Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Toki W, Matsuo S, Pham HT, Meleng P, Lee CY
    Naturwissenschaften, 2019 Aug 27;106(9-10):50.
    PMID: 31456022 DOI: 10.1007/s00114-019-1645-6
    The cavities of bamboos (Poaceae) are used by various animals. Most of the animals access these cavities either by existing cracks or by excavating bamboos with soft walls or small, thin-walled bamboos. Only a few animals excavate into the cavities of large and thick- and hard-walled internodes of mature bamboos. We studied two lizard beetle species (Coleoptera: Erotylidae: Languriinae), Doubledaya ruficollis and Oxylanguria acutipennis, that excavate into large internode cavities of recently dead mature bamboos and have morphological modifications. We observed that females of D. ruficollis used their mandibles to bore oviposition holes on Schizostachyum sp. (mean wall thickness = 3.00 mm) and O. acutipennis did so on Dendrocalamus sp. (3.37 mm) bamboos. Previous studies suggested that the markedly asymmetrical mandibles and needle-like ovipositors of females in the genus Doubledaya are adaptive traits for excavating hard-walled bamboos for oviposition. Therefore, we measured their mandibular lengths and ovipositor lengths. D. ruficollis females had greater asymmetry in the mandibles and shorter and less-sclerotized ovipositors than females of congeners using small bamboos. In contrast, O. acutipennis females had slightly asymmetrical mandibles and elongated, well-sclerotized ovipositors. Oviposition holes of D. ruficollis were cone-shaped (evenly tapering), whereas those of O. acutipennis were funnel-shaped (tube-like at the internal apex). This suggests that D. ruficollis females excavate oviposition holes using the mandibles only, and O. acutipennis females use both the mandibles and ovipositors. These differences suggest different oviposition-associated morphological specialization for using large bamboos: the extremely asymmetrical mandibles in D. ruficollis and elongated, needle-like ovipositors in O. acutipennis.
    Matched MeSH terms: Animal Structures/anatomy & histology
  2. Aftab SMA, Ahmad KA
    PLoS One, 2017;12(8):e0183456.
    PMID: 28850622 DOI: 10.1371/journal.pone.0183456
    The Humpback whale tubercles have been studied for more than a decade. Tubercle Leading Edge (TLE) effectively reduces the separation bubble size and helps in delaying stall. They are very effective in case of low Reynolds number flows. The current Computational Fluid Dynamics (CFD) study is on NACA 4415 airfoil, at a Reynolds number 120,000. Two TLE shapes are tested on NACA 4415 airfoil. The tubercle designs implemented on the airfoil are sinusoidal and spherical. A parametric study is also carried out considering three amplitudes (0.025c, 0.05c and 0.075c), the wavelength (0.25c) is fixed. Structured mesh is utilized to generate grid and Transition SST turbulence model is used to capture the flow physics. Results clearly show spherical tubercles outperform sinusoidal tubercles. Furthermore experimental study considering spherical TLE is carried out at Reynolds number 200,000. The experimental results show that spherical TLE improve performance compared to clean airfoil.
    Matched MeSH terms: Animal Structures/anatomy & histology*
  3. Evenhuis NL, Gang Y
    Zootaxa, 2016 Dec 06;4205(3):zootaxa.4205.3.2.
    PMID: 27988574 DOI: 10.11646/zootaxa.4205.3.2
    The bee fly genus Euchariomyia Bigot is reviewed and new records from the Oriental Region are given. Five names (for four species-level taxa) have been associated with species in the genus. Examinations of types, as well as homotypic and topotypic specimens, shows all five names to belong to a highly variable single species, Euchariomyia dives Bigot. The following species are here shown to be the same as Euchariomyia dives Bigot: Bombylius pulchellus Wulp, 1880, Bombylius scintillans Brunetti, 1909, and Bombylius brunettii Senior-White, 1922, n. syn. The genus is known primarily from the southern and eastern Oriental Region and ranges into the Palaearctic in eastern China. We extend the distribution of the genus with new records in the southeastern Oriental Region [Indonesia (Sumatra), Laos, Peninsular Malaysia, and Vietnam].
    Matched MeSH terms: Animal Structures/anatomy & histology
  4. Viraktamath CA
    Zootaxa, 2016 Nov 17;4193(3):zootaxa.4193.3.3.
