Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Zainal NZ, Alauddin H, Ahmad S, Hussin NH
    Malays J Pathol, 2014 Dec;36(3):207-11.
    PMID: 25500521
    Thalassaemia carriers are common in the Asian region including Malaysia. Asymptomatic patients can be undiagnosed until they present for their antenatal visits. Devastating obstetric outcome may further complicate the pregnancy if both parents are thalassaemia carriers leading to hydrophic fetus due to haemoglobin Bart's disease. However in certain cases where unexplained hydrops fetalis occur in parents with heterozygous thalassaemia carrier,mutated α genes should be suspected. We report a twenty-nine year old woman in her third pregnancy with two previous pregnancies complicated by early neonatal death at 21 and 28 weeks of gestation due to hydrops fetalis. DNA analysis revealed the patient to have heterozygous (--SEA) α-gene deletion, while her husband has a compound heterozygosity for α(3.7) deletion and codon 59 (GGC → GAC) mutation of the α-gene. This mutation, also known as hemoglobin Adana, can explain hydrops fetalis resulting from two alpha gene deletions from the patient (mother) and a single alpha gene deletion with mutation from the father. The third pregnancy resulted in a grossly normal baby boy with 3 α-gene deletions (HbH disease). We postulate that, in view of heterogenisity of the α-thalassaemia in this patient with severely unstable haemoglobin Adana chains from her husband, there will be a 25% possibility of fetal hydrops in every pregnancy.
    Matched MeSH terms: alpha-Thalassemia/diagnosis; alpha-Thalassemia/genetics*
  2. Yatim NF, Rahim MA, Menon K, Al-Hassan FM, Ahmad R, Manocha AB, et al.
    Int J Mol Sci, 2014 May 19;15(5):8835-45.
    PMID: 24857915 DOI: 10.3390/ijms15058835
    Both α- and β-thalassaemia syndromes are public health problems in the multi-ethnic population of Malaysia. To molecularly characterise the α- and β-thalassaemia deletions and mutations among Malays from Penang, Gap-PCR and multiplexed amplification refractory mutation systems were used to study 13 α-thalassaemia determinants and 20 β-thalassaemia mutations in 28 and 40 unrelated Malays, respectively. Four α-thalassaemia deletions and mutations were demonstrated. --SEA deletion and αCSα accounted for more than 70% of the α-thalassaemia alleles. Out of the 20 β-thalassaemia alleles studied, nine different β-thalassaemia mutations were identified of which βE accounted for more than 40%. We concluded that the highest prevalence of (α- and β-thalassaemia alleles in the Malays from Penang are --SEA deletion and βE mutation, respectively.
    Matched MeSH terms: alpha-Thalassemia/genetics*; alpha-Thalassemia/pathology
  3. Wong YY, Alauddin H, Raja Sabudin RZA, Ithnin A, Jalil N, Abdul Latiff Z, et al.
    Malays J Pathol, 2021 Apr;43(1):95-100.
    PMID: 33903312
    The Siriraj I Gγ(Aγδβ)0-thalassaemia is a novel mutation involving a 118kb deletion of the β-globin gene cluster. It was first reported in 2012 in two unrelated families from the southern part of Thailand. The carriers in the heterozygous state are clinically asymptomatic. Nonetheless, its complex interaction with other β-thalassaemia could give rise to different clinical phenotypes, ranging from mild thalassaemia intermedia to thalassaemia major. We report here a case of a six-year-old Malay boy, presented with pallor, growth failure and hepatosplenomegaly. His haemoglobin at presentation was 9.2g/dL with a mean cell haemoglobin of 22.6pg and a mean cell volume of 69.9fl. His peripheral blood smear showed features of thalassaemia intermedia. Haemoglobin (Hb) analysis revealed markedly raised Hb F (83%), normal HbA2 levels and absent HbA. Deoxyribonucleic acid (DNA) analysis showed compound heterozygous IVS1-1 (G→T) β-globin gene mutation and Siriraj I Gγ(Aγδβ)0-deletion (genotype βIVS1-1/ β Siriraj I deletion). Both his father and elder sister are carriers of Siriraj I Gγ(Aγδβ)0-thalassaemia while his mother carries IVS1-1 (G→T) gene mutation. Clinically, the patient is transfusion dependent on six weekly regime. To the best of our knowledge, this is the first reported case in Malaysia involving unique Siriraj I Gγ(Aγδβ)0-thalassaemia and IVS1-1 (G→T) in a compound heterozygous state. In summary, detection of Siriraj I Gγ(Aγδβ)0-thalassaemia is essential as this deletion can lead to severe disease upon interaction with a β-thalassemia point mutation as demonstrated in our case. The establishment of effective carrier screening and genetic counselling is important to prevent its adverse consequences.
