Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Zentou H, Zainal Abidin Z, Yunus R, Awang Biak DR, Abdullah Issa M, Yahaya Pudza M
    ACS Omega, 2021 Feb 16;6(6):4137-4146.
    PMID: 33644536 DOI: 10.1021/acsomega.0c04025
    Despite the advantages of continuous fermentation whereby ethanol is selectively removed from the fermenting broth to reduce the end-product inhibition, this process can concentrate minor secondary products to the point where they become toxic to the yeast. This study aims to develop a new mathematical model do describe the inhibitory effect of byproducts on alcoholic fermentation including glycerol, lactic acid, acetic acid, and succinic acid, which were reported as major byproducts during batch alcoholic fermentation. The accumulation of these byproducts during the different stages of batch fermentation has been quantified. The yields of total byproducts, glycerol, acetic acid, and succinic acid per gram of glucose were 0.0442, 0.023, 0.0155, and 0.0054, respectively. It was found that the concentration of these byproducts linearly increases with the increase in glucose concentration in the range of 25-250 g/L. The results have also showed that byproduct concentration has a significant inhibitory effect on specific growth coefficient (μ) whereas no effect was observed on the half-velocity constant (Ks). A new mathematical model of alcoholic fermentation was developed considering the byproduct inhibitory effect, which showed a good performance and more accuracy compared to the classical Monod model.
    Matched MeSH terms: Yeast, Dried
  2. Ding, C.H., Tzar M.N., Biswas S., Muttaqillah N.A.S., Wahab A.A.
    MyJurnal
    Catheter-related bloodstream infections caused by Kodamaea ohmeri are generally not considered due to the relative scarcity of reported cases. This is a case of an 85-year-old man with poorly controlled diabetes mellitus who was initially admitted to our hospital for diabetic ketoacidosis. An internal jugular catheter was inserted as part of the initial management. A week later the patient developed a temperature spike and a yeast identified as Kodamaea ohmeri by ID 32 C (bioMérieux, France) was isolated from both his central and peripheral blood cultures. The catheter was removed and the patient was treated with fluconazole despite the organism’s relatively high minimum inhibitory concentration (2 μg/mL) to this antifungal. The fungemia resolved following a 2-weeks course of fluconazole.
    Matched MeSH terms: Yeast, Dried
  3. Noroul Asyikeen, Z., Ma’aruf, A.G., Sahilah, A.M., Mohd. Khan, A., Wan Aida, W.M.
    MyJurnal
    Megabiodiversity of Malaysian’s flora and fauna which include microorganism could be conserved and served as alternative source indigenous yeast, the leavening agent of commercial bread making. This study was conducted in attempt to exploit the potential of Saccharomyces cerevisiae strains isolated from 30 different local fruits and plant parts as a leavening agent in bread making. The enrichment was carried out by fermenting the plant samples in medium containing Grape Must at 25°C for 10 days following by isolation of tentative yeasts at 30°C for 3 to 5 days. 20 out of 30 samples tested showed the presence of yeasts was then selected for identification of S. cerevisiae strains through biochemical and physiological tests. Of the 20 yeast strains examined, 13 strains were identified as S. cerevisiae and potentially used as leavening agent in bread making where 5 strains namely SN3, SMK9, SDB10, SRB11 and SS12 showed better fermentative performance compared to commercial strains. Thus, indicated that the local fruits and plant parts could be the potential source of indigenous S. cerevisiae strains for leavening agent in bread making.
    Matched MeSH terms: Yeast, Dried
  4. Moslehi Z, Mohammadi Nafchi A, Moslehi M, Jafarzadeh S
    Food Sci Nutr, 2021 May;9(5):2576-2584.
