Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Chin CS, Ong SC
    Med J Malaysia, 1979 Jun;33(4):326-30.
    PMID: 522744
    Matched MeSH terms: Yeasts/isolation & purification*
  2. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA
    Int J Nanomedicine, 2013;8:4467-79.
    PMID: 24293998 DOI: 10.2147/IJN.S50837
    Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2-350 nm, depending on the concentration of the chitosan stabilizer.
    Matched MeSH terms: Yeasts/drug effects
  3. Shah SH, Kar RK, Asmawi AA, Rahman MB, Murad AM, Mahadi NM, et al.
    PLoS One, 2012;7(11):e49788.
    PMID: 23209600 DOI: 10.1371/journal.pone.0049788
    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
    Matched MeSH terms: Yeasts/metabolism; Yeasts/chemistry*
  4. Ilias, N.N., Jamal, P., Sulaiman, S., Jaswir, I., Ansari, A.H., Azmi, A.S., et al.
    MyJurnal
    Bioprotein is one of the useful products obtained from biotechnology invention. It is a promising replacement for the commercial fish feed supplement. In this study, the enrichment of the bioprotein content after solid state fermentation using palm kernel cake and seaweed by the white rot fungus: Phanerochaete chrysoporium and yeast: Candida utilis was carried out. The growth media components were selected from 11 types of media using Plackett-Burman design (hereinafter PBD) and were optimized by one-factor-at-a-time (OFAT) method with bioprotein concentration (mg/g) as the response. From the screening result using PBD, three media components, namely K2HPO4, CuSO4.5H2O and MnSO4.H2O were selected for further optimization using OFAT method because of their positive contributions to the response. The final results showed that 5.0 g/L K2HPO4, 3.0 g/L CuSO4.5H2O and 0.1 g/L MnSO4.H2O were there to be the optimum media constituents with 9.0 g/L, MgSO4.7H2O, 0.1 g/L, CaCl2.H2O, 3.0 g/L FeSO4.7H2O and 3.0 g/L peptone as fixed compositions. At this optimum concentration, the protein increment of 11% was observed as compared to the results determined in the screening using PBD. The study revealed the benefits of using mixed cultures in improving the protein concentrations which can be used as nutritious fish feed.
    Matched MeSH terms: Yeasts
  5. Abdul Khalil K, Mustafa S, Mohammad R, Bin Ariff A, Shaari Y, Abdul Manap Y, et al.
    Biomed Res Int, 2014;2014:787989.
    PMID: 24527457 DOI: 10.1155/2014/787989
    This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and β -galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 2(3) full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and β -galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract.
    Matched MeSH terms: Yeasts
  6. Lord AT, Mohandas K, Somanath S, Ambu S
    PMID: 20307325 DOI: 10.1186/1476-0711-9-11
    The aim of this study was to investigate the presence of multidrug resistant yeasts in the faeces of synanthropic wild birds from the Bangsar suburb of Kuala Lumpur.
    Matched MeSH terms: Yeasts/classification; Yeasts/drug effects*; Yeasts/isolation & purification
  7. Md Ali MA, Kayani ABA, Yeo LY, Chrimes AF, Ahmad MZ, Ostrikov KK, et al.
    Biomed Microdevices, 2018 11 06;20(4):95.
    PMID: 30402766 DOI: 10.1007/s10544-018-0341-1
    Cell contact formation, which is the process by which cells are brought into close proximity is an important biotechnological process in cell and molecular biology. Such manipulation is achieved by various means, among which dielectrophoresis (DEP) is widely used due to its simplicity. Here, we show the advantages in the judicious choice of the DEP microelectrode configuration in terms of limiting undesirable effects of dielectric heating on the cells, which could lead to their inactivation or death, as well as the possibility for cell clustering, which is particularly advantageous over the linear cell chain arrangement typically achieved to date with DEP. This study comprises of experimental work as well as mathematical modeling using COMSOL. In particular, we establish the parameters in a capillary-based microfluidic system giving rise to these optimum cell-cell contact configurations, together with the possibility for facilitating other cell manipulations such as spinning and rotation, thus providing useful protocols for application into microfluidic bioparticle manipulation systems for diagnostics, therapeutics or for furthering research in cellular bioelectricity and intercellular interactions.
    Matched MeSH terms: Yeasts/cytology
  8. Ngeow YF, Soo-Hoo TS
    Mycoses, 1989 Nov;32(11):563-7.
    PMID: 2615779
    A total of 2,153 high vaginal swabs were processed for the presence of yeasts. The specimens were obtained from pregnant and non-pregnant Malaysian women with and without vaginitis. The yeast species most commonly isolated were Candida albicans, C. glabrata, C. famata and C. parapsilosis. C. albicans was isolated from 27% of pregnant women with vaginitis, 14% of pregnant women with no overt vaginitis, 15% of non-pregnant women with vaginitis, and 3% of non-pregnant women with no vaginitis. The significant difference of the isolation rates from women with and without vaginitis indicates that C. albicans is likely to be a vaginal pathogen.