    Matched MeSH terms: alpha-Thalassemia
  4. Wee YC, Tan KL, Kuldip K, Tai KS, George E, Tan PC, et al.
    Community Genet, 2008;11(3):129-34.
    PMID: 18376108 DOI: 10.1159/000113874
    BACKGROUND/AIMS: Individuals with double heterozygosity for alpha- and beta-thalassaemia and heterozygous beta-thalassaemia show a similar haematological picture. Co-inheritance of alpha- and beta-thalassaemia in both partners may result in pregnancies with either Hb Bart's hydrops foetalis or beta-thalassaemia major, or pregnancies with both disorders.
    METHODS: The co-inheritance of alpha-thalassaemia in 322 beta-thalassaemia carriers in Malaysia was studied.
    RESULTS: The frequency of alpha-thalassaemia in the beta-thalassaemia carriers was 12.7% (41/322), with a carrier frequency of 7.8% for the SEA deletion, 3.7% for the -alpha(3.7) deletion, 0.9% for Hb Constant Spring and 0.3% for the -alpha(4.2) deletion.
    CONCLUSION: Double heterozygosity for alpha- and beta-thalassaemia was confirmed in 5 out of the 41 couples and the risk of the fatal condition Hb Bart's hydrops foetalis was confirmed in two of these couples. Detection of the Southeast Asian (SEA) deletion in the Malaysian Malays in this study confirms that Hb Bart's hydrops foetalis can occur in this ethnic group. Results of this study have provided new information on the frequency and different types of alpha-thalassaemia (--(SEA), -alpha(3.7) and -alpha(4.2) deletions, Hb Constant Spring) in Malaysian beta-thalassaemia carriers.
    Matched MeSH terms: alpha-Thalassemia/diagnosis; alpha-Thalassemia/ethnology; alpha-Thalassemia/genetics*
  5. Wee YC, Tan KL, Chow TW, Yap SF, Tan JA
    J Obstet Gynaecol Res, 2005 Dec;31(6):540-6.
    PMID: 16343256 DOI: 10.1111/j.1447-0756.2005.00333.x
    AIM: Interactions between different determinants of alpha-thalassemia raises considerable problems, particularly during pregnancies where antenatal diagnosis is necessary. This study aims to determine the different types of deletional alpha-thalassemia and Hemoglobin Constant Spring (HbCS), and their frequency in Malays, Chinese and Indians in Malaysia.
    METHODS: DNA from 650 pregnant women from the Antenatal Clinic of the University of Malaya Medical Center in Kuala Lumpur, Malaysia who showed mean cell volume < or =89 fL and/or mean cell hemoglobin < or =28 pg were analyzed for the double alpha-globin gene South-East Asian deletion (--SEA), the -alpha3.7 and -alpha4.2 single alpha-globin gene deletions and HbCS.