    PMID: 34026073 DOI: 10.1002/fsn3.2212
    Pistachio is a nut with high consumption that could be affected by aflatoxin contamination, which affects the consumption market; therefore, broad studies seem to be necessary for this area. In the current study, pistachio nuts (Abbasali variety) were coated with different concentrations (0.1%, 0.5%, 1%, and 2%) of methylcellulose (MC) by immersion method and then stored in the incubator (25°C) for four months. The inhibitory effect of hydrocolloid coating on microbial (mold, yeast, and total count) and aflatoxin (B1, B2, G1, G2, and total aflatoxin) contamination, as well as sensory attributes (flavor, color, crispiness, aroma, and total acceptability), was investigated during storage periods. Results showed that the storage period had a significant effect on yeast, mold, and total count. HPLC analysis results showed that coating with MC had a significant inhibitory effect on aflatoxin contamination, and the highest amount of aflatoxin contamination was related to the control sample (3.5%). All samples except sample coated with MC 0.5% had appropriate total acceptability. Regarding the inhibitory effect of MC edible coating on aflatoxin contamination, its application on pistachio nut could be a promising approach to control the fungus infection and reduce aflatoxin production in coated pistachio.
    Matched MeSH terms: Yeast, Dried
  5. Eskandari A, Leow TC, Rahman MBA, Oslan SN
    Biomolecules, 2020 12 09;10(12).
    PMID: 33317024 DOI: 10.3390/biom10121649
    Antifreeze proteins (AFPs) are specific proteins, glycopeptides, and peptides made by different organisms to allow cells to survive in sub-zero conditions. AFPs function by reducing the water's freezing point and avoiding ice crystals' growth in the frozen stage. Their capability in modifying ice growth leads to the stabilization of ice crystals within a given temperature range and the inhibition of ice recrystallization that decreases the drip loss during thawing. This review presents the potential applications of AFPs from different sources and types. AFPs can be found in diverse sources such as fish, yeast, plants, bacteria, and insects. Various sources reveal different α-helices and β-sheets structures. Recently, analysis of AFPs has been conducted through bioinformatics tools to analyze their functions within proper time. AFPs can be used widely in various aspects of application and have significant industrial functions, encompassing the enhancement of foods' freezing and liquefying properties, protection of frost plants, enhancement of ice cream's texture, cryosurgery, and cryopreservation of cells and tissues. In conclusion, these applications and physical properties of AFPs can be further explored to meet other industrial players. Designing the peptide-based AFP can also be done to subsequently improve its function.
    Matched MeSH terms: Yeast, Dried
  6. Hassanain, A.T., Alyaa, A.K., Karim, A.J.
    MyJurnal
    Introduction: Honey has potent bactericidal activity against many pathogenic organisms, including various Gram-negative and Gram-positive bacteria. This study aimed to determine the antimicrobial effect of Malaysian honey against different species of human pathogens using optimized honey broth media. Materials and Methods: The antimicrobial activity of honey against standard strains of Gram-negative and Grampositive bacteria and yeast was tested in vitro by the broth dilution method using 10%-100% w/v concentrations prepared in tryptic soy broth. Results: Streptococcus pyogenes was the most sensitive pathogen, it was completely inhibited by 30% honey broth medium. The most resistant were E. faecalis, S. aureus and MRSA, but they were all completely inhibited by 80% honey broth medium. Conclusion: Honey is shown to possess antimicrobial activity against human Gram-positive and negative medically important bacteria.
    Matched MeSH terms: Yeast, Dried
  7. Rashed, K., Said, A., Abdo, A., Selim, S.
    MyJurnal
    This work was carried out for determining antimicrobial activity of Pistacia chinensis leaves
    methanol extract and identifying the chemical composition of the plant extract. Methanol extract
    was tested for antimicrobial activity using disc-diffusion assay and the extract was fractionated
    on silica gel column chromatography for the isolation of the bio-active constituents. The leaves
    extract of P. chinensis showed a significant antimicrobial effect, it strongly inhibited the growth
    of the test bacteria and yeast studied. Chromatograpic separation of the methanol extract of
    P. chinensis leaves has led to the isolation and characterization of β-sitosterol, luepol, and
    six flavonoids, quercetin, myricetin, quercetin 3-O-α-rhamnoside, quercetin 3-O-β-glucoside,
    myricetin 3-O-α-rhamnoside and myricetin 3-O-β-glucuronide using various chromatographic
    procedures and the interpretation of spectral data in comparison with already existing data
    reported in the literature. The results presented here may suggest that the leaves extract of P.
    chinensis possess antimicrobial properties, and therefore, can be used as natural preservative
    ingredients in food and/or pharmaceuticals.
    Matched MeSH terms: Yeast, Dried
  8. Yoga Latha, L., Darah, I., Sasidharan, S., Jain, K.
    Malays J Nutr, 2009;15(2):223-231.