    PMID: 27988690 DOI: 10.11646/zootaxa.4193.3.3
    Species of Signoretia Stål from the Oriental region are reviewed and types of five species described by Baker, two species described by Distant and one species described by Schmidt are illustrated. A checklist of 20 species of the genus from the Oriental region including 9 new species is given. The new species described and illustrated are Signoretia dulitensis sp. nov. (Malaysia: Mt Dulit), S. lunglei sp. nov. (India: Mizoram), S. mishmiensis sp. nov. (Myanmar: Mishmi Hills), S. quoinensis sp. nov. (Malaysia: Quoin Hill), S. rubra sp. nov. (Thailand: Chiang Mai), S. sahyadrica sp. nov. (India: Kerala), S. similaris sp. nov. (Vietnam: Fyan), S. sinuata sp. nov. (India: West Bengal) and S. takiyae sp. nov. (India: Andaman Is.). Both S. aureola Distant and S. maculata Baker are redescribed and illustrated. Lectotypes are designated for S. greeni Distant and S. aureola Distant.
    Matched MeSH terms: Animal Structures/anatomy & histology
  5. Evenhuis NL
    Zootaxa, 2016 Nov 10;4189(2):zootaxa.4189.2.1.
    PMID: 27988730 DOI: 10.11646/zootaxa.4189.2.1
    The Strongylophthalmyia punctata subgroup, comprising 24 species with armored fore femora, and restricted primarily to SE Asia, is reviewed. Eighteen new species, S. albisternum, n. sp. (Thailand), S. borneensis, n. sp. (Borneo), S. caestus, n. sp. (Philippines), S. darlingi, n. sp. (Sumatra), S. federeri, n. sp. (Philippines), S. hauseri, n. sp. (Thailand, Vietnam), S. indochinensis, n. sp. (Cambodia, Thailand, Vietnam), S. inundans, n. sp. (Philippines), S. laosensis, n. sp. (Laos), S. lowi, n. sp. (Peninsular Malaysia), S. malayensis, n. sp. (Peninsular Malaysia), S. nigripalpis, n. sp. (Peninsular Malaysia), S. oxybeles, n. sp. (Sumatra), S. pappi, n. sp. (Thailand), S. phillindablank, n. sp. (China), S. sichuanica, n. sp. (China), S. sumatrana, n. sp. (Sumatra), and S. thailandica, n. sp. (Thailand) are described and illustrated, S. microstyla Shatalkin and S. punctata Hennig are redescribed based on examination of the holotypes, and a key to species of the subgroup is presented. A general taxonomic overview of the genus Strongylophthalmyia is given with discussion of and keys to proposed species groups.
    Matched MeSH terms: Animal Structures/anatomy & histology
  6. Tian M, Deuve T
    Zootaxa, 2016 Sep 21;4169(3):540-554.
    PMID: 27701291 DOI: 10.11646/zootaxa.4169.3.7
    The ground beetle genus Hexachaetus Chaudoir, 1871 is re-defined and reviewed. Bearing six setae on ligula is no more considered as a crucial characteristic for Hexachaetus. Members of Hexachaetus share the following combination of morphological features: body polish, smooth, and impunctate, ligula more or less dilated at apex, bearing 4, 6, or even 12 setae apically, prosternal process unbordered at apex, elytra distinctly and obliquely truncated at apex, with the apical inner angles very sharp in most species (except for H. mulan n. sp.), and interval 3 with anterior and posterior setiferous pores (median one lacking). The members of Hexachaetus are about 20 species which could be divided into six species groups. All except angulatus species group are dealt with in this paper, with descriptions of four new species: H. kirschenhoferi n. sp. (Indonesia: Kalimantan), H. brunki n. sp. (Malaysia: N. Borneo), H. vietnamensis n. sp. (Vietnam: Annam) and H. mulan n. sp. (Malaysia: Perak and Pahang). H. maindroni Tian & Deuve, 2006 is proposed as a subspecies of H. lateralis Guérin, 1843, n. stat. A key to species groups and species of the genus is also provided.
    Matched MeSH terms: Animal Structures/anatomy & histology
  7. Hennemann FH, Conle OV, Brock PD, Seow-Choen F
    Zootaxa, 2016 Sep 01;4159(1):1-219.
