rats commenced two weeks after ovariectomy-the OVXP rats that served as positive control received Premarin® (64.5 μg/kg body weight), while OVXF rats were given F. deltoidea (800 mg/kg body weight); both agents were administered orally for two months. The negative control group of rats (OVXN) and the SO group received deionized water, also administered via oral gavage. At necropsy, morphometric assessment of the interradicular bone of the first molar was carried out using a micro-CT scanner, while quantification of osteoclasts and osteoblasts was performed histologically. The results showed that no statistically significant differences among the groups (p > 0.05) for bone morphometric assessment. However, trabecular thickness in the OVXF group was similar to BL, while trabecular separation and alveolar bone loss height were lower than those of the OVXN group. Histologically, the OVXF group demonstrated a significantly lower number of osteoclasts and a higher number of osteoblasts compared with OVXN (p=0.008 and p=0.019, respectively; p < 0.05). In conclusion, F. deltoidea has the capacity to prevent alveolar bone loss in ovariectomy-induced osteoporosis rats by potentially preserving trabecular bone microarchitecture and to decrease osteoclast and increase osteoblast cell count.
    Matched MeSH terms: X-Ray Microtomography
  16. Feng Y, Ping Tan C, Zhou C, Yagoub AEA, Xu B, Sun Y, et al.
    Food Chem, 2020 Sep 15;324:126883.
    PMID: 32344350 DOI: 10.1016/j.foodchem.2020.126883
    Freeze-thaw cycles (FTC) pretreatment was employed before the vacuum freeze-drying of garlic slices, aimed at improving the drying process and the quality of the end product. Cell viability, water status, internal structure, flavor, chemical composition and thermogravimetric of garlic samples were evaluated. The results indicated that FTC pretreatment reduced the drying time (22.22%-33.33%) and the energy consumption (14.25%-15.50%), owing to the water loss, the increase in free water, and the formation of porous structures. The FTC pretreatment improved thermal stability, flavor and chemical composition content of dried products. The antioxidant activity of polysaccharides extracted from FTC pretreated dried products was higher than that of the unpretreated dried product due to the reduction in polysaccharide molecular weight. This research could pave a route for future production of dried garlic slices having good quality by using the FTC pretreatment, with lower energy consumption and shorter drying time.
    Matched MeSH terms: X-Ray Microtomography
  17. Samsulrizal N, Goh YM, Ahmad H, Md Dom S, Azmi NS, NoorMohamad Zin NS, et al.
    Pharm Biol, 2021 Dec;59(1):66-73.
    PMID: 33399485 DOI: 10.1080/13880209.2020.1865411
    CONTEXT: Diabetes mellitus increases the risk of bone diseases including osteoporosis and osteoarthritis. We have previously demonstrated that Ficus deltoidea Jack (Moraceae) is capable of reducing hyperglycaemia. However, whether F. deltoidea could protect against diabetic osteoporosis remains to be determined.

    OBJECTIVE: The study examines the effect of F. deltoidea on bone histomorphometric parameters, oxidative stress, and turnover markers in diabetic rats.

    MATERIALS AND METHODS: Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats (n = 6 animals per group) received one of the following treatments via gavage for 8 weeks: saline (diabetic control), metformin (1000 mg/kg bwt), and methanol leaves extract of F. deltoidea (1000 mg/kg bwt). A group of healthy rats served as normal control. The femoral bones were excised and scanned ex vivo using micro-computed tomography (micro-CT) for histomorphometric analysis. The serum levels of insulin, oxidative stress, and bone turnover markers were determined by ELISA assays.

    RESULTS: Treatment of diabetic rats with F. deltoidea could significantly increase bone mineral density (BMD) (from 526.98 ± 11.87 to 637.74 ± 3.90). Higher levels of insulin (2.41 ± 0.08 vs. 1.58 ± 0.16), osteocalcin (155.66 ± 4.11 vs. 14.35 ± 0.97), and total bone n-3 PUFA (2.34 ± 0.47 vs. 1.44 ± 0.18) in parallel with the presence of chondrocyte hypertrophy were also observed following F. deltoidea treatment compared to diabetic control.

    CONCLUSIONS: F. deltoidea could prevent diabetic osteoporosis by enhancing osteogenesis and inhibiting bone oxidative stress. These findings support the potential use of F. deltoidea for osteoporosis therapy in diabetes.