    MyJurnal
    Chemical preservatives have been used in the food industry for many years. However, with increased health concerns, consumers prefer additive-free products or food preservatives based on natural products. This study evaluated antimicrobial activities of extracts from Emilia sonchifolia L. (Common name: lilac tassel flower), Tridax procumbens L. (Common name: tridax daisy) and Vernonia cinerea L. (Common name: Sahadevi), belonging to the Asteracea family, to explore their potential for use against general food spoilage and human pathogens so that new food preservatives may be developed. Three methanol extracts of these plants were tested in vitro against 20 bacterial species, 3 yeast species, and 12 filamentous fungi by the agar diffusion and broth dilution methods. The V. cinerea extract was found to be most effective against all of the tested organisms and the methanol fraction showed the most significant (p < 0.05) antimicrobial
    activity among all the soluble fractions tested. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 1.56 to 100.00mg/mL. The MIC of methanol fraction was the lowest in comparison to the other four extracts. The study findings indicate that bioactive natural products from these plants may be isolated for further testing as leads in the development of new pharmaceuticals in food preservation as well as natural plant-based medicine.
    Matched MeSH terms: Yeast, Dried
  9. Xin Tong, Xiao-ye Shen, Cheng-lin Hou
    Sains Malaysiana, 2018;47:1685-1692.
    Fungi associated with Vaccinium species play important roles in plant growth and disease control, especially in the final
    blueberry production. Vaccinium dunalianum var. urophyllum (Ericaceae) is a well-known medicinal plant in Southern
    China used to treat inflammation and microbial infections. The endophytic fungi from these plants are therefore anticipated
    as potential new sources of antimicrobials. In this report, the inhibitory effects of endophytes against clinical bacteria
    and yeast were comprehensively screened and 11 isolates indicated high bioactivity by the agar diffusion method. The
    corresponding crude extracts of these fungi under submerged fermentation also demonstrated distinct differences and
    n-butyl alcohol displayed the lowest extraction efficiency among the extracts. The ethyl acetate and dichloromethane
    extracts of filtrates from the Colletotrichum sp. VD001, Epicoccum nigrum VD021 and E. nigrum VD022 strains
    displayed good properties against pathogenic microorganisms according to disc diffusion assays and minimal inhibitory
    concentration (MIC). This study is the first indicating that cultivable endophytic fungi associated with blueberry plants
    produce potential compounds against clinical pathogens.
    Matched MeSH terms: Yeast, Dried
  10. Wendy Voon, W.Y, Ghali, N.A., Rukayadi, Y., Meor Hussin, A.S.
    MyJurnal
    This study is conducted to investigate the effect of different concentrations of betel leaves extract on color, pH and microbiological in homemade chili bo. The homemade chili bo with different concentrations (0 mg/ml, 0.75 mg/ml, 1.25 mg/ml and 1.75 mg/ml) of betel leaves extract were prepared for analysis. The results showed that the color of chili bo became darker as the concentration of betel leaves extract increased. The extract showed significant in the pH of chili bo after 7 days in which the highest concentration of extract showed the highest value of pH 4.31. The aerobic microbial count was decreased as the concentration of betel leaves extract increased in chili bo. After 7 days of storage, the highest concentration of betel leaves extract showed the highest percentage of reduction (6%), while the control sample showed 2.41% of aerobic reduction. The study also found that the extract contain lesser yeast and mold count (5.22 log CFU/ml) in homemade chili bo compared to the control sample (5.31 log CFU/ml) after 7 days. Betel leaves extract can be considered as natural food preservatives in chili bo to reduce the growth of spoilage microorganism and thus enhance the shelf life of chili bo.