    RESULTS: One hundred and three (15.8%) of the pregnant women were confirmed as alpha-thalassemia carriers: 25 (3.8%) were alpha-thalassemia-1 carriers with the --SEA/alphaalpha genotype, 64 (9.8%) were heterozygous for the -alpha3.7 rightward deletion (-alpha3.7/alphaalpha), four (0.6%) were heterozygous for the -alpha4.2 leftward deletion (-alpha4.2/alphaalpha), nine (1.4%) were heterozygous for HbCS (alphaCSalpha/alphaalpha) and one (0.2%) was compound heterozygous with the -alpha3.7/alphaCSalpha genotype. The double alpha-globin gene --SEA deletion was significantly higher in the Chinese (15%) compared to the Malays (2.5%) and not detected in the Indians studied. The -alpha3.7 deletion was distributed equally in the three races. HbCS and -alpha4.2 was observed only in the Malays.
    CONCLUSION: The data obtained gives a better understanding of the interactions of the different alpha-thalassemia determinants in the different ethnic groups, thus enabling more rapid and specific confirmation of alpha-thalassemia in affected pregnancies where antenatal diagnosis is necessary.
    Study site: Antenatal clinic, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: alpha-Thalassemia/complications*; alpha-Thalassemia/diagnosis; alpha-Thalassemia/genetics*; alpha-Thalassemia/prevention & control
  6. Wee YC, Tan KL, Chua KH, George E, Tan JA
    Malays J Med Sci, 2009 Jul;16(3):21-8.
    PMID: 22589661 MyJurnal
    BACKGROUND: The interaction of the non-deletional α(+)-thalassaemia mutations Haemoglobin Constant Spring and Haemoglobin Quong Sze with the Southeast Asian double α-globin gene deletion results in non-deletional Haemoglobin H disease. Accurate detection of non-deletional Haemoglobin H disease, which is associated with severe phenotypes, is necessary as these mutations have been confirmed in the Malaysian population.
    METHODS: DNA from two families with Haemoglobin H disease was extracted from EDTA-anticoagulated whole blood and subjected to molecular analysis for α-thalassaemia. A duplex polymerase chain reaction was used to detect the Southeast Asian α-globin gene deletion. Polymerase chain reaction-restriction fragment length polymorphism analysis was then carried out to determine the presence of Haemoglobin Constant Spring and Haemoglobin Quong Sze. A combine-amplification refractory mutation system protocol was optimised and implemented for the rapid and specific molecular characterisation of Haemoglobin Constant Spring and Haemoglobin Quong Sze in a single polymerase chain reaction.
    RESULTS AND CONCLUSIONS: The combine-amplification refractory mutation system for Haemoglobin Constant Spring and Haemoglobin Quong Sze, together with the duplex polymerase chain reaction, provides accurate pre- and postnatal diagnosis of non-deletional Haemoglobin H disease and allows detailed genotype analyses using minimal quantities of DNA.
    KEYWORDS: Combine-ARMS; Hb Constant Spring; Hb Quong Sze; medical sciences
    Matched MeSH terms: alpha-Thalassemia*
  7. Wee SY, Muhamed Said SS, Raja Sabudin RZA, Alauddin H, Ithnin A
    Malays J Pathol, 2020 Aug;42(2):195-201.
    PMID: 32860371
    INTRODUCTION: Differentiating between thalassaemia and iron deficiency anaemia (IDA) in hypochromic anaemia is a challenge to pathologists as it influences the choice of subsequent specialized confirmatory tests. In this study, we aimed to evaluate the performance of microcytic to hypochromic ratio (MicroR/ Hypo-He, M/H ratio) as a discriminant index in hypochromic anaemia.

    MATERIALS AND METHODS: A retrospective study was carried out on 318 subjects with hypochromic anaemia, which comprised 162 IDA and 156 thalassaemia trait subjects with α-thalassemia, β-thalassemia and HbE trait. Optimal cut-off value, sensitivity and specificity of M/H ratio for thalassaemia trait discrimination was determined using Receiver Operating Characteristic (ROC) analysis.

