Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Lee ST, Wong PF, Hooper JD, Mustafa MR
    Phytomedicine, 2013 Nov 15;20(14):1297-305.
    PMID: 23920276 DOI: 10.1016/j.phymed.2013.07.002
    Alpha (α)-tomatine, a major saponin found in tomato has been shown to inhibit the growth of androgen-independent prostate cancer PC-3 cells. The effects of α-tomatine in combination with the chemotherapeutic agent paclitaxel against PC-3 cells were investigated in the present study. Combined treatment with a sub-toxic dose of α-tomatine and paclitaxel significantly decreased cell viability with concomitant increase in the percentage of apoptotic PC-3 cells. The combined treatment, however, had no cytotoxic effect on the non-neoplastic prostate RWPE-1 cells. Apoptosis of PC-3 cells was accompanied by the inhibition of PI3K/Akt pro-survival signaling, an increase in the expression of the pro-apoptotic protein BAD but a decrease in the expressions of anti-apoptotic proteins, Bcl-2 and Bcl-xL. Results from a mouse xenograft model showed the combined treatment completely suppressed subcutaneous tumor growth without significant side effects. Consistent with its in vitro anti-cancer effects, tumor materials from mice showed increased apoptosis of tumor cells with reduced protein expression of activated PI3K/Akt. These results suggest that the synergistic anti-cancer effects of paclitaxel and α-tomatine may be beneficial for refractory prostate cancer treatment.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
  2. Seifaddinipour M, Farghadani R, Namvar F, Bin Mohamad J, Muhamad NA
    Molecules, 2020 Apr 13;25(8).
    PMID: 32295069 DOI: 10.3390/molecules25081776
    Pistacia (Pistacia vera) hulls (PV) is a health product that has been determined to contain bioactive phytochemicals which have fundamental importance for biomedical use. In this study, PV ethyl acetate extraction (PV-EA) fractions were evaluated with the use of an MTT assay to find the most cytotoxic fraction, which was found to be F13b1/PV-EA. After that, HPTLC was used for identify the most active compounds. The antioxidant activity was analyzed with DPPH and ABTS tests. Apoptosis induction in MCF-7 cells by F13b1/PV-EA was validated via flow cytometry analysis and a distinctive nuclear staining method. The representation of genes like Caspase 3, Caspase 8, Bax, Bcl-2, CAT and SOD was assessed via a reverse transcription (RT_PCR) method. Inhabitation of Tubo breast cancer cell development was examined in the BALB-neuT mouse with histopathology observations. The most abundant active components available in our extract were gallic acid and the flavonoid quercetin. The F13b1/PV-EA has antiradical activity evidence by its inhibition of ABTS and DPPH free radicals. F13b1/PV-EA displayed against MCF-7 a suppressive effect with an IC50 value of 15.2 ± 1.35 µg/mL. Also, the expression of CAT, SOD, Caspase 3, Caspase 8 and Bax increased and the expression of Bcl-2 decreased. F13b1/PV-EA dose-dependently inhibited tumor development in cancer-induced mice. Thus, this finding introduces F13b1/PV-EA as an effectual apoptosis and antitumor active agent against breast cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  3. Rouhollahi E, Zorofchian Moghadamtousi S, Paydar M, Fadaeinasab M, Zahedifard M, Hajrezaie M, et al.
    PMID: 25652758 DOI: 10.1186/s12906-015-0534-6
    BACKGROUND: Curcuma purpurascens BI. (Zingiberaceae) commonly known as 'Koneng Tinggang' and 'Temu Tis' is a Javanese medicinal plant which has been used for numerous ailments and diseases in rural Javanese communities. In the present study, the apoptogenic activity of dichloromethane extract of Curcuma purpurascens BI. rhizome (DECPR) was investigated against HT-29 human colon cancer cells.
    METHODS: Acute toxicity study of DECPR was performed in Sprague-Dawley rats. Compounds of DECPR were analyzed by the gas chromatography-mass spectrometry-time of flight (GC-MS-TOF) analysis. Cytotoxic effect of DECPR on HT-29 cells was analyzed by MTT and lactate dehydrogenase (LDH) assays. Effects of DECPR on reactive oxygen species (ROS) formation and mitochondrial-initiated events were investigated using a high content screening system. The activities of the caspases were also measured using a fluorometric assay. The quantitative PCR analysis was carried out to examine the gene expression of Bax, Bcl-2 and Bcl-xl proteins.
    RESULTS: The in vivo acute toxicity study of DECPR on rats showed the safety of this extract at the highest dose of 5 g/kg. The GC-MS-TOF analysis of DECPR detected turmerone as the major compound in dichloromethane extract. IC50 value of DECPR towards HT-29 cells after 24 h treatment was found to be 7.79 ± 0.54 μg/mL. In addition, DECPR induced LDH release and ROS generation in HT-29 cells through a mechanism involving nuclear fragmentation and cytoskeletal rearrangement. The mitochondrial-initiated events, including collapse in mitochondrial membrane potential and cytochrome c leakage was also triggered by DECPR treatment. Initiator caspase-9 and executioner caspase-3 was dose-dependently activated by DECPR. The quantitative PCR analysis on the mRNA expression of Bcl-2 family of proteins showed a significant up-regulation of Bax associated with down-regulation in Bcl-2 and Bcl-xl mRNA expression.
    CONCLUSIONS: The findings presented in the current study showed that DECP suppressed the proliferation of HT-29 colon cancer cells and triggered the induction of apoptosis through mitochondrial-dependent pathway.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
  4. Hasima N, Ozpolat B
    Cell Death Dis, 2014;5:e1509.
    PMID: 25375374 DOI: 10.1038/cddis.2014.467