    PMID: 27615907 DOI: 10.11646/zootaxa.4159.1.1
    The areolate Oriental family Heteropterygidae Kirby, 1893 is critically reviewed and the results of the present study contradict the arrangement suggested by Zompro (2004), but in most aspects agree with a molecular study presented by Whiting et al (2003) and a phylogenetic study presented by Bradler (2009). The family is critically discussed and new hypotheses are presented for the phylogeny and intra-familiar relationships, placing the subfamily Dataminae Rehn & Rehn, 1939 as the basalmost clade of Heteropterygidae. The subfamilies Obriminae Brunner v. Wattenwyl, 1893 and Heteropteryginae Kirby, 1893 together represent the sister-group of Dataminae. Arguments and a tree are presented to support this hypothesis. New diagnoses and lists of genera are provided for all three subfamilies contained in Heteropterygidae, along with keys to distinguish between them.        The subfamily Obriminae is critically reviewed and the distinction between the three tribes Obrimini Brunner v. Wattenwyl, 1893, Eubulidini Zompro, 2004 and Miroceramiini Zompro, 2004 introduced by Zompro (2004) is shown to be poorly supported. While Obrimini sensu Zompro, 2004 is generally accepted (but now also contains genera that were placed in Eubulidini or Miroceramiini by Zompro (2004)), the tribes Eubulidini and Miroceramiini are not supported. A new arrangement is introduced, which is based on morphological characters neglected or overlooked by Zompro (2004) but were partly discussed by Bradler (2009). The genus Mearnsiana Rehn & Rehn, 1939 is removed from Miroceramiini and transferred to Obrimini. The genera Eubulides Stål, 1877, Heterocopus Redtenbacher, 1906, Theramenes Stål, 1875 and Stenobrimus Redtenbacher, 1906 are removed from Eubulidini and also transferred to Obrimini. Consequently, Eubulidini is synonymised with Obrimini (n. syn.). Miroceramiini is a monotypical tribe and only includes the Wallacean genus Miroceramia Günther, 1934. The new tribe Tisamenini n. trib. is established for the three basal genera Tisamenus Stål, 1875, Ilocano Rehn & Rehn, 1939 and Hoploclonia Stål, 1875 all of which were placed in Eubulidini by Zompro (2004). The latter genus differs from the other two genera by the morphology of the female genitalia, which is unique amongst the entire family. Three generic groups are recognized within Obrimini, the Obrimus-group, Stenobrimus-group and Theramenes-group. Keys are presented to distinguish between the three tribes now contained in the Obriminae, i.e. Obrimini, Tisamenini n. trib. and Miroceramiini. The genus Hennobrimus Conle, 2006 is synonymised with Mearnsiana Rehn & Rehn, 1939, based on the fact that the type-species of both genera are conspecific (n. syn.). Hennobrimus hennemanni Conle, 2006, the type-species of Hennobrimus, and Trachyaretaon manobo Lit & Eusebio, 2005 are synonymised with Mearnsiana bullosa Rehn & Rehn, 1939, the type-species of Mearnsiana (n. syn.). Theramenes dromedarius Stål, 1877 from the Philippines is removed from synonymy with the Wallacean Theramenes olivaceus (Westwood, 1859) and re-established as a valid species (rev. stat.).        The subfamily Heteropteryginae Kirby, 1896 is revised at the species-level and a new diagnosis is presented. Keys to the two genera and all 16 known species are provided along with new descriptions, differential diagnoses, lists of examined material, detailed information on the known distributions, measurements and illustrations of the insects and eggs. The intra-subfamiliar and intra-generic relationships are discussed and a cladogram is presented. Heteropteryginae contains two genera: Heteropteryx Gray, 1835 (Type-species: Phasma dilatatum Parkinson, 1798) and Haaniella Kirby, 1896 (Type-species: Phasma (Heteropteryx) muelleri de Haan, 1842). The distribution of this subfamily is restricted to Sundaland with the exception of a single species that is found in Vietnam. All other species are distributed in Borneo, Sumatra, the Mentawai Islands, Singapore, Peninsular Malaysia and Thailand. Heteropteryginae contains the largest and most striking members of the entire family Heteropteryginae, some of which are amongst the heaviest insects known. The subfamily is characterized by apomorphies such as the presence of wings, having a tympanal area (= stridulatory organ) in the basal portion of the alae, straight profemora, strongly shortened tarsi, lack of rough sensory-areas on the prosternum and typically X-shaped micropylar plate of the eggs. The sister-group of Heteropteryginae is represented by the Obriminae, with which it shares a beak-like secondary ovipositor in the females and presence of a medio-apical spine on the area apicalis. Both features are synapomorphies of Heteropteryginae + Obriminae.        