    RESULTS: Subjects with thalassaemia trait showed higher MicroR compared to IDA ( p< 0.001) while subjects with IDA demonstrated higher Hypo-He than thalassaemia trait (p < 0.001). M/H ratio was significantly higher in thalassaemia trait compared to IDA, with medians of 3.77 (interquartile range: 2.57 - 6.52) and 1.73 (interquartile range: 1.27 - 2.38), respectively (p < 0.001). M/H ratio ≥ 2.25 was the optimal cut-off value for discriminating thalassaemia trait from IDA in hypochromic anaemia, with the area under ROC curve (AUC) of 0.83, sensitivity of 80.8% and specificity of 71.6%.

    CONCLUSIONS: M/H ratio is a useful discriminant index to distinguish thalassaemia trait from IDA in hypochromic anaemia prior to diagnostic analysis for thalassaemia confirmation. High M/H ratio is suggestive of thalassaemia trait than of IDA. However, more studies are required to establish the role of M/H ratio as a screening tool for thalassaemia discrimination in hypochromic anaemia.

    Matched MeSH terms: alpha-Thalassemia/diagnosis; alpha-Thalassemia/pathology
  8. Tumian NR, Wong M, Wong CL
    J Obstet Gynaecol Res, 2015 Jun;41(6):967-70.
    PMID: 25510540 DOI: 10.1111/jog.12648
    α°-thalassemia is a well-known cause of hydrops fetalis in South-East Asia and can be detected in utero. We report a very rare case of thyrotoxic cardiomyopathy associated with hyperplacentosis secondary to α°-thalassemia-associated hydrops fetalis. A 22-year-old primigravida with microcytic anemia presented at 27 weeks' gestation with pre-eclampsia, hyperthyroidism and cardiac failure. Serum β-human chorionic gonadotrophin was markedly elevated and abdominal ultrasound revealed severe hydropic features and enlarged placenta. Serum β-human chorionic gonadotrophin, cardiac function and thyroid function tests normalized after she delivered a macerated stillbirth. Histopathology of the placenta showed hyperplacentosis. Blood DNA analysis revealed that both patient and husband have the α°-thalassemia trait. This case illustrates a very atypical presentation of α°-thalassemia-associated hydrops fetalis and the importance of early prenatal diagnosis of α-thalassemia in women of relevant ethnic origin with microcytic anemia so that appropriate genetic counseling can be provided to reduce maternal morbidity and the incidence of hydrops fetalis.
    Matched MeSH terms: alpha-Thalassemia
  9. Thong MK, Ngim CF
    N Engl J Med, 2021 Jun 03;384(22):2165.
    PMID: 34077655 DOI: 10.1056/NEJMc2105064
    Matched MeSH terms: alpha-Thalassemia*
  10. Tan, J. A. M. A., George, E., Lim, E. J., Zakaria, Z., Hassan, R., Wee, Y. C., et al.
    MyJurnal
    Objectives: This study aimed to evaluate the UBI MAGIWELTM ζ-GLOBIN ELISA Kit for the presumptive diagnosis of αo-thalassaemia. The ELISA results obtained were confirmed by molecular characterisation of αo-thalassaemia using a Duplex-PCR. Methods: Routine peripheral blood counts and red cell indices were determined in 94 blood samples sent for Hb analysis. Hb subtypes were quantified by high performance liquid chromatography (HPLC) and Hb electrophoresis conducted on agarose gel at pH 8.5. Zeta-globin chain levels were determined using the UBI MAGIWELTM ζ-GLOBIN ELISA Kit. Molecular analysis was performed using a duplex-PCR which simultaneously amplifies
    a normal 136 bp sequence between the ψα−α2-globin genes and a 730 bp Southeast Asian deletion-specific sequence (–SEA) between the ψα2−θ1-globin genes. Results: Using the ELISA assay kit, 20 blood samples were presumptively identified as α-thalassaemia carriers from elevated ζ-globin chains (OD>0.3) while the remaining 74 blood samples showed OD
    Matched MeSH terms: alpha-Thalassemia
  11. Tan JA, Kho SL, Ngim CF, Chua KH, Goh AS, Yeoh SL, et al.
    Sci Rep, 2016 06 08;6:26994.