    Autophagy, a lysosomal degradation pathway for cellular constituents and organelles, is an adaptive and essential process required for cellular homeostasis. Although autophagy functions as a survival mechanism in response to cellular stressors such as nutrient or growth factor deprivation, it can also lead to a non-apoptotic form of programmed cell death (PCD) called autophagy-induced cell death or autophagy-associated cell death (type II PCD). Current evidence suggests that cell death through autophagy can be induced as an alternative to apoptosis (type I PCD), with therapeutic purpose in cancer cells that are resistant to apoptosis. Thus, modulating autophagy is of great interest in cancer research and therapy. Natural polyphenolic compounds that are present in our diet, such as rottlerin, genistein, quercetin, curcumin, and resveratrol, can trigger type II PCD via various mechanisms through the canonical (Beclin-1 dependent) and non-canonical (Beclin-1 independent) routes of autophagy. The capacity of these compounds to provide a means of cancer cell death that enhances the effects of standard therapies should be taken into consideration for designing novel therapeutic strategies. This review focuses on the autophagy- and cell death-inducing effects of these polyphenolic compounds in cancer.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
  5. Abdullah N, Sahibul-Anwar H, Ideris S, Hasuda T, Hitotsuyanagi Y, Takeya K, et al.
    Fitoterapia, 2013 Jul;88:1-6.
    PMID: 23570840 DOI: 10.1016/j.fitote.2013.03.028
    Goniothalamus macrophyllus (Blume) Hook. f. & Thoms. is a plant widely distributed in Malaysia. The aim of this study is to identify compounds from the roots of G. macrophyllus. The ground roots were extracted with aqueous methanol and partitioned sequentially with n-hexane, chloroform and butanol. Purification from this extracts afforded six compounds with two new compounds, namely goniolandrene-A (1), -B (2). The absolute configuration of goniolandrene B (2) was established by circular dichrosim. The compounds were cytotoxic against the P388 cells with IC50 values ranging from 0.42 to 160 μM. Goniothalamin (3) exhibited the highest inhibition of 0.42 μM.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  6. In LL, Arshad NM, Ibrahim H, Azmi MN, Awang K, Nagoor NH
    PMID: 23043547 DOI: 10.1186/1472-6882-12-179
    Oral cancers although preventable, possess a low five-year survival rate which has remained unchanged over the past three decades. In an attempt to find a more safe, affordable and effective treatment option, we describe here the use of 1'S-1'-acetoxychavicol acetate (ACA), a component of Malaysian ginger traditionally used for various medicinal purposes.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  7. Chong HZ, Rahmat A, Yeap SK, Md Akim A, Alitheen NB, Othman F, et al.
    PMID: 22471785 DOI: 10.1186/1472-6882-12-35
    Strobilanthes crispus has been traditionally used as antidiabetic, anticancer, diuretic, antilytic and laxative agent. However, cytotoxicity and antiproliferative effect of S. crispus is still unclear.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
  8. Ku WF, Tan SJ, Low YY, Komiyama K, Kam TS
    Phytochemistry, 2011 Dec;72(17):2212-8.
    PMID: 21889176 DOI: 10.1016/j.phytochem.2011.08.001
    A total of 20 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia angustiloba, of which two are hitherto unknown. One is an alkaloid of the angustilobine type (angustilobine C), while the other is a bisindole alkaloid angustiphylline, derived from the union of uleine and secovallesamine moieties. The structures of these alkaloids were established using NMR and MS analysis. Angustilobine C showed moderate cytotoxicity towards KB cells.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
  9. Ooi KL, Muhammad TS, Tan ML, Sulaiman SF
    J Ethnopharmacol, 2011 Jun 1;135(3):685-95.
    PMID: 21497647 DOI: 10.1016/j.jep.2011.04.001
    The decoction of the whole plant of Elephantopus mollis Kunth. is traditionally consumed to treat various free radical-mediated diseases including cancer and diabetes.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
  10. Lai HY, Lim YY, Kim KH
    PMID: 20429956 DOI: 10.1186/1472-6882-10-15
    Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally for the treatment of various skin diseases, stomach pain, urinary bladder complaints and sterilization of women. The aim of the study was to evaluate antioxidant, anticancer and antibacterial activity of five solvent fractions obtained from the methanol extract of the leaves of Blechnum orientale Linn.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
  11. Ahmad S, Sukari MA, Ismail N, Ismail IS, Abdul AB, Abu Bakar MF, et al.
    PMID: 25887035 DOI: 10.1186/s12906-015-0594-7
    Mangifera pajang Kosterm is a plant species from the mango family (Anacardiaceae). The fruits are edible and have been reported to have high antioxidant content. However, the detailed phytochemical studies of the plant have not been reported previously. This study investigates the phytochemicals and biological activities of different parts of Mangifera pajang.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  12. Sun X, Chen W, Dai W, Xin H, Rahmand K, Wang Y, et al.
    J Ethnopharmacol, 2020 Dec 05;263:112897.
    PMID: 32620264 DOI: 10.1016/j.jep.2020.112897
    ETHNOPHARMACOLOGICAL RELEVANCE: Piper sarmentosum Roxb. (Piperaceae) is a traditional medicinal plant widely distributed in India, Malaysia, Thailand, and the southeastern coastal areas of China including Fujian, Guangdong, and Guizhou. It has been used for centuries for the treatment of wind-cold cough, fever, rheumatism arthralgia, diarrhea dysentery, postpartum foot swelling, stomachache, toothache, diabetes, and traumatic injury.