    Matched MeSH terms: Yeasts/isolation & purification*
  9. Saad S, Taher M, Susanti D, Qaralleh H, Awang AF
    Asian Pac J Trop Biomed, 2012 Jun;2(6):427-9.
    PMID: 23569943 DOI: 10.1016/S2221-1691(12)60069-0
    To investigate the antimicrobial property of mangrove plant Sonneratia alba (S. alba).
    Matched MeSH terms: Yeasts/drug effects*
  10. Zain MM, Kofli NT, Rozaimah S, Abdullah S
    Pak J Biol Sci, 2011 May 01;14(9):526-32.
    PMID: 22032081
    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.
    Matched MeSH terms: Yeasts/growth & development*; Yeasts/isolation & purification; Yeasts/metabolism*
  11. Kim HS, Mukhopadhyay R, Rothbart SB, Silva AC, Vanoosthuyse V, Radovani E, et al.
    Cell Rep, 2014 Mar 13;6(5):892-905.
    PMID: 24565511 DOI: 10.1016/j.celrep.2014.01.029
    Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation.
    Matched MeSH terms: Yeasts/metabolism
  12. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA
    Toxins (Basel), 2016 Feb 19;8(2):49.
    PMID: 26907343 DOI: 10.3390/toxins8020049
    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
    Matched MeSH terms: Yeasts/genetics
  13. Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Rajeev Bhat
    MyJurnal
    The yield and properties of cellulose produced from bacterial fermentation of black tea broth (known as Kombucha) were investigated in this study. The tea broth was fermented naturally over a period of up to 8 days in the presence of sucrose. Tea broth with a sucrose concentration of 90 g/l produced highest yield of bacterial cellulose (66.9%). The thickness and yield of bacterial cellulose increased with fermentation time. The bacterial cellulose production increased correspondingly with increased surface area:depth ratio. Changes in pH were related to the symbiotic metabolic activities of yeasts and acetic acid bacteria, and the counts of both of these in the tea broths were relatively higher than those in the cellulose layer. Findings from this study suggest that the yield of cellulose depends on many factors that need to be optimized to achieve maximum yield.
    Matched MeSH terms: Yeasts
  14. Arifullah M, Namsa ND, Mandal M, Chiruvella KK, Vikrama P, Gopal GR
    Asian Pac J Trop Biomed, 2013 Aug;3(8):604-10; discussion 609-10.
    PMID: 23905016 DOI: 10.1016/S2221-1691(13)60123-9
    To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata.
    Matched MeSH terms: Yeasts/drug effects
  15. Zainal Abidin, M., Shamsudin, R., Othman, Z., Abdul Rahman, R.
    MyJurnal
    Cantaloupes continue to ripen after harvesting which is caused by ethylene production due to climacteric behaviour during postharvest storage. In this study, the cantaloupe fruits harvested at commercial maturity were evaluated for quality attributes during three weeks of storage at 10°C and a relative humidity (RH) of 90±5%. In addition, fresh-cut samples were stored for a further 19 days at 2°C and 87% RH. The fresh-cut samples were prepared on a weekly basis by dipping into deionised water (control) at 2°C for 1 minute. The effect of postharvest storage of cantaloupe on the physico-chemical properties and microbial activity was observed prior to fresh-cut processing. It was found that firmness, luminosity (L*), and titratable acidity (TA) decreased, while total soluble solids (TSS), pH, TSS:TA ratio, microbial activity (total plate count (TPC) and yeast and mould (YM)) of the fresh-cut increased over the postharvest storage period of the fruit. Meanwhile, the orange colour and the intensity (hue angle, hab, and chromaticity) of the flesh did not differ significantly during storage. The cantaloupe stored for three weeks at a low temperature indicated a successful potential for fresh-cut processing due to good maintenance of the product quality.
    Matched MeSH terms: Yeasts
  16. Lim SL, Tay ST
    Trop Biomed, 2011 Aug;28(2):438-43.
    PMID: 22041766
    The biodiversity and the killer activity of yeasts isolated from various types of fermented food in Malaysia were investigated in this study. Of 252 yeasts isolated from 48 fermented food samples in this study, 19 yeast species were identified based on sequence analysis of the ITS1-5.8S-ITS2 partial fragments of the yeasts. A total of 29 (11.5%) of the yeast isolates demonstrated killer activity to at least one Candida species tested in this study; including 22 isolates of Trichosporon asahii, 4 isolates of Pichia anomala, and one isolate each of Pichia norvegensis, Pichia fermentans and Issatchenkia orientalis, respectively. The presence of killer yeasts reflects antagonism that occurs during microbial interaction in the fermented food, whereby certain yeasts produce killer toxins and possibly other toxic substances in competition for limited nutrients and space. The anti-Candida activity demonstrated by killer yeasts in this study should be further explored for development of alternative therapy against candidiasis.