    PMID: 27271331 DOI: 10.1038/srep26994
    Haemoglobin (Hb) Adana (HBA2:c.179>A) interacts with deletional and nondeletional α-thalassaemia mutations to produce HbH disorders with varying clinical manifestations from asymptomatic to severe anaemia with significant hepatosplenomegaly. Hb Adana carriers are generally asymptomatic and haemoglobin subtyping is unable to detect this highly unstable α-haemoglobin variant. This study identified 13 patients with compound heterozygosity for Hb Adana with either the 3.7 kb gene deletion (-α(3.7)), Hb Constant Spring (HbCS) (HBA2:c.427T>C) or Hb Paksé (HBA2:429A>T). Multiplex Amplification Refractory Mutation System was used for the detection of five deletional and six nondeletional α-thalassaemia mutations. Duplex-PCR was used to confirm Hb Paksé and HbCS. Results showed 84.6% of the Hb Adana patients were Malays. Using DNA studies, compound heterozygosity for Hb Adana and HbCS (α(codon 59)α/α(CS)α) was confirmed in 11 patients. A novel point in this investigation was that DNA studies confirmed Hb Paksé for the first time in a Malaysian patient (α(codon 59)α/α(Paksé)α) after nine years of being misdiagnosis with Hb Adana and HbCS (α(codon 59)α/α(CS)α). Thus, the reliance on haematology studies and Hb subtyping to detect Hb variants is inadequate in countries where thalassaemia is prevalent and caused by a wide spectrum of mutations.
    Matched MeSH terms: alpha-Thalassemia/diagnosis*; alpha-Thalassemia/genetics
  12. Tan JA, Kok JL, Tan KL, Wee YC, George E
    Genes Genet Syst, 2009 Feb;84(1):67-71.
    PMID: 19420802
    Co-inheritance of alpha-thalassemia with homozygosity or compound heterozygosity for beta-thalassemia may ameliorate beta-thalassemia major. A wide range of clinical phenotypes is produced depending on the number of alpha-thalassemia alleles (-alpha/alphaalpha --/alphaalpha, --/-alpha). The co-inheritance of beta-thalassemia with alpha-thalassemia with a single gene deletion (-alpha/alphaalpha) is usually associated with thalassemia major. In contrast, the co-inheritance of beta-thalassemia with two alpha-genes deleted in cis or trans (--/alphaalpha or -alpha/-alpha) generally produces beta-thalassemia intermedia. In Southeast Asia, the most common defect responsible for alpha-thalassemia is the Southeast Asian (SEA) deletion of 20.5 kilobases. The presence of the SEA deletion with Hb Constant Spring (HbCS) produces HbH-CS disease. Co-inheritance of HbH-CS with compound heterozygosity for beta-thalassemia is very rare. This study presents a Malay patient with HbH-CS disorder and beta degrees/beta+-thalassemia. The SEA deletion was confirmed in the patient using a duplex-PCR. A Combine-Amplification Refractory Mutation System (C-ARMS) technique to simultaneously detect HbCS and Hb Quong Sze confirmed HbCS in the patient. Compound heterozygosity for CD41/42 and Poly A was confirmed using the ARMS. This is a unique case as the SEA alpha-gene deletion in cis (--SEA/alphaalpha) is generally not present in the Malays, who more commonly possess the two alpha-gene deletion in trans (-alpha/-alpha). In addition, the beta-globin gene mutation at CD41/42 is a common mutation in the Chinese and not in the Malays. The presence of both the SEA deletion and CD41/42 in the mother of the patient suggests the possible introduction of these two defects into the family by marriage with a Chinese.
