Displaying publications 1 - 20 of 452 in total

Abstract:
Sort:
  1. Klaus A, Wan-Mohtar WAAQI, Nikolić B, Cvetković S, Vunduk J
    World J Microbiol Biotechnol, 2021 Jan 04;37(1):17.
    PMID: 33394203 DOI: 10.1007/s11274-020-02980-6
    Four types of mycelial extracts were derived from the airlift liquid fermentation (ALF) of Pleurotus flabellatus, namely exopolysaccharide (EX), endopolysaccharide (EN), hot water (WE), and hot alkali (AE) extracts. Such extracts were screened for their active components and biological potential. EN proved to be most effective in inhibition of lipid peroxidation (EC50 = 1.71 ± 0.02 mg/mL) and in Cupric ion reducing antioxidant capacity (CUPRAC) assay (EC50 = 2.91 ± 0.01 mg TE/g). AE exhibited most pronounced ability to chelate ferrous ions (EC50 = 4.96 ± 0.08 mg/mL) and to scavenge ABTS radicals (EC50 = 3.36 ± 0.03 mg TE/g). β-glucans and total phenols contributed most to the chelating ability and quenching of ABTS radicals. Inhibition of lipid peroxidation correlated best with total glucans, total proteins, and β-glucans. Total proteins contributed most to CUPRAC antioxidant capacity. Antifungal effect was determined against Candida albicans ATCC 10231 (MIC: 0.019-0.625 mg/mL; MFC: 0.039-2.5 mg/mL), and towards C. albicans clinical isolate (MIC and MFC: 10.0-20.0 mg/mL). Comparison of cytotoxicity against colorectal carcinoma HCT 116 cells (IC50: 1.8 ± 0.3-24.6 ± 4.2 mg/mL) and normal lung MRC-5 fibroblasts (IC50: 17.0 ± 4.2-42.1 ± 6.1 mg/mL) showed that EN, and especially AE possess selective anticancer activity (SI values 3.41 and 9.44, respectively). Slight genotoxicity was observed only for AE and EX, indicating the low risk concerning this feature. Notable antioxidative and anticandidal activities, selective cytotoxicity against colorectal carcinoma cells, and absence/low genotoxicity pointed out that ALF-cultivated P. flabellatus mycelium could be considered as a valuable source of bioactive substances.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  2. Jinfeng EC, Mohamad Rafi MI, Chai Hoon K, Kok Lian H, Yoke Kqueen C
    World J Microbiol Biotechnol, 2017 Jan;33(1):5.
    PMID: 27844243
    Plants are primary source of natural product drugs. However, with every new bioactive molecule reported from a plant source, there follows reports of endangered status or even extinction of a medicinally important plant due to over-harvesting. Hence, the attention turned towards fungi namely the endophytes, which reside within medicinally important plants and thus may have acquired their medicinal properties. Strobilanthes crispus is a traditional medicinal plant which has been used traditionally to treat kidney stones, diabetes, hypertension and cancer as well as having antimicrobial activities. In our efforts to bioprospect for anticancer and antimicrobial metabolites, two fungal endophytes most closely related to the Sordariomycetes sp. showed promising results. Sample (PDA)BL3 showed highest significant antimicrobial activity against 6 bacteria at 200 µg/disc whereas sample (PDA)BL5 has highest significant anticancer activity against all 5 cancer cell lines at concentrations ranging from 30 to 300 μg/ml. As for the gas chromatography coupled with mass spectrometry (GC-MS) results, a total of 20 volatile metabolites identified from sample (PDA)BL3 and 21 volatile metabolites identified from sample (PDA)BL5 having more than 1% abundance. Both GC-MS analysis showed that compound Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) has the highest abundance at 15.10% abundance for sample (PDA)BL3 and 19.00% abundance for sample (PDA)BL5 respectively. In conclusion, these results have shown bio-prospecting potential of endophytic fungi having antimicrobial and anticancer activities as well as its potential secondary metabolites of interest. Therefore, this work has further indicated the medicinal and industrial potential of endophytic fungi.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  3. Jamil NAM, Rashid NMN, Hamid MHA, Rahmad N, Al-Obaidi JR
    World J Microbiol Biotechnol, 2017 Dec 04;34(1):1.