The genus Haaniella Kirby, 1904 contains 16 known species, five of which are newly described herein. The genus Miniopteryx Zompro, 2004 (Type-species: Haaniella parva Günther, 1944) is synonymised with Haaniella on the basis that the distinguishing feature mentioned in the original description is a character that is frequently found throughout the genus (n. syn.). The type-species H. parva Günther, 1944 is automatically retransferred to Haaniella (rev. stat.). Haaniella aculeata n. sp. from western Sumatra is described from the male. Haaniella macroptera n. sp. from Singapore and the Johor state in southern Peninsular Malaysia is described from both sexes and the eggs. Haaniella gintingi n. sp. from Central Sumatra is described from both sexes and the eggs and Haaniella kerincia n. sp. from Western Sumatra is described from the insects only, the eggs being still unknown. One new species, Haaniella gorochovi n. sp., is the only representative of the genus and subfamily Heteropteryginae known from Vietnam and both sexes as well as the eggs are described. Haaniella erringtoniae (Redtenbacher, 1906) is endemic in Peninsular Malaysia, here removed from synonymy with H. muelleri (de Haan, 1842) and re-established as a valid species (rev. stat.). The Sumatran Haaniella glaber (Redtenbacher, 1906) is removed from synonymy with H. muelleri (Haan, 1842) and re-established as a valid species (rev. stat.). Leocrates glaber Redtenbacher, 1906 and Haaniella muelleri simplex Günther, 1944 are removed from synonymy with H. muelleri (Haan, 1842) (rev. stat.) and synonymised with H. glaber. Haaniella mecheli (Redtenbacher, 1906) and H. rosenbergii (Kaup, 1871) are removed from synonymy with H. muelleri (Haan, 1842) and re-established as valid species (rev. stat.). Haaniella erringtoniae novaeguineae Günther, 1934 and Haaniella muelleri var. b. (Haan, 1842) are synonymized with H. rosenbergii (Kaup, 1871) (n. syn.). The type-species Haaniella muelleri (Haan, 1842) is shown to be a fairly rare species that is restricted to Sumatra. All subsequent records of H. muelleri from outside Sumatra and references to captive breeding of stock originating from Peninsular Malaysia in Europe relate to H. erringtoniae (Redtenbacher, 1906). The previously unknown males and eggs of H. rosenbergii (Kaup, 1871) as well as the previously unknown females and eggs of H. parva Günther, 1944 are described and illustrated for the first time. Based on morphological characters of the insects and eggs three distinct species-groups are recognized within Haaniella. The muelleri species-group contains nine species that are distributed throughout Sumatra, the Mentawei Islands, Singapore and Peninsular Malaysia. These are characterized by the smooth ventral surface of the meso- and metafemora and lemon-shaped eggs which entirely lack the setae seen in the two other species-groups. The grayii species-group comprises four species, two of which are endemic in Borneo, one endemic in Sumatra and the fourth species being the only known representative of the subfamily in Vietnam. These species are characteristic for the prominent pair of spines on the abdominal tergites II-IV of males and long apically multidentate epiproct of females. The echinata species-group contains three exceptionally Bornean species, which are characterized by the long and apically pointed subgenital plate of females, which clearly projects beyond the epiproct, as well as the sub-basal lateral tooth of the anal segment of males. The muelleri species-group is sister to the remainder two species-groups.        Heteropteryx Gray, 1853 is a monotypical genus and only contains the type-species H. dilatata (Parkinson, 1798), which is found throughout Peninsular Malaysia, Thailand, Sumatra and Northeastern Borneo. This genus differs from Haaniella by the strongly conically elevated head, which posteriorly projects over the anterior margin of the pronotum, females being bright green or yellow in colour with plain and translucent pink alae and having distinct spines on the abdominal tergites, and males having a strongly shortened mesothorax and dull pink alae.        Lectotypes are designated for Haaniella parva Günther, 1944, Heteropteryx echinata Redtenbacher, 1906, Heteropteryx saussurei Redtenbacher, 1906 and Heteropteryx scabra Redtenbacher, 1906 to guarantee stability of these names.        Information on the habitats, host-plants, biology, life cycle, parasitism and captive breeding of the species of Heteropteryginae is presented and a list summarising all taxonomic changes presented herein.
    Matched MeSH terms: Animal Structures/anatomy & histology
  8. Grismer LL, Quah ES, Wood PL, Anuar S, Muin A, Davis HR, et al.
    Zootaxa, 2016 Jul 07;4136(3):461-90.