    Matched MeSH terms: alpha-Thalassemia/complications; alpha-Thalassemia/diagnosis*; alpha-Thalassemia/genetics*
  13. Tan JA, Lee PC, Wee YC, Tan KL, Mahali NF, George E, et al.
    PMID: 20871816 DOI: 10.1155/2010/706872
    Thalassemia can lead to severe transfusion-dependent anemia, and it is the most common genetic disorder in Malaysia. This paper aims to determine the prevalence of thalassemia in the Kadazandusuns, the largest indigenous group in Sabah, East Malaysia. α- and β-thalassemia were confirmed in 33.6% and 12.8%, of the individuals studied respectively. The high prevalence of α- and β-thalassemia in the Kadazandusuns indicates that thalassemia screening, genetic counseling, and prenatal diagnosis should be included as part of their healthcare system. This preliminary paper serves as a baseline for further investigations into the health and genetic defects of the major indigenous population in Sabah, East Malaysia.
    Matched MeSH terms: alpha-Thalassemia/epidemiology*
  14. Tan JAMA, Yap SF, Tan KL, Wong YC, Wee YC, Kok JL
    Acta Haematol., 2003;109(4):169-75.
    PMID: 12853688 DOI: 10.1159/000070965
    Molecular characterization of the compound heterozygous condition - (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia - in four families showing mild beta-thalassemia intermedia was carried out using DNA amplification techniques. Using the Amplification Refractory Mutation System (ARMS) to confirm the beta-mutations and DNA amplification to detect the 100-kb Chinese-specific (G)gamma((A)gammadeltabeta)(o)-deletion, ()two families were confirmed to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia with the IVSII No. 654 beta(+)-allele. In the third family, the (G)gamma((A)gammadeltabeta)(o)-deletion was confirmed in the father and the mother was a beta-thalassemia carrier with the cd 41-42 beta(o)-allele. Their affected child with (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia was found to be transfusion dependent. The same (G)gamma((A)gammadeltabeta)(o)-deletion and beta-thalassemia (cd 41-42) was also confirmed in a fourth family. In addition, the mother was also diagnosed with Hb H disease (genotype -alpha(3.7)/-(SEA)). Both the children were found to possess (G)gamma((A)gammadeltabeta)(o)/beta-thalassemia but they were not transfusion dependent and this could be due to co-inheritance of alpha-thalassemia-2 (genotype-alpha(3.7)/alphaalpha) in the children together with their compound heterozygous condition.
    Matched MeSH terms: alpha-Thalassemia/genetics*
  15. Shwe S, Boo NY, Ong HK, Chee SC, Maslina M, Ling MMM, et al.
    Malays J Pathol, 2020 Aug;42(2):253-257.
    PMID: 32860378
    INTRODUCTION: Haemoglobin Constant Spring (Hb CoSp) and Haemoglobin Adana (Hb Adana), are two non-deletion type of α-thalassemia reported in Malaysia. Owing to their structural instability, they cause hemolysis and hyperbilirubinemia. This observational study was part of a large study investigating multiple factors associated with severe neonatal jaundice. In this part we aimed to determine the prevalence of Hb CoSp and Hb Adana and their association with clinically significant neonatal hyperbilirubinemia (SigNH, total serum bilirubin (TSB>290µmol/L)) among jaundiced Malaysian term neonates.

    MATERIALS AND METHODS: The inclusion criteria were normal term-gestation neonates admitted consecutively for phototherapy. PCR-restriction fragment length polymorphism method was applied on DNA extracted from dry blood spot specimens of each neonate to detect for Hb CoSp and Hb Adana gene. Positive samples were verified by gene sequencing.

    RESULTS: Of the 1121 neonates recruited (719 SigNH and 402 no-SigNH), heterozygous Hb CoSp gene was detected in only two (0.27%) neonates. Both were SigNH neonates (0.3% or 2/719). No neonate had Hb Adana variant.