    PMID: 29204733 DOI: 10.1007/s11274-017-2385-4
    Tiger's milk mushroom is known for its valuable medicinal properties, especially the tuber part. However, wild tuber is very hard to obtain as it grows underground. This study first aimed to cultivate tiger's milk mushroom tuber through a cultivation technique, and second to compare nutritional and mycochemical contents, antioxidant and cytotoxic activities and compound screening of the cultivated tuber with the wild tuber. Results showed an increase in carbohydrate content by 45.81% and protein content by 123.68% in the cultivated tuber while fat content reduced by 13.04%. Cultivated tuber also showed an increase of up to 64.21% for total flavonoid-like compounds and 62.51% of total β-D-glucan compared to the wild tuber. The antioxidant activity of cultivated tuber and wild tuber was 760 and 840 µg mL-1, respectively. The cytotoxic activity of boiled water extract of cultivated tuber against a human lung cancer cell line (A549) was 65.50 ± 2.12 µg mL-1 and against a human breast cancer cell line (MCF7) was 19.35 ± 0.11 µg mL-1. β-D-glucan extract from the purification of boiled water extract of cultivated tuber showed cytotoxic activity at 57.78 ± 2.29 µg mL-1 against A549 and 33.50 ± 1.41 µg mL-1 against MCF7. However, the β-glucan extract from wild tuber did not show a cytotoxic effect against either the A549 or MCF7 cell lines. Also, neither of the extracts from cultivated tuber and wild tuber showed an effect against a normal cell line (MRC5). Compound profiling through by liquid chromatography mass spectrometry (LC/MS) showed the appearance of new compounds in the cultivated tuber. In conclusion, our cultivated tuber of tiger's milk mushroom using a new recipe cultivation technique showed improved nutrient and bioactive compound contents, and antioxidant and cytotoxic activities compared to the wild tuber. Further investigations are required to obtain a better quality of cultivated tuber.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  4. Jaganathan SK, Supriyanto E, Mandal M
    World J Gastroenterol, 2013 Nov 21;19(43):7726-34.
    PMID: 24282361 DOI: 10.3748/wjg.v19.i43.7726
    AIM: To investigate the events associated with the apoptotic effect of p-Coumaric acid, one of the phenolic components of honey, in human colorectal carcinoma (HCT-15) cells.

    METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium-bromide assay was performed to determine the antiproliferative effect of p-Coumaric acid against colon cancer cells. Colony forming assay was conducted to quantify the colony inhibition in HCT 15 and HT 29 colon cancer cells after p-Coumaric acid treatment. Propidium Iodide staining of the HCT 15 cells using flow cytometry was done to study the changes in the cell cycle of treated cells. Identification of apoptosis was done using scanning electron microscope and photomicrograph evaluation of HCT 15 cells after exposing to p-Coumaric acid. Levels of reactive oxygen species (ROS) of HCT 15 cells exposed to p-Coumaric acid was evaluated using 2', 7'-dichlorfluorescein-diacetate. Mitochondrial membrane potential of HCT-15 was assessed using rhodamine-123 with the help of flow cytometry. Lipid layer breaks associated with p-Coumaric acid treatment was quantified using the dye merocyanine 540. Apoptosis was confirmed and quantified using flow cytometric analysis of HCT 15 cells subjected to p-Coumaric acid treatment after staining with YO-PRO-1.

    RESULTS: Antiproliferative test showed p-Coumaric acid has an inhibitory effect on HCT 15 and HT 29 cells with an IC₅₀ (concentration for 50% inhibition) value of 1400 and 1600 μmol/L respectively. Colony forming assay revealed the time-dependent inhibition of HCT 15 and HT 29 cells subjected to p-Coumaric acid treatment. Propidium iodide staining of treated HCT 15 cells showed increasing accumulation of apoptotic cells (37.45 ± 1.98 vs 1.07 ± 1.01) at sub-G1 phase of the cell cycle after p-Coumaric acid treatment. HCT-15 cells observed with photomicrograph and scanning electron microscope showed the signs of apoptosis like blebbing and shrinkage after p-Coumaric acid exposure. Evaluation of the lipid layer showed increasing lipid layer breaks was associated with the growth inhibition of p-Coumaric acid. A fall in mitochondrial membrane potential and increasing ROS generation was observed in the p-Coumaric acid treated cells. Further apoptosis evaluated by YO-PRO-1 staining also showed the time-dependent increase of apoptotic cells after treatment.

    CONCLUSION: These results depicted that p-Coumaric acid inhibited the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway.

    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  5. Khamisipour G, Jadidi-Niaragh F, Jahromi AS, Zandi K, Hojjat-Farsangi M
    Tumour Biol., 2016 Aug;37(8):10021-39.