    Matched MeSH terms: Yeast, Dried
  11. Ismail Fitry Mohammad Rashedi, Safiullah Jauhar, Chong, ?Gun Hean, Nor Khaizura Mahmud @ Ab Rashid, Wan Zunairah Wan Ibadullah
    MyJurnal
    Supercritical carbon dioxide (SC-CO2 ) is a non-thermal technique implemented by food, pharmaceutical, and similar industries with the aim of inhibiting the microorganisms and apply effective sterilisation. Presently, limited number of studies has reported the application of SC-CO2 on fresh chicken meat. The present work therefore aimed to reveal the microbial and physicochemical quality of the SC-CO2 -treated fresh chicken meat. The fresh chicken meat was subjected to the SC-CO2 at 14 MPa and 45°C for 40 min and was stored at 4°C for 0, 3, and 7 days. The obtained results indicated that the treatment with SC-CO2 significantly decreased the total plate count and, yeast and mould count from log10 5.90 to 2.00 CFU/g and from log10 5.02 to 2.00 CFU/g at day 7 of storage, respectively. The values of pH, cooking loss, and water holding capacity were not affected by the treatment. The results revealed that the SC-CO2 -treated samples displayed harder texture, higher lightness and yellowness, and lower redness. In addition, lipid peroxidation of SC-CO2 and control samples resulted in values of 1.9 and 0.5 MDA/mg of meat at day 7 of storage time and did not significantly change in the rest of the evaluation days. In summary, the application of SC-CO2 was capable of enhancing the microbial quality and certain physicochemical attributes. However, alteration of certain parameters of SC-CO2 might enhance the overall meat quality.
    Matched MeSH terms: Yeast, Dried
  12. Masri SN, Noor SM, Nor LA, Osman M, Rahman MM
    Pak J Med Sci, 2015;31(3):658-61.
    PMID: 26150863 DOI: 10.12669/pjms.313.7072
    Pregnant women are susceptible to vaginal colonization and infection by yeast. The purpose of the study was to determine the prevalence of Candida spp in high vaginal swabs of pregnant women and their antifungal susceptibility.
    Matched MeSH terms: Yeast, Dried
  13. Woon JS, Mackeen MM, Illias RM, Mahadi NM, Broughton WJ, Murad AMA, et al.
    PeerJ, 2017;5:e3909.
    PMID: 29038760 DOI: 10.7717/peerj.3909
    BACKGROUND: Aspergillus niger, along with many other lignocellulolytic fungi, has been widely used as a commercial workhorse for cellulase production. A fungal cellulase system generally includes three major classes of enzymes i.e., β-glucosidases, endoglucanases and cellobiohydrolases. Cellobiohydrolases (CBH) are vital to the degradation of crystalline cellulose present in lignocellulosic biomass. However, A. niger naturally secretes low levels of CBH. Hence, recombinant production of A. niger CBH is desirable to increase CBH production yield and also to allow biochemical characterisation of the recombinant CBH from A. niger.

    METHODS: In this study, the gene encoding a cellobiohydrolase B (cbhB) from A. niger ATCC 10574 was cloned and expressed in the methylotrophic yeast Pichia pastoris X-33. The recombinant CBHB was purified and characterised to study its biochemical and kinetic characteristics. To evaluate the potential of CBHB in assisting biomass conversion, CBHB was supplemented into a commercial cellulase preparation (Cellic(®) CTec2) and was used to hydrolyse oil palm empty fruit bunch (OPEFB), one of the most abundant lignocellulosic waste from the palm oil industry. To attain maximum saccharification, enzyme loadings were optimised by response surface methodology and the optimum point was validated experimentally. Hydrolysed OPEFB samples were analysed using attenuated total reflectance FTIR spectroscopy (ATR-FTIR) to screen for any compositional changes upon enzymatic treatment.

    RESULTS: Recombinant CBHB was over-expressed as a hyperglycosylated protein attached to N-glycans. CBHB was enzymatically active towards soluble substrates such as 4-methylumbelliferyl-β-D-cellobioside (MUC), p-nitrophenyl-cellobioside (pNPC) and p-nitrophenyl-cellobiotrioside (pNPG3) but was not active towards crystalline substrates like Avicel(®) and Sigmacell cellulose. Characterisation of purified CBHB using MUC as the model substrate revealed that optimum catalysis occurred at 50 °C and pH 4 but the enzyme was stable between pH 3 to 10 and 30 to 80 °C. Although CBHB on its own was unable to digest crystalline substrates, supplementation of CBHB (0.37%) with Cellic(®) CTec2 (30%) increased saccharification of OPEFB by 27%. Compositional analyses of the treated OPEFB samples revealed that CBHB supplementation reduced peak intensities of both crystalline cellulose Iα and Iβ in the treated OPEFB samples.