    CONCLUSION: Hb CoSp was not common but could be a risk factor associated with SigNH. No Hb Adana was detected.

    Matched MeSH terms: alpha-Thalassemia/diagnosis*
  16. Rahimah AN, Nisha S, Safiah B, Roshida H, Punithawathy Y, Nurul H, et al.
    Med J Malaysia, 2012 Dec;67(6):565-70.
    PMID: 23770946 MyJurnal
    OBJECTIVES: Alpha thalassaemia is wide spread in Malaysia and is a public health problem. This study aimed to describe the carrier frequencies of α‒thalassaemia and its distribution among major ethnic groups in three states of Malaysia.

    METHODS: Educational forums were organised and study was explained to students from three schools. Students were invited to take part in the screening with parent consent. A total of 8420 adolescent students aged 16 years volunteered to participate in the study. Peripheral blood samples were analysed for complete blood counts, haemoglobin quantification and typing, and serum ferritin levels. Genomic DNA was used for screening alpha thalassaemia alleles by PCR based molecular methods.

    RESULTS: We identified seven α‒globin gene defects in 341 (4.08%) students: amongst them α(+)‒ and α(0)‒thalassaemias were detected in 232 (2.77%) and 107 (1.28%) students respectively. Genotype ‒α(3.7)/αα was the most prevalent among sub-populations of Malay, indigenous communities of Sahab and Indian, while ‒‒(SEA)/αα deletion is more prevalent in Malaysian Chinese. It is estimated that 63 pregnancies annually are at risk of Hb Bart's hydrops fetalis.

    CONCLUSIONS: We have demonstrated the prevalence and mutation patterns of α‒thalassaemia in the 16 year olds in three states of Malaysia. High α(0)‒thalassaemia deletions amongst the study subjects place these carriers at an increased risk of conceiving fetuses with HbH disease and Hb Bart's hydrops fetalis should they choose another heterozygous partner. It is therefore highly recommended to institute community screening programmes and provide prospective carriers with genetic counselling to help them make informed choices.
    Matched MeSH terms: alpha-Thalassemia*
  17. Osman HA, Hamid MMA, Ahmad RB, Saleem M, Abdallah SA
    BMC Res Notes, 2020 Feb 10;13(1):65.
    PMID: 32041645 DOI: 10.1186/s13104-020-4933-5
    OBJECTIVE: Alpha-thalassemia is a genetic disorder characterized by deletions of one or more α globin genes that result in deficient of α globin chains reducing haemoglobin concentration. The study aimed to screen 97 patients with microcytosis and hypochromasia for the 3.7 and 4.2 alpha thalassemia deletion mutations.

    RESULTS: Out of 97 patients screened, only 7 were carriers for the 3.7 deletion and all patients were negative for the 4.2 deletion. The 3.7 deletion was found in Foor, Hawsa and Rezagat Sudanese tribes. In the carriers of the 3.7 deletion, Red Blood Cells and Haematocrit were significantly increased. The Red Blood Cells were 7.23 ± 0.78 × 1012/L in adult males and 7.21 ± 0.67 × 1012/L in adult females while in children were 5.07 ± 0.87 × 1012/L. The mean cell volume and mean cell haemoglobin were significantly decreased, but the mean cell haemoglobin concentration slightly decreased. Haemoglobin levels didn't revealed statistically significant decrease in adult males (11.7 ± 0.57 g/dL) and adult females (11.25 ± 0.64 g/dL), while in children were (11.6 ± 2.95 g/dL). Haemoglobin electrophoresis revealed two patients of the 3.7 and 4.2 negative were carriers for β-thalassemia. The study concluded that α3.7 deletion has frequency of 0.07 in Sudanese with hypochromasia and microcytosis.

    Matched MeSH terms: alpha-Thalassemia/diagnosis*; alpha-Thalassemia/genetics*; alpha-Thalassemia/epidemiology
  18. Ong HC, White JC, Sinnathuray TA
    Acta Haematol., 1977;58(4):229-33.