    PMID: 27155851 DOI: 10.1007/s13277-016-5059-1
    Resistance to chemotherapy agents is a major challenge infront of cancer patient treatment and researchers. It is known that several factors, such as multidrug resistance proteins and ATP-binding cassette families, are cell membrane transporters that can efflux several substrates such as chemotherapy agents from the cell cytoplasm. To reduce the adverse effects of chemotherapy agents, various targeted-based cancer therapy (TBCT) agents have been developed. TBCT has revolutionized cancer treatment, and several agents have shown more specific effects on tumor cells than chemotherapies. Small molecule inhibitors and monoclonal antibodies are specific agents that mostly target tumor cells but have low side effects on normal cells. Although these agents have been very useful for cancer treatment, however, the presence of natural and acquired resistance has blunted the advantages of targeted therapies. Therefore, development of new options might be necessary. A better understanding of tumor cell resistance mechanisms to current treatment agents may provide an appropriate platform for developing and improving new treatment modalities. Therefore, in this review, different mechanisms of tumor cell resistance to chemotherapy drugs and current targeted therapies have been described.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  6. Liew K, Yong PV, Lim YM, Navaratnam V, Ho AS
    Toxicol In Vitro, 2014 Apr;28(3):335-9.
    PMID: 24291160 DOI: 10.1016/j.tiv.2013.11.008
    Metastasis contributes to the escalating mortality rate among cancer patients worldwide. The search for novel and more effective anti-metastatic agent is crucial owing to the lack of anticancer drugs that can successfully combat metastasis. Hence, this study aims to examine the effects of 2-Methoxy-1,4-Naphthoquinone (MNQ) towards the metastasis of MDA-MB-231 cells. In invasion assays, the number of cells permeating across a Matrigel barrier was found to be decreased in a dose-dependent manner upon treatment with MNQ (0-7.5 μM). In wound-healing migration assays, MNQ exhibited dose-dependent inhibition of cell migration in which significant reduction in the zone of closure was observed as compared to untreated controls. Furthermore, the proteolytic activity of a pivotal metastatic mediator, matrix metalloproteinase-9 (MMP-9) was also downregulated by MNQ as determined by gelatin zymography. This study reports for the first time, the ability of MNQ to inhibit the invasion and migration characteristics of a highly metastatic MDA-MB-231 cancer cell line.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  7. Ng WK, Yazan LS, Ismail M
    Toxicol In Vitro, 2011 Oct;25(7):1392-8.
    PMID: 21609759 DOI: 10.1016/j.tiv.2011.04.030
    Thymoquinone (TQ), the active constituent of Nigella sativa or black cumin exhibited cytotoxic effects in several cancer cell lines. In this study, the cytotoxicity of TQ in human cervical squamous carcinoma cells (SiHa) was investigated. TQ was cytotoxic towards SiHa cells with IC50 values of 10.67 ± 0.12 and 9.33 ± 0.19 μg/mL as determined by MTT assay and trypan blue dye exclusion test, respectively, after 72 h of incubation. TQ was more cytotoxic towards SiHa cells compared to cisplatin. Interestingly, TQ was less cytotoxic towards the normal cells (3T3-L1 and Vero). Cell cycle analysis performed by flowcytometer showed a significant increase in the accumulation of TQ-treated cells at sub-G1 phase, indicating induction of apoptosis by the compound. Apoptosis induction by TQ was further confirmed by Annexin V/PI and AO/PI staining. Significant elevation of p53 and down-regulation of the anti-apoptotic Bcl-2 protein was found in the treated cells, without any changes in the expression of the pro-apoptotic Bax protein. In conclusion, thymoquinone from N. sativa was more potent than cisplatin in elimination of SiHa cells via apoptosis with down-regulation of Bcl-2 protein.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  8. Quah SY, Wong CC, Wong HC, Ho KL, Abdul Manan N, Deb PK, et al.
    Toxicol Appl Pharmacol, 2021 08 15;425:115605.