    AIMS OF THE REVIEW: To critically anayze the literature for the botany, traditional uses, phytochemistry, pharmacology, toxicity, and clinical trials of P. sarmentosum in order to provide a scientific consensus for further research and discovery of potential candidate drugs.

    MATERIALS AND METHODS: The contents of this review were sourced from electronic databases including PubMed, SciFinder, Web of Science, Science Direct, Elsevier, Google Scholar, Chinese Knowledge On frastructure (CNKI), Wanfang, Chinese Scientific and Technological Periodical Database (VIP), Chinese Biomedical Database (CBM), Cochrane Controlled register of Clinical Trials, Clinical Trials. gov, and Chinese Clinical Trial Registry. Chinese medicine books published over the years were used to elucidate the traditional uses of P. sarmentosum and additional information was also collected from Yao Zhi website (https://db.yaozh.com/).

    RESULTS: Phytochemical analyses of the chemical constituents of P. sarmentosum include essential oil, alkaloids, flavonoids, lignans, and steroids. The literature supports the ethnomedicinal uses of P. sarmentosum for the treatment of cold, gastritis, and rheumatoid joint pain, and further confirms its relatively new pharmacological activities, including anti-inflammatory, antineoplastic, and antipyretic activities. Other biological roles such as anti-osteoporosis, antibacterial, antidepressant, anti-atherosclerotic, and hypoglycemic activities have also been reported. However, the methodologies employed in individual studies are limited.

    CONCLUSIONS: There is convincing evidence from both in vitro and in vivo studies supporting the traditional use of P. sarmentosum and it is imperative that natural bioactive compounds are examined further. More efforts should be focused on the pharmacodynamic constituents of P. sarmentosum to provide practical basis for quality control, and additional studies are needed to understand the mechanism of their action. Further studies on the comprehensive evaluation of medicinal quality and understandings of serum chemistry, multi-target network pharmacology, and molecular docking technology of P. sarmentosum are of great importance and should be considered.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  13. Alhuthali HM, Bradshaw TD, Lim KH, Kam TS, Seedhouse CH
    BMC Cancer, 2020 Jul 07;20(1):629.
    PMID: 32635894 DOI: 10.1186/s12885-020-07119-2
    BACKGROUND: Acute myeloid leukemia (AML) is a heterogenous hematological malignancy with poor long-term survival. New drugs which improve the outcome of AML patients are urgently required. In this work, the activity and mechanism of action of the cytotoxic indole alkaloid Jerantinine B (JB), was examined in AML cells.