    PMID: 410224 DOI: 10.1159/000207832
    A case of haemoglobin H (HbH) disease associated with pregnancy is presented and discussed in the light of reports in the literature. The variable symptomatology is commented upon, although mild to moderate chronic haemolytic anaemia seems to be a constant feature. The roles of folic acid supplements and of splenectomy; the avoidance of oxidant drugs, and the mode of inheritance in HbH disease are briefly commented upon. Available reports indicate that HbH disease probably has no adverse effect on pregnancy. However, the association of the two conditions is uncommon, and reports are too few, therefore, to allow definite conclusions on the outcome in all instances.
    Matched MeSH terms: alpha-Thalassemia*
  19. Nur Hidayah Muhamad Yasin, Majdan Ramli, Ilunihayati Ibrahim, Rosnah Bahar, Noraesah Mahmud, Siti Shahrum Muhamed Said, et al.
    MyJurnal
    Haemoglobin E (Hb E) is a variant of structurally abnormal haemoglobin that can be found very commonly in the Asian countries particularly the Southeast Asian [1]. [H1] Alpha thalassaemia is a red cell disorder which is caused by deletion or mutation of one or more of the four alpha globin genes leading to absence or decrease in production of alpha globin peptides [2]. This disorder is far more common in South East Asian regions and in Malaysia itself, and the gene frequency is about 4.1% [2]. The interactions of Hb E and alpha thalassaemia are evident in Kelantan which is bordered by southern Thailand. Using capillary electrophoresis (CE), a reduction of Hb E level is noticed as compared to Hb E heterozygotes. DNA analysis should be done to determine the presence of concurrent alpha thalassaemia variant. This study was done to evaluate haematological parameters using automated blood counters, morphology of red cells, Hb separation and quantitation of Hb fractions using CE and molecular analysis for alpha thalassemia. The study also aimed to discover cut off point of Hb E level in heterozygous Hb E patients with concurrent deletional alpha thalassaemia by CE.
    Matched MeSH terms: alpha-Thalassemia
  20. Norlelawati, A.T., Siti Hadijah, M., Siti Nor Haiza, H., Rusmawati, I., Abdul Wahab, J., Naznin, M., et al.
    MyJurnal
    Introduction: Thalassaemia is an inherited blood disorder and is a significant public health alarm in Malaysia with many not knowing they are carriers of this haemoglobin disorders. Materials and methods: This study conducted a one off collection of blood samples from 72 Malays students of International Islamic University Malaysia (IIUM) in Kuantan. Blood samples were subjected to conventional haemoglobin analyses that include full blood count and picture, HPLC, Haemoglobin electrophoresis and H-inclusion test. All samples were also genotyped for alpha thalassaemia–1 of Southeast Asia (a-Thal1SEA). Result: There were 17(23.6%) students who were diagnosed as thalassaemia carriers. Out of this, four (5.5 %) and six (8.3 %) students were presumptive β-thalassaemia trait and Haemoglobin-E trait as determined by the HPLC assay respectively. Nine (12.5%) students were genotyped a-Thal1SEA among whom two were also β-thalassaemia carriers. All thalassaemia cases had MCH of < 27pg. Nonetheless, two out of six Haemoglobin-E trait and three out of nine a-Thal1SEA carrier had MCV value of >80fL. Two out of four (50%) presumptive β -thalassaemia trait and one out of six (17%) students of presumptive Haemoglobin-E trait had family history of thalassaemia respectively. Conclusion: The high occurrence of the three common types of thalassaemia carrier (β, Hb-E and a-Thal1SEA thalassaemia) in our small group of subjects could be due to better participation of students who had family history of thalassaemia. The study reaffirmed the importance of molecular study for detection of alpha-thalassaemia and the use of MCH value of
    Matched MeSH terms: alpha-Thalassemia
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links