    PMID: 27395729 DOI: 10.11646/zootaxa.4136.3.3
    An integrative taxonomic analysis is used to delimit and describe three new species of Pseudocalotoes from the sky island archipelago of the Banjaran (=mountain range) Titiwangsa of Peninsular Malaysia. Pseudocalotes drogon sp. nov., from Fraser's Hill, Pahang is basal to the sister species P. larutensis from Bukit Larut, Perak in the Banjaran Bintang and the new species P. rhaegal sp. nov. from Cameron Highlands, Pahang. Pseudocalotes drogon sp. nov. is differentiated from all other species of Psuedocalotes by having the combination of a flat rostrum; seven postrostrals; an interparietal; 11 circumorbitals; five canthals; 7-10 superciliaries; one scale between the rostral and nasal; nine supralabials; eight infralabials; 10 postnasal-suborbital scales; four postmentals; five or six sublabials; five or six chinshields; 47 smooth, wide, gular scales; weak transverse gular and antehumeral folds; two enlarged scales between the ear and eye; enlarged upper and lower posttemporals; a single enlarged supratympanic; no enlarged postrictals; three large scales bordering the dorsal margin of the ear opening; large pretympanic scales; eight scales in the nuchal crest not separated by a gap; enlarged vertebral scales extending to the tip of the tail; keeled and non-plate-like scales on flanks; 51 midbody scales; midventrals smaller than dorsals; 19 subdigital lamellae on the fourth finger; 23 subdigital lamellae on the fourth toe; preaxial scales on third toe enlarged and spinose; subdigital lamellae not unicarinate; HW/HL 0.52; HL/SVL 0.31; no elbow or knee patches; and a male dewlap color of lime-green bearing a central yellow spot. Pseudocalotes rhaegal sp. nov. is differentiated from all other Psuedocalotes by having the combination of a convex rostrum; 6-8 postrostrals; an interparietal; nine or 10 circumorbitals; five canthals; 7-10 superciliaries; one or two scales between the rostral and nasal scales; eight or nine supralabials; seven or eight infralabials; 11 or 12 postnasal-suborbital scales; four postmentals; four or five chinshields; 40-45 smooth, wide, gular scales; no transverse gular fold; a weak antehumeral fold; three or four enlarged scales between the ear and eye; an enlarged upper and lower posttemporal; an enlarged supratympanic; no enlarged postrictals; no large scales bordering the upper margin of the ear opening or in the pretympanic region; 6-8 enlarged nuchal crest scales not separated by a gap; enlarged vertebral scales extending to the base of the tail; weakly keeled, non-plate-like scales on the flanks; 52-58 midbody scales; midventrals smaller than dorsals; 19-21 subdigital lamellae on the fourth finger; 22-26 subdigital lamellae on the fourth toe; preaxial scales on the third enlarged and rounded; subdigital lamellae not unicarinate; HW/HL 0.50-0.54; HL/SVL 0.28-0.30; no elbow or knee patches; and female dewlap color yellow bearing a purple base. The analyses also indicated that the new species, P. viserion sp. nov. from Genting Highlands, Pahang in the southern section of the Banjaran Titiwangsa is the sister species of P. flavigula from Cameron Highlands 121 km to the north and can be separated from all other species of Psuedocalotes by having the combination of three postrostrals; 10 circumorbitals; four or five canthals; 5-7 superciliaries; rostral and nasals in contact; supralabials contacting the nasal; six or seven supralabials; six or seven infralabials; two or three postmentals; 47 or 48 smooth, flat, gular scales; three chinshields; weak transverse gular and antehumeral folds; two enlarged scales between the ear and eye; an enlarged upper and lower posttemporal; an enlarged supratympanic; no enlarged postrictals; 7-9 nuchal crest scales lacking gaps and not extending beyond midbody; weakly keeled and plate-like scales on the flanks; 35-38 midbody scales; ventrals smaller than dorsals; 22 or 23 subdigital lamellae on the fourth finger; 26 or 27 subdigital lamellae on the fourth toe; preaxial scales on the third toe not modified; subdigital scales not unicarinate; HW/HL 0.62; no white marking below the eye; dewlap in males yellow; and no elbow or knee patches. Pseudocalotes rhaegal sp. nov. most likely occurs in syntopy with P. flavigula in Tanah Rata at Cameron Highlands and its discovery adds to a growing body of literature detailing the recent descriptions of several new, upland, closely related, sympatric species in Peninsular Malaysia. Another new population referred to here as Pseudocalotes sp. nov. from the Hala-Bala Wildlife Sanctuary, Betong District, Yala Province, Thailand is discussed. The discovery and description of these three new Pseudocalotes from the upland regions of Peninsular Malaysia continues to underscore the remarkably high herpetological diversity and ecological complexity in this sky island archipelago that is still underestimated, unappreciated, and unprotected.
    Matched MeSH terms: Animal Structures/anatomy & histology
  9. Sinev AY, Yusoff FM
    Zootaxa, 2016 Jun 01;4117(3):399-410.
