SCOPE OF REVIEW: This review paper concisely collates and reviews the information reported in the simulation research in terms of MC simulation of radiosensitization and dose enhancement effects caused by the inclusion of Au NPs in tumor cells, simulation mechanisms, benefits and limitations.
MAJOR CONCLUSIONS: In this review, we first explore the recent advances in MC simulation on Au NPs radiosensitization. The MC methods, physical dose enhancement and enhanced chemical and biological effects is discussed, followed by some results regarding the prediction of dose enhancement. We then review Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation. Moreover, we explain and look at Multi-scale MC simulations of Au NP-induced DNA damages for X-ray irradiation.
GENERAL SIGNIFICANCE: Using advanced chemical module-implemented MC simulations, there is a need to assess the radiation-induced chemical radicals that contribute to the dose-enhancing and biological effects of multiple Au NPs.
Case presentation: 50-year-old male had his chemoport inserted for adjuvant chemotherapy 3 years ago. During the removal, remaining half of the distal catheter was not found. There was no difficulties during the removal. Chest xray revealed that the fractured catheter had embolized to the right ventricle. Further history taking, he did experienced occasional palpitation and chest discomfort for the past six months. Electrocardiogram and cardiac enzymes were normal. Urgent removal of the fractured catheter via the percutaneous endovascular approach, under fluoroscopic guidance by an experience interventional radiologist was done. The procedure was successful without any complication. Patient made an uneventful recovery. He was discharged the following day, and was well during his 3rd month follow up.
Conclusion: Early detection and preventive measures can be done to prevent pinch-off syndrome. Unrecognized POS can result in fatal complications such as cardiac arrhythmia and septic embolization. Retrieval via the percutaneous endovascular approach provide excellent outcome in the case of embolized fractured catheter.
Objective: To assess the cytotoxic effects of two synthesised compounds against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells.
Materials and methods: Two successfully synthesised compounds were characterised using elemental (carbon, hydrogen, nitrogen, and sulphur) analysis, Fourier-Transform Infrared (FTIR), and 1H, 13C 119Sn Nucleus Magnetic Resonance (NMR) spectroscopies. The single-crystal structure of both compounds was determined by X-ray single-crystal analysis. The cytotoxicity of the compounds was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazholium bromide (MTT) assay upon 24 h of treatment. While the mode of cell death was determined based on the externalisation of phosphatidylserine using a flow cytometer.
Results: The elemental analysis data of the two compounds showed an agreement with the suggested formula of (C6H5)2Sn[S2CN(C3H5)2]2 for Compound 1 and (C6H5)3Sn[S2CN(C3H5)2] for Compound 2. The two major peaks of infrared absorbance, i.e., ν(C = N) and ν(C = S) were detected at the range of 1475-1479 cm-1 and 972-977 cm-1, respectively. The chemical shift of carbon in NCS2 group for Compound 1 and 2 were found at 200.82 and 197.79 ppm. The crystal structure of Compound 1 showed that it is six coordinated and crystallised in monoclinic, P21/c space group. While the crystal structure of Compound 2 is five coordinated and crystallised in monoclinic, P21/c space group. The cytotoxicity (IC50) of the two compounds against HT-29 cell were 2.36 μM and 0.39 μM. Meanwhile, the percentage of cell death modes between 60% and 75% for compound 1 and compound 2 were mainly due to apoptosis, suggesting that both compounds induced growth arrest.
Conclusion: Our study concluded that the synthesised compounds showed potent cytotoxicity towards HT-29 cell, with the triphenyltin(IV) compound showing the highest effect compared to diphenyltin(IV).
METHODS: Forty-two female Sprage-Dawley rats were randomized into 7 groups (6 in each group). The ovariectomized (OVX) and OVX + 6%, 3%, and 1.5% EBN and OVX +estrogen groups were given standard rat chow alone, standard rat chow +6%, 3%, and 1.5% EBN, or standard rat chow +estrogen therapy (0.2mg/kg per day), respectively. The sham-operation group was surgically opened without removing the ovaries. The control group did not have any surgical intervention. After 12 weeks of intervention, blood samples were taken for serum estrogen, osteocalcin, and osteoprotegerin, as well as the measurement of magnesium, calcium abd zinc concentrations. While femurs were removed from the surrounding muscles to measure bone mass density using the X-ray edge detection technique, then collected for histology and estrogen receptor (ER) immunohistochemistry.
RESULTS: Ovariectomy altered serum estrogen levels resulting in increased food intake and weight gain, while estrogen and EBN supplementation attenuated these changes. Ovariectomy also reduced bone ER expression and density, and the production of osteopcalcin and osteorotegerin, which are important pro-osteoplastic hormones that promote bone mineraliztion and density. Conversely, estrogen and EBN increased serum estrogen levels leading to increased bone ER expression, pro-osteoplastic hormone production and bone density (all P<0.05).
CONCLUSION: EBN could be used as a safe alternative to hormone replacement therapys for managing menopausal complications like bone degeneration.