    PMID: 34087331 DOI: 10.1016/j.taap.2021.115605
    Chemoresistance poses a major hurdle to cancer treatments. Andrographolide-derived SRJ09 and SRJ23 were reported to exhibit potent, selective inhibitory activities against colon and prostate cancer cells, respectively. In this study, previously developed resistant colon (HCT-116rst09) and prostate (PC-3rst23) cancer cell lines were used to elucidate the molecular mechanisms contributing to chemoresistance. Cytotoxic effects of SRJ09 and SRJ23 on both parental and resistant cells were investigated. Cell cycle distributions in HCT-116rst09 cells following SRJ09 treatment were analysed using flow cytometry. Whole-genome microarray analysis was performed on both parental and resistant cells to obtain differential gene expression profiles. Microarray data were subjected to protein-protein interaction network, functional enrichment, and pathway analyses. Reverse transcription-polymerase chain reaction (RT-PCR) was used to validate the changes in expression levels of selected genes. Besides morphological changes, HCT-116rst09 cells showed 7.0-fold resistance to SRJ09 while PC-3rst23 cells displayed a 5.5-fold resistance to SRJ23, as compared with their respective parental cells. G0/G1-phase cell cycle arrest was observed in HCT-116rst09 cells upon SRJ09 treatment. Collectively, 77 and 21 genes were found differentially modulated in HCT-116rst09 and PC-3rst23 cells, respectively. Subsequent bioinformatics analysis revealed several genes associated with FGFR4 and PI3K pathways, and cancer stemness, were chemoresistance mediators in HCT-116rst09 cells. RT-PCR confirmed the HMOX1 upregulation and ATG12 downregulation protected the PC-3rst23 cells from SRJ23 cytotoxicity. In conclusion, acquired chemoresistance to SRJ09 and SRJ23 in colon and prostate cancer cells, respectively, could be attributed to the alterations in the expression of genes such as those related to PI3K and autophagy pathways.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  9. Nesaretnam K, Jin Lim E, Reimann K, Lai LC
    Toxicology, 2000 Oct 26;151(1-3):117-26.
    PMID: 11074306
    Breast cancer is the most common cancer in women worldwide. The growth of breast cancer cells is either hormone-dependent or hormone-independent. Both types are represented in vitro by the estrogen-receptor positive (ER+) MCF-7 and the estrogen-receptor negative (ER-) MDA-MB-231 cell lines, respectively. The pS2 gene is an estrogen-regulated gene and serves as a marker for the ER+ tumours. Carotenoids are pigments with anti-cancer properties besides having pro-vitamin A, antioxidant and free-radical quenching effects. This study was designed firstly, to compare the effect of palm oil carotene concentrate with retinoic acid on the growth of the ER+ MCF-7 and the ER- MDA-MB-231 cells; and secondly to evaluate the effect of the palm oil carotene concentrate on the regulation of pS2 mRNA. The growth experiments were performed with monolayer cells seeded in phenol red free RPMI 1640 culture media and subsequently treated with varying concentrations of either retinoic acid or palm oil carotenoids. The cell numbers were determined at the start of each experiment and then at successive time intervals. The results showed that the palm oil carotene concentrate caused dose-dependent inhibition of estradiol-stimulated growth of MCF-7 cells but did not affect the proliferation of MDA-MB-231 cells. Retinoic acid caused similar, albeit more potent effects, as significant inhibition was observed at lower concentrations than the palm oil carotenoids. In the pS2 gene expression experiment, cell monolayers were treated with the carotene concentrate (10(-6) M), either with or without supplemented estradiol (10(-8) M), and subsequently the RNA was extracted. Northern blotting was performed and the regulation of pS2 mRNA determined using a 32P-labelled pS2 cDNA probe. The results showed that the palm oil carotene concentrate did not affect the expression of pS2 mRNA and are therefore independent of the estrogen-regulated pathway.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  10. Jaganathan SK, Mondhe D, Wani ZA, Supriyanto E
    ScientificWorldJournal, 2014;2014:912051.
    PMID: 25506620 DOI: 10.1155/2014/912051
    People affected with leukemia are on the rise and several strategies were employed to thwart this deadly disease. Recent decade of research focuses on phenolic constituents as a tool for combating various inflammatory, cancer, and cardiac diseases. Our research showed honey and its phenolic constituents as crusaders against cancer. In this work, we explored the antileukemic activity of selected honey and one of its phenolic constituent eugenol against L1210 leukemia animal model. Results of this experiment showed that the selected honey samples as well as eugenol after intraperitoneal injection could not increase the median survival time (MST) of animals. Further, there was only slight marginal increase in the %T/C values of honey and eugenol treated groups. The number of phenolics present in the honey may not be a prime factor to promote antileukemic effect since there was no difference in the MST of two different honeys tested. This study limits the use of selected honey and eugenol against leukemia animal model.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  11. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  12. Manaharan T, Thirugnanasampandan R, Jayakumar R, Ramya G, Ramnath G, Kanthimathi MS
    ScientificWorldJournal, 2014;2014:239508.