    PMID: 27395182 DOI: 10.11646/zootaxa.4117.3.7
    Study of Ephemeroporus Frey, 1982 populations from Peninsular Malaysia revealed a new species. Ephemeroporus malaysiaensis sp. nov. is characterized by the presence of four-five large denticles on anal margin of postabdomen instead of two-three, and five distinctive pigmented spots on each valve. Pigmented spots on the valves were never recorded for any species of family Chydoridae. E. malaysiaensis sp. nov. seems to be another endemic Chydoridae species of South-East Asia. E. malaysiaensis sp. nov. is a rare species, associated with emergent macrophytes in the littoral zone of shallow lake. Most of Ephemeroporus populations from Peninsular Malaysia belong to eurybiotic Paleotropical species Ephemeroporus barroisi (Richard, 1984).
    Matched MeSH terms: Animal Structures/anatomy & histology
  10. Tan MK, Kamaruddin KN
    Zootaxa, 2016 May 12;4111(1):21-40.
    PMID: 27394894 DOI: 10.11646/zootaxa.4111.1.2
    Bukit Larut is a hill station at the southern tip of the Bintang Range, Perak of Peninsular Malaysia. While the biodiversity of Bukit Larut has been previously documented, its entomofauna, including the Orthoptera, remains relatively unknown. A faunistic survey was conducted in 2015 as part of the continuous exploration of the highlands in Malay Peninsula. An annotated species list of 71 (24 Caelifera and 47 Ensifera) species of Orthoptera from ten families (five from each order) is presented here. While the coverage of lineages in the orthopteran phylogeny is well-represented, the diversity in Bukit Larut is dominated by the three main families: Acrididae, Gryllidae and Tettigoniidae. Eight new locality records for Bukit Larut and/or Peninsular Malaysia and potential new species awaiting description highlight that the orthopteran diversity in Bukit Larut is not exhaustive.
    Matched MeSH terms: Animal Structures/anatomy & histology
  11. Cranston PS
    Zootaxa, 2016 May 09;4109(3):315-31.
    PMID: 27394867 DOI: 10.11646/zootaxa.4109.3.3
    The presence of the Afro-Australian genus Conochironomus Freeman, 1961 (Diptera: Chironomidae) in Asia has been recognised only informally. An unpublished thesis included Conochironomus from Singapore, and the genus has been keyed from Malaysia without named species. Here, the Sumatran Conochironomus tobaterdecimus (Kikuchi & Sasa, 1980) comb. n. is recorded from Singapore and Thailand. The species is transferred from Sumatendipes Kikuchi & Sasa, 1980, rendering the latter a junior synonym (syn. n.) of Conochironomus Freeman. Conochironomus nuengthai sp. n. and Conochironomus sawngthai sp. n. are described as new to science, based on adult males from Chiang Mai, Thailand. All species conform to existing generic diagnoses for all life stages, with features from male and female genitalia, pupal cephalic tubercles and posterolateral 'spurs' of tergite VIII providing evidence for species distinction. Some larvae are linked to C. tobaterdecimus through molecular barcoding. Variation in other larvae, which clearly belong to Conochironomus and are common throughout Thailand, means that they cannot be segregated to species. Larval habitats include pools in river beds, urban storage reservoirs, drains with moderately high nutrient loadings, and peat swamps. Endochironomus effusus Dutta, 1994 from north-eastern India may be a congener but may differ in adult morphology, thereby precluding formal new combination until discrepancies can be reconciled. Many problems with vouchering taxonomic and molecular material are identified that need to be rectified in the future.
    Matched MeSH terms: Animal Structures/anatomy & histology
  12. Grismer LL, Wood PL, Anuar S, Grismer MS, Quah ES, Murdoch ML, et al.
    Zootaxa, 2016 Apr 25;4105(5):401-29.
    PMID: 27394789 DOI: 10.11646/zootaxa.4105.5.1
    A new species of limestone cave-adapted gecko of the Cyrtodactylus pulchellus complex, C. hidupselamanya sp. nov., is described from an isolated karst formation at Felda Chiku 7, Kelantan, Peninsular Malaysia. This formation is scheduled to be completely quarried for its mineral content. From what we know about the life history of C. hidupselamanya sp. nov., this will result in its extinction. A new limestone forest-adapted species, C. lenggongensis sp. nov., from the Lenggong Valley, Perak was previously considered to be conspecific with C. bintangrendah but a re-evaluation of morphological, color pattern, molecular, and habitat preference indicates that it too is a unique lineage worthy of specific recognition. Fortunately C. lenggongensis sp. nov. is not facing extinction because its habitat is protected by the UNESCO Archaeological Heritage of the Lenggong Valley due to the archaeological significance of that region. Both new species can be distinguished from all other species of Cyrtodactylus based on molecular evidence from the mitochondrial gene ND2 and its flanking tRNAs as well as having unique combinations of morphological and color pattern characteristics. Using a time-calibrated BEAST analysis we inferred that the evolution of a limestone habitat preference and its apparently attendant morphological and color pattern adaptations evolved independently at least four times in the C. pulchellus complex between 26.1 and 0.78 mya.