    Matched MeSH terms: Yeasts/classification*; Yeasts/isolation & purification*; Yeasts/physiology
  17. Tzar M, Zetti Z, Ramliza R, Sharifah A, Leelavathi M
    Sains Malaysiana, 2014;43:1737-1742.
    Prevalence of dermatomycoses varies from one centre to another due to many factors. Knowledge of local prevalence is useful to aid clinical diagnosis and treatment. Due to lack of data in Malaysia, this study aimed to look at the causes of dermatomycoses in Kuala Lumpur, Malaysia. Dermatological specimens including skin scrapings, hair and nail clippings were collected carefully from clinically suspected cases of dermatomycoses between 2008 and 2010. All cultures of skin, hair and nails that yielded positive fungal growth were included. Any fungal growth outside the streaking area, duplicate and incomplete data were excluded from the study. Three-hundred-fifty-eight patients were included. Male patients were slightly more than females with a ratio of 1.2:1. The median age was 53 years old with interquartile range of 38-64 years. More than half (53.6%) belonged to 20-60 years age group. Rates of culture isolation were 89.0% for nails, 56.2% for hair and 55.6% for skin. Five-hundred-twenty-two fungi were isolated from 358 clinical specimens. Non-dermatophyte moulds (NDMs) represented the largest group (50.5%; mainly Aspergillus species 18.7%), followed by yeasts (41.6%; mainly Candida species 26.8%) and dermatophytes (7.9%; mainly Trichophyton species 7.7%). In conclusion, NDMs and yeasts were more commonly isolated than dermatophytes from dermatological specimens in this centre. Current treatment regime that focuses on dermatophytes may be ineffective to treat dermatomycoses caused by NDMs or yeasts. Antifungal susceptibility study may be needed to guide therapy in recalcitrant cases.
    Matched MeSH terms: Yeasts
  18. Zainuddin MF, Fai CK, Ariff AB, Rios-Solis L, Halim M
    Microorganisms, 2021 Jan 27;9(2).
    PMID: 33513696 DOI: 10.3390/microorganisms9020251
    The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts. Each method adopts different mechanisms to disrupt cells and extract the lipids, thus a systematic evaluation is essential before choosing a particular method. In this review, mechanical (bead mill, ultrasonication, homogenization and microwave) and nonmechanical (enzyme, acid, base digestions and osmotic shock) methods that are currently used for the disruption or permeabilization of oleaginous yeasts are discussed based on their principle, application and feasibility, including their effects on the lipid yield. The attempts of using conventional and "green" solvents to selectively extract lipids are compared. Other emerging methods such as automated pressurized liquid extraction, supercritical fluid extraction and simultaneous in situ lipid recovery using capturing agents are also reviewed to facilitate the choice of more effective lipid recovery methods.
    Matched MeSH terms: Yeasts
  19. Mohamed MS, Tan JS, Mohamad R, Mokhtar MN, Ariff AB
    ScientificWorldJournal, 2013;2013:948940.
    PMID: 24109209 DOI: 10.1155/2013/948940
    Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
    Matched MeSH terms: Yeasts/metabolism
  20. Leelavathi M, Tzar M, Adawiah J
    Sains Malaysiana, 2012;41:697-700.
    Onychomycosis is the infection of nail apparatus by dermatophytes, yeasts or non-dermatophyte moulds and is responsible for 50% of all nail disorders. A five year retrospective study was conducted at Universiti Kebangsaan Malaysia to identify the common pathogens responsible for onychomycosis and to describe the epidemiology of the affected patients. A total of 278 abnormal nails were cultured, out of which 231 were positive for fungus. Females constituted 50.2% (n=116) while males 49.8% (n=115). The majority (51.9%, n=120) were between ages 50-69 years. The Malay ethnic group was most commonly affected (44.2%, n=102) followed by Chinese (33.8%, n=78), Indians (18.2%, n=42) and other ethnic groups (3.8%, n=9). The most common fungal element isolated was non-dermatophyte moulds (45.4%, n=105) followed by yeast (34.6%, n=80) and dermatophytes (1.3%, n=3). Aspergillus spp. was the commonest (59.8%,n=81) non-dermatophyte mould, while Candida spp. was the commonest yeast (74.3%, n=89) isolated. In this study, non-dermatophyte moulds are the most common microorganisms implicated to cause onychomysosis. Treatment for non-dermatophyte mould is challenging as the current available antifungal agents are more effective against dermatophytes and yeasts.
    Matched MeSH terms: Yeasts
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links