    DISCUSSION: Since CBHB alone was inactive against crystalline cellulose, these data suggested that it might work synergistically with other components of Cellic(®) CTec2. CBHB supplements were desirable as they further increased hydrolysis of OPEFB when the performance of Cellic(®) CTec2 was theoretically capped at an enzyme loading of 34% in this study. Hence, A. niger CBHB was identified as a potential supplementary enzyme for the enzymatic hydrolysis of OPEFB.

    Matched MeSH terms: Yeast, Dried
  14. Mohd Rezuan M Aspar, Rashidah Abdul Rahim, Mohamad Hekarl Uzir
    MyJurnal
    Yeast producing alcohol dehydrogenase 1 (YADH 1) enzyme has been used as a biocatalyst for the synthesis of an optically active flavouring compound known as citronellol. However, the slow growth of yeast (Saccharomyces cerevisiae) has deterred the progress of biotransformation. The main purpose of this work is to clone the genes producing YADH1 enzyme from yeast into a faster growing bacteria, Escherichia coli. Initially, the sequence of the gene encoding this protein has been identified in the S. cerevisiae Genome Databases (SGD). The so-called Yadh1 gene sequence is located from coordinate 159548 to 160594 on chromosome XV of yeast. Based on this information, two primer sequences (Forward and Reverse) were constructed. Each of these primers will bind to either end of the Yadh1 gene. The Yadh1 gene was then amplified using Polymerase Chain Reaction (PCR) technique. The amplified Yadh 1 gene was successfully cloned into a cloning vector, TOPO TA plasmid. This plasmid also contains a gene which confers resistance to ampicillin. This recombinant
    plasmid was then inserted into Escherichia coli TOP 10 using heat shock protocol at 42oC. Finally, the cloned bacteria containing the recombinant TOPO TA plasmid harbouring Yadh1 gene was able to grow on Luria Bertani (LB) media supplied with antibiotic.
    Matched MeSH terms: Yeast, Dried
  15. Woon JS, King PJH, Mackeen MM, Mahadi NM, Wan Seman WMK, Broughton WJ, et al.
    Mol Biotechnol, 2017 Jul;59(7):271-283.
    PMID: 28573450 DOI: 10.1007/s12033-017-0015-x
    Coptotermes curvignathus is a termite that, owing to its ability to digest living trees, serves as a gold mine for robust industrial enzymes. This unique characteristic reflects the presence of very efficient hydrolytic enzyme systems including cellulases. Transcriptomic analyses of the gut of C. curvignathus revealed that carbohydrate-active enzymes (CAZy) were encoded by 3254 transcripts and that included 69 transcripts encoding glycoside hydrolase family 7 (GHF7) enzymes. Since GHF7 enzymes are useful to the biomass conversion industry, a gene encoding for a GHF7 enzyme (Gh1254) was synthesized, sub-cloned and expressed in the methylotrophic yeast Pichia pastoris. Expressed GH1254 had an apparent molecular mass of 42 kDa, but purification was hampered by its low expression levels in shaken flasks. To obtain more of the enzyme, GH1254 was produced in a bioreactor that resulted in a fourfold increase in crude enzyme levels. The purified enzyme was active towards soluble synthetic substrates such as 4-methylumbelliferyl-β-D-cellobioside, 4-nitrophenyl-β-D-cellobioside and 4-nitrophenyl-β-D-lactoside but was non-hydrolytic towards Avicel or carboxymethyl cellulose. GH1254 catalyzed optimally at 35 °C and maintained 70% of its activity at 25 °C. This enzyme is thus potentially useful in food industries employing low-temperature conditions.
    Matched MeSH terms: Yeast, Dried
  16. Leelavathi M, Tzar M, Adawiah J
    Sains Malaysiana, 2012;41:697-700.