    PMID: 25431779 DOI: 10.1155/2014/239508
    Antimetastatic and anti-inflammatory activities of Ocimum sanctum essential oil (OSEO) have been assessed in this study. OSEO at the concentration of 250 μg/mL and above showed a significant ((*) P < 0.05) decrease in the number of migrated cancer cells. In addition, OSEO at concentration of 250 μg/mL and above suppressed MMP-9 activity in lipopolysaccharide (LPS) induced inflammatory cells. A dose-dependent downregulation of MMP-9 expression was observed with the treatment of OSEO compared to the control. Our findings indicate that OSEO has both antimetastatic and anti-inflammatory potentials, advocating further investigation for clinical applications in the treatment of inflammation associated cancer.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  13. Ahmad B, Rehman MU, Amin I, Arif A, Rasool S, Bhat SA, et al.
    ScientificWorldJournal, 2015;2015:816364.
    PMID: 26106644 DOI: 10.1155/2015/816364
    Humans have been using natural products for medicinal use for ages. Natural products of therapeutic importance are compounds derived from plants, animals, or any microorganism. Ginger is also one of the most commonly used condiments and a natural drug in vogue. It is a traditional medicine, having some active ingredients used for the treatment of numerous diseases. During recent research on ginger, various ingredients like zingerone, shogaol, and paradol have been obtained from it. Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) is a nontoxic and inexpensive compound with varied pharmacological activities. It is the least pungent component of Zingiber officinale. Zingerone is absent in fresh ginger but cooking or heating transforms gingerol to zingerone. Zingerone closely related to vanillin from vanilla and eugenol from clove. Zingerone has potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic, and so forth properties. Besides, it displays the property of enhancing growth and immune stimulation. It behaves as appetite stimulant, anxiolytic, antithrombotic, radiation protective, and antimicrobial. Also, it inhibits the reactive nitrogen species which are important in causing Alzheimer's disease and many other disorders. This review is written to shed light on the various pharmacological properties of zingerone and its role in alleviating numerous human and animal diseases.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  14. Veerasamy T, Eugin Simon S, Tan KO
    Int J Biochem Cell Biol, 2021 08;137:106016.
    PMID: 34082133 DOI: 10.1016/j.biocel.2021.106016
    Conventional chemotherapy relies on the cytotoxicity of chemo-drugs to inflict destructive effects on tumor cells. However, as most tumor cells develop resistance to chemo-drugs, small doses of chemo-drugs are unlikely to provide significant clinical benefits in cancer treatment while high doses of chemo-drugs have been shown to impact normal human cells negatively due to the non-specific nature and cytotoxicity associated with chemo-drugs. To overcome this challenge, sensitizations of tumor cells with bioactive molecules that specifically target the pro-survival and pro-apoptosis signaling pathways of the tumor cells are likely to increase the therapeutic impacts and improve the clinical outcomes by reducing the dependency and adverse effects associated with using high doses of chemo-drugs in cancer treatment. This review focuses on emerging strategies to enhance the sensitization of tumor cells toward cancer therapies based on our understanding of tumor cell biology and underlying signaling pathways.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  15. Shintani T, Rosli SNZ, Takatsu F, Choon YF, Hayashido Y, Toratani S, et al.
    J Steroid Biochem Mol Biol, 2016 11;164:79-84.
    PMID: 26444325 DOI: 10.1016/j.jsbmb.2015.09.043
    We have previously reported that 1,25(OH)2D3 inhibits NF-κB activity and thus inhibits growth of OSCC cells in serum-free culture and down-regulates HBp17/FGFBP-1 expression, which is important for cancer cell growth and angiogenesis. Here, we have investigated the effects of ED-71, an analog of vitamin D3 (VD) on OSCC cell lines in serum-free culture. It is known that ED-71 has a stronger inhibitory effect on bone resorption compared to VD and other VD analogs. To the best of our knowledge, there was no report examining the potential of ED-71 as an anti-cancer agent for OSCC. We found that ED-71 is able to inhibit the growth of cancer cell lines at a concentration of hundred times lower than calcitriol. As Cyp24A1 was reportedly induced in cancer cells, we measured the expression of CYP24A1 in OSCC cell lines (NA and UE), A431 epidermoid carcinoma and normal fibroblast cell (gfi) in serum-free culture. As a result, CYP24A1 mRNA and the protein expression in the OSCC cells treated with ED-71 increased in a dose-dependent manner. However, in vivo experiment, in which the A431 cells were implanted in mice, tumor formation was reduced by the ED-71 treatment with no significant difference between Cyp24A1 expression in the tumors of ED-71-treated and control group, as analyzed by western blotting and immunohistochemistry. These results suggest that ED-71 is a potential anti-cancer agent for OSCC.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  16. Manikam SD, Manikam ST, Stanslas J
    J Pharm Pharmacol, 2009 Jan;61(1):69-78.