    METHODS: We used a combination of proliferation and apoptosis assays to assess the effect of JB on AML cell lines and patient samples, with BH3 profiling being performed to identify early effects of the drug (4 h). Phosphokinase arrays were adopted to identify potential driver proteins in the cellular response to JB, the results of which were confirmed and extended using western blotting and inhibitor assays and measuring levels of reactive oxygen species.

    RESULTS: AML cell growth was significantly impaired following JB exposure in a dose-dependent manner; potent colony inhibition of primary patient cells was also observed. An apoptotic mode of death was demonstrated using Annexin V and upregulation of apoptotic biomarkers (active caspase 3 and cleaved PARP). Using BH3 profiling, JB was shown to prime cells to apoptosis at an early time point (4 h) and phospho-kinase arrays demonstrated this to be associated with a strong upregulation and activation of both total and phosphorylated c-Jun (S63). The mechanism of c-Jun activation was probed and significant induction of reactive oxygen species (ROS) was demonstrated which resulted in an increase in the DNA damage response marker γH2AX. This was further verified by the loss of JB-induced C-Jun activation and maintenance of cell viability when using the ROS scavenger N-acetyl-L-cysteine (NAC).

    CONCLUSIONS: This work provides the first evidence of cytotoxicity of JB against AML cells and identifies ROS-induced c-Jun activation as the major mechanism of action.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  14. Phang CW, Abd Malek SN, Karsani SA
    Biomed Pharmacother, 2021 May;137:110846.
    PMID: 33761587 DOI: 10.1016/j.biopha.2020.110846
    Chalcones and their derivatives belong to the flavonoid family. They have been extensively studied for their anticancer properties and some have been approved for clinical use. In this study, the in vivo anti-tumor activity of flavokawain C (FKC), a naturally occurring chalcone found in Kava (Piper methysticum Forst) was evaluated in HCT 116 cells (colon carcinoma). We also attempted to identify potential biomarkers and/or molecular targets in serum with applicability in predicting treatment outcome. The anti-tumor effects and toxicity of FKC were assessed using the xenograft nude mice model. Cisplatin was used as positive control. The anti-proliferative and apoptotic activities were then evaluated in tumor tissues treated with FKC. Furthermore, two-dimensional electrophoresis (2-DE) followed by protein identification using MALDI-TOF/TOF-MS/MS was performed to compare the serum proteome profiles between healthy nude mice and nude mice bearing HCT 116 tumor treated with vehicle solution and FKC, respectively. Our results showed that FKC treatment significantly inhibited HCT 116 tumor growth. In vivo toxicity studies showed that administration of FKC did not cause damage to major organs and had no significant effect on body weight. FKC was found to induce apoptosis in tumor, and this was associated with increased expression of cleaved caspase-3 and decreased expression of Ki67 in tumor tissues. Our proteomic analysis identified five proteins that changed in abundance - Ig mu chain C region (secreted form), GRP78, hemopexin, kininogen-1 and apolipoprotein E. Overall, our findings demonstrated the potential of FKC as an anti-cancer agent for the treatment of colon carcinoma.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  15. Omer FAA, Hashim NM, Ibrahim MY, Aldoubi AF, Hassandarvish P, Dehghan F, et al.
    BMC Complement Altern Med, 2017 Jul 17;17(1):366.
    PMID: 28716025 DOI: 10.1186/s12906-017-1867-0
    BACKGROUND: Beta-mangostin (BM) is a xanthone-type of natural compound isolated from Cratoxylum arborescens. This study aimed to examine the apoptosis mechanisms induced by BM in a murine monomyelocytic cell line (WEHI-3) in vitro and in vivo.

    METHODS: A WEHI-3 cell line was used to evaluate the cytotoxicity of BM by MTT. AO/PI and Hoechst 33342 dyes, Annexin V, multiparametric cytotoxicity 3 by high content screening (HCS); cell cycle tests were used to estimate the features of apoptosis and BM effects. Caspase 3 and 9 activities, ROS, western blot for Bcl2, and Bax were detected to study the mechanism of apoptosis. BALB/c mice injected with WEHI-3 cells were used to assess the apoptotic effect of BM in vivo.