    Onychomycosis is the infection of nail apparatus by dermatophytes, yeasts or non-dermatophyte moulds and is responsible for 50% of all nail disorders. A five year retrospective study was conducted at Universiti Kebangsaan Malaysia to identify the common pathogens responsible for onychomycosis and to describe the epidemiology of the affected patients. A total of 278 abnormal nails were cultured, out of which 231 were positive for fungus. Females constituted 50.2% (n=116) while males 49.8% (n=115). The majority (51.9%, n=120) were between ages 50-69 years. The Malay ethnic group was most commonly affected (44.2%, n=102) followed by Chinese (33.8%, n=78), Indians (18.2%, n=42) and other ethnic groups (3.8%, n=9). The most common fungal element isolated was non-dermatophyte moulds (45.4%, n=105) followed by yeast (34.6%, n=80) and dermatophytes (1.3%, n=3). Aspergillus spp. was the commonest (59.8%,n=81) non-dermatophyte mould, while Candida spp. was the commonest yeast (74.3%, n=89) isolated. In this study, non-dermatophyte moulds are the most common microorganisms implicated to cause onychomysosis. Treatment for non-dermatophyte mould is challenging as the current available antifungal agents are more effective against dermatophytes and yeasts.
    Matched MeSH terms: Yeast, Dried
  17. Omar, S., Alias, S.A., Smykla, J., Moreano, H., Guerra, M.L., Ming, C.Y.
    ASM Science Journal, 2009;3(2):184-194.
    MyJurnal
    Results of a biodiversity study of Antarctic microfungi from ornithogenic soils are presented in this paper. A wide range of soil habitats within and adjacent to active and abandoned penguin rookeries were sampled in order to examine relationships between environmental factors and the biodiversity of soil microfungi. Soil samples were collected from two contrasting Antarctic locations: (1) Beaufort Island (Ross Sea, Continental Antarctica), which is largely ice- and snow-covered, isolated, difficult to access and infrequently visited, and (2) Barrientos Island (maritime Antarctica) which is mostly ice-free during summer and is often visited by scientists and tourists. Soil sampling at Beaufort and Barrientos Islands was completed during the austral summer seasons of 2004/05 and 2006/07, respectively. Warcup’s soil method was used for fungi cultivation. A total of 27 fungal taxa were isolated from the two study sites, consisting of 11 ascomycetes, 13 hyphomycetes
    and three yeasts. Only three taxa — Geomyces sp., a pink and a white yeast — occurred on both sites. The isolated fungi were classified according to their thermal characteristics in culture, with seven psychrophilic, 10 psychrotrophic and 10 mesophilic fungi being isolated. Thelebolus microspores, Thelebolus sp., Geomyces sp. and Antarctomyces sp., were the most frequently isolated fungi. A total of 10 taxa were isolated from the 20 soil samples from Beaufort Island, consisting of five psychrophilic, four psychrotrophic and one mesophilic fungi. Thelebolus microsporus, Thelebolus sp., Asco BI8 and Phoma sp. were the most frequently obtained fungi
    (20%–27% of isolates). A total of 22 fungal taxa were isolated from 23 soil samples from Barrientos Island, consisting of four psychrophilic, six psychrotrophic and 12 mesophilic fungi. Geomyces sp. and Antarctomyces sp. were the most frequently isolated taxa. Thus, the fungal diversity of Beaufort Island was dominated by Ascomycetes while that of Barrientos Island was dominated by hyphomycetes.
    Matched MeSH terms: Yeast, Dried
  18. Chen JX, Wong SF, Lim PK, Mak JW
    PMID: 26429550 DOI: 10.1080/19440049.2015.1101494
    Widespread food poisoning due to microbial contamination has been a major concern for the food industry, consumers and governing authorities. This study is designed to determine the levels of fungal contamination in edible bird nests (EBNs) using culture and molecular techniques. Raw EBNs were collected from five house farms, and commercial EBNs were purchased from five Chinese traditional medicine shops (companies A-E) in Peninsular Malaysia. The fungal contents in the raw and commercial EBNs, and boiled and unboiled EBNs were determined. Culturable fungi were isolated and identified. In this study, the use of these methods revealed that all EBNs had fungal colony-forming units (CFUs) that exceeded the limit set by Standards and Industrial Research Institute of Malaysia (SIRIM) for yeast and moulds in EBNs. There was a significant difference (p < 0.05) in the number of types of fungi isolated from raw and commercial EBNs, but no significant difference in the reduction of the number of types of fungi after boiling the EBNs (p > 0.05). The types of fungi isolated from the unboiled raw EBNs were mainly soil, plant and environmental fungi, while the types of fungi isolated from the boiled raw EBNs, unboiled and boiled commercial EBNs were mainly environmental fungi. Aspergillus sp., Candida sp., Cladosporium sp., Neurospora sp. and Penicillum sp. were the most common fungi isolated from the unboiled and boiled raw and commercial EBNs. Some of these fungi are mycotoxin producers and cause opportunistic infections in humans. Further studies to determine the mycotoxin levels and methods to prevent or remove these contaminations from EBNs for safe consumption are necessary. The establishment and implementation of stringent regulations for the standards of EBNs should be regularly updated and monitored to improve the quality of the EBNs and consumer safety.