    Matched MeSH terms: Animal Structures/anatomy & histology
  13. Dow RA, Afendy A, Rahman H
    Zootaxa, 2016 Apr 14;4103(4):390-5.
    PMID: 27394744 DOI: 10.11646/zootaxa.4103.4.7
    Telosticta fugispinosa sp. nov. (holotype male, from Borneo, Sabah, West Coast division, Crocker Range National Park, Inobong, Kimamabang waterfall stream system, 21 ix 2012, deposited in RMNH) is described from Kinabalu National Park and Crocker Range National Park in Sabah, Malaysian Borneo. It is distinguished from all other species of Telosticta by the form of the male anal appendages.
    Matched MeSH terms: Animal Structures/anatomy & histology
  14. Davis HR, Grismer LL, Klabacka RL, Muin MA, Quah ES, Anuar S, et al.
    Zootaxa, 2016 Apr 12;4103(2):137-53.
    PMID: 27394624 DOI: 10.11646/zootaxa.4103.2.4
    Twelve species of Ansonia occur on the Thai-Malay peninsula, of which, five from Peninsular Malaysia, form a monophyletic group. One of these, A. jeetsukumarani, is endemic to the Titiwangsa Mountain Range, in which, we discovered a new population of Ansonia that is not A. jeetsukumarani or even its closest relative. Based on morphology, color pattern, and molecular phylogenetic analyses using the mitochondrial genes 12s and 16s rRNA, we have determined that this new species, A. smeagol sp. nov., forms the sister lineage to an upland, monophyletic group composed of A. jeetsukumarani, A. lumut, A. malayana, and A. penangensis. We have noted similar biogeographic patterns in other taxa from the Titiwangsa Mountain Range in a number of upland lineages in Peninsular Malaysia. We hypothesize that the phylogeographic structure of these upland populations is a result of stochastic processes stemming from interaction of climate-driven forest dynamics and life histories.
    Matched MeSH terms: Animal Structures/anatomy & histology
  15. Karin BR, Das I, Bauer AM
    Zootaxa, 2016 Mar 22;4093(3):407-23.
    PMID: 27394504 DOI: 10.11646/zootaxa.4093.3.7
    We describe two new species of skinks from Gunung Penrissen, Sarawak, Malaysia, in northern Borneo, Tytthoscincus batupanggah sp. nov. and T. leproauricularis sp. nov. Morphological and molecular analyses both corroborate the two new species as unique compared to all other Tytthoscincus and additional Sphenomorphus that are candidates for taxonomic placement in the genus Tytthoscincus. Despite their phenotypic similarity and sympatric distribution, a molecular analysis shows that the new species are not sister taxa and exhibit a deep genetic divergence between each of their respective sister taxa. We discuss how historical climatic and geographic processes may have led to the co-distribution of two relatively distantly related phenotypically similar species. In light of these discoveries, we also emphasize the importance of conserving primary montane tropical rainforest for maintaining species diversity.
    Matched MeSH terms: Animal Structures/anatomy & histology
  16. Ng YF, Mound LA
    Zootaxa, 2016 Mar 07;4088(1):141-5.
    PMID: 27394331 DOI: 10.11646/zootaxa.4088.1.8
    The survey of Thysanoptera in peninsular Malaysia has been concentrated largely in areas growing crops and flowers around Kuala Lumpur, and the Cameron Highlands, and there are few records of these insects from native forests particularly in the northern part of the country. The two species described here were collected during a recent visit to Belum-Temengor Forest Complex, in Perak State, part of the second largest forested area on the peninsular, and connected to the Bang Lang National Park, in Yala Province, Thailand. This forest has been well known as home to a number of endangered animals, including Malayan tigers and Asian elephants, as well as remarkable plant species such as Rafflesia with the world's largest flowers (Abdullah et al. 2011). Despite this, forest areas are facing a major challenge from the insatiable demand for timber, palm oil and minerals, with an 80% increase in deforestation rate in Malaysia between 1990 and 2005 (FAO 2010). Forested land in peninsular Malaysia has been estimated at 5.88 million-ha or 44% of total area, but the coverage of reserved virgin forest is about 0.40 % or 23,002-ha (Dahlan 2008).
    Matched MeSH terms: Animal Structures/anatomy & histology
  17. Bezděk J
    Zootaxa, 2016 Mar 04;4085(4):504-24.