    RESULTS: BM suppressed the growth of WEHI-3 cells at an IC50value of 14 ± 3 μg/mL in 24 h. The ROS production was increased inside the cells in the treated doses. Both caspases (9 and 3) were activated in treating WEHI-3 cells at 24, 48 and 72 h. Different signs of apoptosis were detected, such as cell membrane blebbing, DNA segmentation and changes in the asymmetry of the cell membrane. Another action by which BM could inhibit WEHI-3 cells is to restrain the cell cycle at the G1/G0 phase. In the in vivo study, BM reduced the destructive effects of leukaemia on the spleen and liver by inducing apoptosis in leukaemic cells.

    CONCLUSION: BM exerts anti-leukaemic properties in vitro and in vivo.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  16. Lee HM, Patel V, Shyur LF, Lee WL
    Phytomedicine, 2016 Nov 15;23(12):1535-1544.
    PMID: 27765374 DOI: 10.1016/j.phymed.2016.09.005
    BACKGROUND: Oral cancer is the sixth most common cancer worldwide and 90% of oral malignancies are caused by oral squamous cell carcinoma (OSCC). Curcumin, a phytocompound derived from turmeric (Curcuma longa) was observed to have anti-cancer activity which can be developed as an alternative treatment option for OSCC. However, OSCC cells with various clinical-pathological features respond differentially to curcumin treatment.

    HYPOTHESIS: Intracellular copper levels have been reported to correlate with tumor pathogenesis and affect the sensitivity of cancer cells to cytotoxic chemotherapy. We hypothesized that intracellular copper levels may affect the sensitivity of oral cancer cells to curcumin.

    METHODS: We analysed the correlation between intracellular copper levels and response to curcumin treatment in a panel of OSCC cell lines derived from oral cancer patients. Exogenous copper was supplemented in curcumin insensitive cell lines to observe the effect of copper on curcumin-mediated inhibition of cell viability and migration, as well as induction of oxidative stress and apoptosis. Protein markers of cell migration and oxidative stress were also analysed using Western blotting.

    RESULTS: Concentrations of curcumin which inhibited 50% OSCC cell viability (IC50) was reduced up to 5 times in the presence of 250 µM copper. Increased copper level in curcumin-treated OSCC cells was accompanied by the induction of intracellular ROS and increased level of Nrf2 which regulates oxidative stress responses in cells. Supplemental copper also inhibited migration of curcumin-treated cells with enhanced level of E-cadherin and decreased vimentin, indications of suppressed epithelial-mesenchymal transition. Early apoptosis was observed in combined treatment but not in treatment with curcumin or copper alone.

    CONCLUSION: Supplement of copper significantly enhanced the inhibitory effect of curcumin treatment on migration and viability of oral cancer cells. Together, these findings provide molecular insight into the role of copper in overcoming insensitivity of oral cancer cells to curcumin treatment, suggesting a new strategy for cancer therapy.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  17. Daddiouaissa D, Amid A, Kabbashi NA, Fuad FAA, Elnour AM, Epandy MAKMS
    J Ethnopharmacol, 2019 May 23;236:466-473.
    PMID: 30853648 DOI: 10.1016/j.jep.2019.03.003
    ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants have been used for ages by indigenous communities around the world to help humankind sustain its health. Graviola (Annona muricata), also called soursop, is a member of the Annonaceae family and is an evergreen plant that is generally distributed in tropical and subtropical areas of the world. Graviola tree has a long history of traditional use due to its therapeutic potential including anti-inflammatory, antimicrobial, antioxidant, insecticide and cytotoxic to tumor cells.

    AIM OF THE STUDY: This study aimed to investigate the in vitro antiproliferative effects and apoptotic events of the ionic liquid extract of Graviola fruit (IL-GFE) on MCF-7 breast cancer cells and their cytokinetics behaviour to observe their potential as a therapeutic alternative in cancer treatment.

    MATERIALS AND METHODS: The cell viability assay of the extract was measured using tetrazolium bromide (MTT assay) to observe the effects of Graviola fruit extract. Then the cytokinetics behaviour of MCF-7 cells treated with IL-GFE is observed by plotting the growth curve of the cells. Additionally, the cell cycle distribution and apoptosis mechanism of IL-GFE action on MCF-7 cancer cells were observed by flow cytometry.