    Matched MeSH terms: Yeast, Dried
  19. Munir MB, Hashim R, Abdul Manaf MS, Nor SA
    Trop Life Sci Res, 2016 Aug;27(2):111-25.
    PMID: 27688855 MyJurnal DOI: 10.21315/tlsr2016.27.2.9
    This study used a two-phase feeding trial to determine the influence of selected dietary prebiotics and probiotics on growth performance, feed utilisation, and morphological changes in snakehead (Channa striata) fingerlings as well as the duration of these effects over a post-experimental period without supplementation. Triplicate groups of fish (22.46 ±0.17 g) were raised on six different treatment diets: three prebiotics (0.2% β-glucan, 1% galacto-oligosaccharides [GOS], 0.5% mannan-oligosaccharides [MOS]), two probiotics (1% live yeast [Saccharomyces cerevisiae] and 0.01% Lactobacillus acidophilus [LBA] powder) and a control (unsupplemented) diet; there were three replicates for each treatment. All diets contained 40% crude protein and 12% crude lipid. Fish were fed to satiation three times daily. No mortalities were recorded during Phase 1; however, 14% mortality was documented in the control and prebiotic-amended fish during Phase 2. At the end of Phase 1, growth performance and feed utilisation were significantly higher (p<0.05) in the LBA-treated fish, followed by live yeast treatment, compared with all other diets tested. The performance of fish on the three prebiotic diets were not significantly different from one another but was significantly higher than the control diet. During Phase 2 (the post-feeding phase), fish growth continued until the 6th week for the probiotic-based diets but levelled off after four weeks for the fish fed the prebiotic diets. The feed conversion ratio (FCR) was higher in all treatments during the post-feeding period. The hepatosomatic index (HSI) did not differ significantly among the tested diets. The visceral somatic index (VSI) and intraperitoneal fat (IPF) were highest in the LBA-based diet and the control diet, respectively. The body indices were significantly different (p<0.05) between Phases 1 and 2. This study demonstrates that probiotic-based diets have a more positive influence on the growth, feed utilisation, and survival of C. striata fingerlings compared with supplementation with prebiotics.
    Matched MeSH terms: Yeast, Dried
  20. Shah NNAK, Supian NAM, Hussein NA
    J Food Sci Technol, 2019 Jan;56(1):262-272.
    PMID: 30728568 DOI: 10.1007/s13197-018-3486-2
    This work studied the effectiveness of gaseous ozone disinfection on pummelo (Citrus Grandis L. Osbeck) fruit juice components. Unfiltered and filtered pummelo fruit juices were treated with gaseous ozone for up to 50 min with ozone concentration fixed at 600 mg/h. A microbiological and physicochemical properties analysis were conducted on the ozone-treated fruit juices samples. It was found that the survival rate of aerobic bacteria, yeast and mold in unfiltered pummelo fruit juice were higher compared to filtered juice, as the juice components acted as protective barriers to the microorganisms. The microorganisms' inactivation in pummelo fruit juices was also observed to have increased as the ozone treatment time increased. Significant effects on total colour difference, ascorbic acid content, and total phenolic content were also observed over increased ozone-treatment time. However, ozone was shown to be ineffective in activating PME activity in both types of juice. The experimental results of this study indicated that pummelo fruit juice components had significant effects on the effectiveness of gaseous ozone, however, the degree of the effects depends on the different fruit components (total soluble solids, total phenolic content). As a conclusion, filtered juice showed better quality characteristics in comparison to unfiltered juice post-ozone treatment.
    Matched MeSH terms: Yeast, Dried
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links