    PMID: 27394316 DOI: 10.11646/zootaxa.4085.4.3
    The species of the genus Coeligetes Jacoby, 1884 distributed in Malaysia and Indonesia are revised, illustrated and keyed. New species, C. howardi sp. nov. from Borneo is described. New synonymy Coeligetes submetallica Jacoby, 1884 = C. wilcoxi Mohamedsaid, 1994 (syn. nov.) is proposed. New genus and species Coeligetoides trifurcatus gen. nov., sp. nov. (Malaysia, Brunei, Indonesia and Thailand) is described, illustrated and compared with related genera.
    Matched MeSH terms: Animal Structures/anatomy & histology
  18. Ng PK, Riady R, Windarti W
    Zootaxa, 2016 Feb 29;4084(4):495-506.
    PMID: 27394277 DOI: 10.11646/zootaxa.4084.4.2
    A new species of gecarcinucid freshwater crab of the genus Parathelphusa H. Milne Edwards, 1853, is described from freshwater swamp habitats in Pekanbaru, Riau Province, in central-eastern Sumatra, Indonesia. Parathelphusa pardus sp. nov., has a very distinctive colour pattern, and in this respect, resembles P. maindroni (Rathbun, 1902) from Sumatra and Peninsular Malaysia; P. batamensis Ng, 1992, from Batam Island, Indonesia; P. reticulata Ng, 1990, from Singapore; and P. oxygona Nobili, 1901, from western Sarawak. It can be distinguished from these species and congeners by a suite of carapace, ambulatory leg, thoracic sternal and most importantly, male first gonopod characters.
    Matched MeSH terms: Animal Structures/anatomy & histology
  19. Steinhoff PO, Butler SG, Dow RA
    Zootaxa, 2016 Feb 18;4083(1):99-108.
    PMID: 27394221 DOI: 10.11646/zootaxa.4083.1.5
    The final instar larva of Orthetrum borneense Kimmins, 1936, is described and figured for the first time based on exuviae from three male and six female larvae collected in Sarawak, Borneo (East Malaysia). It is compared with an early instar larva, which was matched to the adult O. borneense by DNA barcoding, and the known larvae of other species of this genus that occur in the region.
    Matched MeSH terms: Animal Structures/anatomy & histology
  20. Cabra-García J, Brescovit AD
    Zootaxa, 2016 Jan 27;4069(1):1-183.
    PMID: 27395905 DOI: 10.11646/zootaxa.4069.1.1
    A taxonomic revision and phylogenetic analysis of the spider genus Glenognatha Simon, 1887 is presented. This analysis is based on a data set including 24 Glenognatha species plus eight outgroups representing three related tetragnathine genera and one metaine as the root. These taxa were scored for 78 morphological characters. Parsimony was used as the optimality criterion and a sensitivity analysis was performed using different character weighting concavities. Seven unambiguous synapomorphies support the monophyly of Glenognatha. Some internal clades within the genus are well-supported and its relationships are discussed. Glenognatha as recovered includes 27 species, four of them only known from males. A species identification key and distribution maps are provided for all. New morphological data are also presented for thirteen previously described species. Glenognatha has a broad distribution occupying the Neartic, Afrotropic, Indo-Malaya, Oceania and Paleartic regions, but is more diverse in the Neotropics. The following eleven new species are described: G. vivianae n. sp., G. caaguara n. sp., G. boraceia n. sp. and G. timbira n. sp. from southeast Brazil, G. caparu n. sp., G. januari n. sp. and G. camisea n. sp. from the Amazonian region, G. mendezi n. sp., G. florezi n. sp. and G. patriceae n. sp. from northern Andes and G. gouldi n. sp. from Southern United States and central Mexico. Females of G. minuta Banks, 1898, G. gaujoni Simon, 1895 and G. gloriae (Petrunkevitch, 1930) and males of G. globosa (Petrunkevitch, 1925) and G. hirsutissima (Berland, 1935) are described for the first time. Three new combinations are proposed in congruence with the phylogenetic results: G. argyrostilba (O. P.-Cambridge, 1876) n. comb., G. dentata (Zhu & Wen, 1978) n. comb. and G. tangi (Zhu, Song & Zhang, 2003) n. comb., all previously included in Dyschiriognatha Simon, 1893. The following taxa are newly synonymized: Dyschiriognatha montana Simon, 1897, Glenognatha mira Bryant, 1945 and Glenognatha maelfaiti Baert, 1987 with Glenognatha argyrostilba (Pickard-Cambridge, 1876) and Glenognatha centralis Chamberlin, 1925 with Glenognatha minuta Banks, 1898.
    Matched MeSH terms: Animal Structures/anatomy & histology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links