    RESULTS: IL-GFE exhibited anti-proliferative activity on MCF-7 with the IC50 value of 4.75 μg/mL, compared to Taxol with an IC50 value of 0.99 μg/mL. IL- GFE also reduced the number of cell generations from 3.71 to 1.67 generations compared to 2.18 generations when treated with Taxol. Furthermore, the anti-proliferative activities were verified when the growth rate was decreased dynamically from 0.0077 h to 1 to 0.0035 h-1. Observation of the IL-GFE-treated MCF-7 under microscope demonstrated detachment of cells and loss of density. The growth inhibition of the cells by extracts was associated with cell cycle arrest at the G0/G1 phase, and phosphatidylserine externalisation confirms the anti-proliferation through apoptosis.

    CONCLUSIONS: ionic liquid Graviola fruit extract affect the cytokinetics behaviour of MCF-7 cells by reducing cell viability, induce apoptosis and cell cycle arrest at the G0/G1 phase.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  18. Tan BL, Norhaizan ME
    Molecules, 2019 Jul 10;24(14).
    PMID: 31295906 DOI: 10.3390/molecules24142527
    Many chemotherapeutic drugs have been used for the treatment of cancer, for instance, doxorubicin, irinotecan, 5-fluorouracil, cisplatin, and paclitaxel. However, the effectiveness of chemotherapy is limited in cancer therapy due to drug resistance, therapeutic selectivity, and undesirable side effects. The combination of therapies with natural compounds is likely to increase the effectiveness of drug treatment as well as reduce the adverse outcomes. Curcumin, a polyphenolic isolated from Curcuma longa, belongs to the rhizome of Zingiberaceae plants. Studies from in vitro and in vivo revealed that curcumin exerts many pharmacological activities with less toxic effects. The biological mechanisms underlying the anticancer activity of co-treatment curcumin and chemotherapy are complex and worth to discuss further. Therefore, this review aimed to address the molecular mechanisms of combined curcumin and chemotherapy in the treatment of cancer. The anticancer activity of combined nanoformulation of curcumin and chemotherapy was also discussed in this study. Taken together, a better understanding of the implication and underlying mechanisms of action of combined curcumin and chemotherapy may provide a useful approach to combat cancer diseases.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  19. Tang EL, Rajarajeswaran J, Fung S, Kanthimathi MS
    J Sci Food Agric, 2015 Oct;95(13):2763-71.
    PMID: 25582089 DOI: 10.1002/jsfa.7078
    BACKGROUND: Petroselinum crispum (English parsley) is a common herb of the Apiaceae family that is cultivated throughout the world and is widely used as a seasoning condiment. Studies have shown its potential as a medicinal herb. In this study, P. crispum leaf and stem extracts were evaluated for their antioxidant properties, protection against DNA damage in normal 3T3-L1 cells, and the inhibition of proliferation and migration of the MCF-7 cells.

    RESULTS: The dichloromethane extract of P. crispum exhibited the highest phenolic content (42.31 ± 0.50 mg GAE g(-1) ) and ferric reducing ability (0.360 ± 0.009 mmol g(-1) ) of the various extractions performed. The extract showed DPPH radical scavenging activity with an IC50 value of 3310.0 ± 80.5 µg mL(-1) . Mouse fibroblasts (3T3-L1) pre-treated with 400 µg mL(-1) of the extract showed 50.9% protection against H2 O2 -induced DNA damage, suggesting its potential in cancer prevention. The extract (300 µg mL(-1) ) inhibited H2 O2 -induced MCF-7 cell migration by 41% ± 4%. As cell migration is necessary for metastasis of cancer cells, inhibition of migration is an indication of protection against metastasis.

    CONCLUSION: Petroselinum crispum has health-promoting properties with the potential to prevent oxidative stress-related diseases and can be developed into functional food.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use
  20. Mohd Yusof YA
    Adv Exp Med Biol, 2016;929:177-207.
    PMID: 27771925
    Since antiquity, ginger or Zingiber officinale, has been used by humans for medicinal purposes and as spice condiments to enhance flavor in cooking. Ginger contains many phenolic compounds such as gingerol, shogaol and paradol that exhibit antioxidant, anti-tumor and anti-inflammatory properties. The role of ginger and its constituents in ameliorating diseases has been the focus of study in the past two decades by many researchers who provide strong scientific evidence of its health benefit. This review discusses research findings and works devoted to gingerols, the major pungent constituent of ginger, in modulating and targeting signaling pathways with subsequent changes that ameliorate, reverse or prevent chronic diseases in human studies and animal models. The physical, chemical and biological properties of gingerols are also described. The use of ginger and especially gingerols as medicinal food derivative appears to be safe in treating or preventing chronic diseases which will benefit the common population, clinicians, patients, researchers, students and industrialists.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links