    Matched MeSH terms: X-Ray Microtomography/methods
  18. Ibrahim N', Khamis MF, Mod Yunoh MF, Abdullah S, Mohamed N, Shuid AN
    PLoS One, 2014;9(12):e115595.
    PMID: 25526611 DOI: 10.1371/journal.pone.0115595
    Osteoporosis is becoming a major health problem that is associated with increased fracture risk. Previous studies have shown that osteoporosis could delay fracture healing. Although there are potential agents available to promote fracture healing of osteoporotic bone such as statins and tocotrienol, studies on direct delivery of these agents to the fracture site are limited. This study was designed to investigate the effects of two potential agents, lovastatin and tocotrienol using targeted drug delivery system on fracture healing of postmenopausal osteoporosis rats. The fracture healing was evaluated using micro CT and biomechanical parameters. Forty-eight Sprague-Dawley female rats were divided into 6 groups. The first group was sham-operated (SO), while the others were ovariectomized (OVx). After two months, the right tibiae of all rats were fractured at metaphysis region using pulsed ultrasound and were fixed with plates and screws. The SO and OVxC groups were given two single injections of lovastatin and tocotrienol carriers. The estrogen group (OVx+EST) was given daily oral gavages of Premarin (64.5 µg/kg). The Lovastatin treatment group (OVx+Lov) was given a single injection of 750 µg/kg lovastatin particles. The tocotrienol group (OVx+TT) was given a single injection of 60 mg/kg tocotrienol particles. The combination treatment group (OVx+Lov+TT) was given two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks of treatment, the fractured tibiae were dissected out for micro-CT and biomechanical assessments. The combined treatment group (OVx+Lov+TT) showed significantly higher callus volume and callus strength than the OVxC group (p<0.05). Both the OVx+Lov and OVx+TT groups showed significantly higher callus strength than the OVxC group (p<0.05), but not for callus volume. In conclusion, combined lovastatin and tocotrienol may promote better fracture healing of osteoporotic bone.
    Matched MeSH terms: X-Ray Microtomography/methods
  19. Effendy NM, Khamis MF, Soelaiman IN, Shuid AN
    J Xray Sci Technol, 2014;22(4):503-18.
    PMID: 25080117 DOI: 10.3233/XST-140441
    Postmenopausal osteoporosis is best treated and prevented by estrogen replacement therapy (ERT). Although effective, ERT may cause breast cancer, uterine cancer and cardiovascular problems. Labisia pumila var. alata (LP), a herb with phytoestrogenic, antioxidative and anti-inflammatory effects has potential as an ERT alternative.
    Matched MeSH terms: X-Ray Microtomography/methods*
  20. Lau SF, Wolschrijn CF, Siebelt M, Vernooij JC, Voorhout G, Hazewinkel HA
    Vet J, 2013 Oct;198(1):116-21.
    PMID: 23846028 DOI: 10.1016/j.tvjl.2013.05.038
    The aetiopathogenesis of medial coronoid disease (MCD) remains obscure, despite its high prevalence. The role of changes to subchondral bone or articular cartilage is much debated. Although there is evidence of micro-damage to subchondral bone, it is not known whether this is a cause or a consequence of MCD, nor is it known whether articular cartilage is modified in the early stages of the disease. The aim of the present study was to use equilibrium partitioning of an ionic contrast agent with micro-computed tomography (microCT) to investigate changes to both the articular cartilage and the subchondral bone of the medial coronoid processes (MCP) of growing Labrador retrievers at an early stage of the disease and at different bodyweights. Of 14 purpose-bred Labrador retrievers (15-27 weeks), six were diagnosed with bilateral MCD and one was diagnosed with unilateral MCD on the basis of microCT studies. The mean X-ray attenuation of articular cartilage was significantly higher in dogs with MCD than in dogs without MCD (P<0.01). In all dogs, the mean X-ray attenuation of articular cartilage was significantly higher at the lateral (P<0.001) than at the proximal aspect of the MCP, indicating decreased glycosaminoglycan content. Changes in parameters of subchondral bone micro-architecture, namely the ratio of bone volume to tissue volume (BV/TV), bone surface density (BS/TV), bone surface to volume ratio (BS/BV), trabecular thickness (Tb.Th; mm), size of marrow cavities described by trabecular spacing (Tb.Sp; mm), and structural model index (SMI), differed significantly by litter (P<0.05) due to the difference in age and weight, but not by the presence/absence of MCD (P>0.05), indicating that subchondral bone density is not affected in early MCD. This study demonstrated that cartilage matrix and not subchondral bone density is affected in the early stages of MCD.
    Matched MeSH terms: X-Ray Microtomography/veterinary
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links