    PMID: 19126299 DOI: 10.1211/jpp/61.01.0010
    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2).
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  17. Lim CL, Nogawa T, Uramoto M, Okano A, Hongo Y, Nakamura T, et al.
    J Antibiot (Tokyo), 2014 Apr;67(4):323-9.
    PMID: 24496142 DOI: 10.1038/ja.2013.144
    Two novel quinomycin derivatives, RK-1355A (1) and B (2), and one known quinomycin derivative, UK-63,598 (3), were isolated from a microbial metabolites fraction library of Streptomyces sp. RK88-1355 based on Natural Products Plot screening. The structural elucidation of 1 and 2 was established through two-dimensional NMR and mass spectrometric measurements. They belong to a class of quinomycin antibiotics family having 3-hydroxyquinaldic acid and a sulfoxide moiety. They are the first examples for natural products as a quinoline type quinomycin having a sulfoxide on the intramolecular cross-linkage. They showed potent antiproliferative activities against various cancer cell lines and they were also found to exhibit moderate antibacterial activity.
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  18. Kalyon B, Tan GY, Pinto JM, Foo CY, Wiese J, Imhoff JF, et al.
    J Antibiot (Tokyo), 2013 Oct;66(10):609-16.
    PMID: 23820614 DOI: 10.1038/ja.2013.53
    Langkocyclines A1-A3 and B1 and B2, five new angucycline antibiotics produced by Streptomyces sp. Acta 3034, were detected in the course of our HPLC-diode array screening. The producing strain was isolated from the rhizospheric soil of a Clitorea sp. collected from Burau Bay, Langkawi, Malaysia, and was characterized by morphological, physiological and chemotaxonomic features in addition to 16S ribosomal RNA gene sequence information. Strain Acta 3034 is closely related to Streptomyces psammoticus NBRC 13971(T) and Streptomyces lanatus NBRC 12787(T). Langkocyclines consist of an angular tetracyclic benz[a]anthracene skeleton and hydrolyzable O-glycosidic sugar moieties. The yellow-colored A-type langkocyclines differ in their aglycon from the blue-lilac-colored B-type langkocyclines. The A-type langkocycline aglycon is identical to that of aquayamycin and urdamycin A. The chemical structures of the langkocyclines were elucidated by HR-MS, 1D and 2D NMR experiments. They are biologically active against Gram-positive bacteria and exhibit a moderate antiproliferative activity against various human tumor cell lines.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
  19. Nogawa T, Okano A, Lim CL, Futamura Y, Shimizu T, Takahashi S, et al.
    J Antibiot (Tokyo), 2017 02;70(2):222-225.
    PMID: 27599762 DOI: 10.1038/ja.2016.113
    Matched MeSH terms: Antineoplastic Agents/pharmacology
  20. Ichwan SJ, Al-Ani IM, Bilal HG, Suriyah WH, Taher M, Ikeda MA
    Chin J Physiol, 2014 Oct 31;57(5):249-55.
    PMID: 25241984 DOI: 10.4077/CJP.2014.BAB190
    Thymoquinone (TQ) is the main constituent of black seed (Nigella sativa, spp) essential oil which shows promising in vitro and in vivo anti-neoplastic activities in different tumor cell lines. However, to date there are only a few reports regarding the apoptotic effects of TQ on cervical cancer cells. Here, we report that TQ stimulated distinct apoptotic pathways in two human cervical cell lines, Siha and C33A. TQ markedly induced apoptosis as demonstrated by cell cycle analysis in both cell lines. Moreover, quantitative PCR revealed that TQ induced apoptosis in Siha cells through p53-dependent pathway as shown by elevated level of p53-mediated apoptosis target genes, whereas apoptosis in C33A cells was mainly associated with the activation of caspase-3. These results support previous findings on TQ as a potential therapeutic agent for human cervical cancer.
    Matched MeSH terms: Antineoplastic Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links