Displaying publications 1 - 20 of 653 in total

Abstract:
Sort:
  1. Mollataghi A, Hadi AH, Awang K, Mohamad J, Litaudon M, Mukhtar MR
    Molecules, 2011 Aug 04;16(8):6582-90.
    PMID: 21818061 DOI: 10.3390/molecules16086582
    A new neolignan, 3,4-dimethoxy-3',4'-methylenedioxy-2,9-epoxy-6,7-cyclo-1,8-neolign-11-en-5(5H)-one, which has been named (+)-kunstlerone (1), together with six known alkaloids: (+)-norboldine (2), (+)-N-methylisococlaurine (3), (+)-cassythicine (4), (+)-laurotetanine (5), (+)-boldine (6) and (-)-pallidine (7), were isolated from the leaves of Beilschmiedia kunstleri. The structures were established through various spectroscopic methods notably 1D- and 2D-NMR, UV, IR and LCMS-IT-TOF. (+)- Kunstlerone (1) showed a strong antioxidant activity, with an SC(50) of 20.0 µg/mL.
    Matched MeSH terms: Antioxidants/pharmacology
  2. Mollataghi A, Hadi AH, Cheah SC
    Molecules, 2012 Apr 05;17(4):4197-208.
    PMID: 22481540 DOI: 10.3390/molecules17044197
    A new dienamide, (2E,4E)-7-(3',4'-dimethoxyphenyl)-N-ethyl-6-(R)-hydroxyhepta- 2,4-dienamide, named (-)-kunstleramide (1), were isolated from the bark of Beilschmiedia kunstleri Gamble together with one neolignan: (+)-kunstlerone (2) and seven known alkaloids: (+)-nornuciferine (3), (-)-isocaryachine (4), (+)-cassythicine (5), (+)-laurotetanine (6), (+)-boldine (7), noratherosperminine (8), (+)-N-demethylphyllocaryptine (9). Their structures were established from spectroscopic techniques, most notably 1D- and 2D-NMR, UV, IR, OR, circular dichroism (CD) spectra and LCMS-IT-TOF. (-)-Kunstleramide (1) exhibited very poor dose-dependent inhibition of DPPH activity, with an IC₅₀ value of 179.5 ± 4.4 μg/mL, but showed a moderate cytotoxic effect on MTT assays of A375, A549, HT-29, PC-3 and WRL-68 with EC₅₀ values of 64.65, 44.74, 55.94, 73.87 and 70.95 µg/mL, respectively.
    Matched MeSH terms: Antioxidants/pharmacology*
  3. Chan XH, Sabaratnam V, Abdullah N, Phan CW
    Int J Med Mushrooms, 2020;22(6):521-534.
    PMID: 32865894 DOI: 10.1615/IntJMedMushrooms.2020035031
    The research field of culinary and medicinal mushrooms has been well developed since the first relevant publication in 1966. However, to date, there has been no bibliometric analysis published specifically for this field. This study aimed to assess the most influential publications as well as the research trends and important drivers in the field of culinary and medicinal mushrooms. Scopus was used to identify relevant publications and the 1000 most-cited publications were identified and analyzed. Bradford's law of scattering shows one-third of the papers were published in 14 core journals, with a total of 102 papers published in International Journal of Medicinal Mushrooms. There is an insignificant negative correlation (Pearson's correlation coefficient, r = -0.355) between the journal impact factor and publication count. VOSviewer was used to generate a country network. China represents Asia's research center in this field, having contributed 20% of the 1000 most-cited publications. A term map was also created to visualize the co-occurrence of key terms in the domain. Different biological activities such as antioxidant and antitumor properties of mushrooms appeared to be a recurring topic in this field. Wasser (2003) showed the highest citation count (n = 1282), which is almost double the second most-cited publication (n = 611). There is a weak positive correlation (r = +0.237) between the years since publication and total citation count. In conclusion, this bibliometric study will assist researchers to comprehend the current status of the research on culinary and medicinal mushrooms, and to visualize the future impact of such an important field.
    Matched MeSH terms: Antioxidants/pharmacology
  4. Kalantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim R, Bin Ariff A, Izadiyan Z, et al.
    Molecules, 2017 Sep 30;22(10).
    PMID: 28974019 DOI: 10.3390/molecules22101645
    Zerumbone (ZER) is a phytochemical isolated from the subtropical Zingiberaceae family and as a natural compound it has different biomedical properties such as antioxidant, anti-inflammatory anti-proliferative activity. ZER also has effects on angiogenesis and acts as an antitumor drug in the treatment of cancer, showing selective toxicity toward various cancer cell lines. Several techniques also have been established for extraction of ZER from the rhizomes of ginger. This review paper is an overview of recent research about different extraction methods and their efficiencies, in vivo and vitro investigations of ZER and also its prominent chemopreventive properties and treatment mechanisms. Most of the studies mentioned in this review paper may be useful use as a knowledge summary to explain ZER extraction and anticancer activities, which will show a way for the development of strategies in the treatment of malignancies using ZER.
    Matched MeSH terms: Antioxidants/pharmacology
  5. Ahmad B, Rehman MU, Amin I, Arif A, Rasool S, Bhat SA, et al.
    ScientificWorldJournal, 2015;2015:816364.
    PMID: 26106644 DOI: 10.1155/2015/816364
    Humans have been using natural products for medicinal use for ages. Natural products of therapeutic importance are compounds derived from plants, animals, or any microorganism. Ginger is also one of the most commonly used condiments and a natural drug in vogue. It is a traditional medicine, having some active ingredients used for the treatment of numerous diseases. During recent research on ginger, various ingredients like zingerone, shogaol, and paradol have been obtained from it. Zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone) is a nontoxic and inexpensive compound with varied pharmacological activities. It is the least pungent component of Zingiber officinale. Zingerone is absent in fresh ginger but cooking or heating transforms gingerol to zingerone. Zingerone closely related to vanillin from vanilla and eugenol from clove. Zingerone has potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic, and so forth properties. Besides, it displays the property of enhancing growth and immune stimulation. It behaves as appetite stimulant, anxiolytic, antithrombotic, radiation protective, and antimicrobial. Also, it inhibits the reactive nitrogen species which are important in causing Alzheimer's disease and many other disorders. This review is written to shed light on the various pharmacological properties of zingerone and its role in alleviating numerous human and animal diseases.
    Matched MeSH terms: Antioxidants/pharmacology
  6. Aslam R, Alam MS, Ali A, Tao Y, Manickam S
    Ultrason Sonochem, 2023 Jan;92:106268.
    PMID: 36543045 DOI: 10.1016/j.ultsonch.2022.106268
    The enzymatic browning induced in amla juice due to the high activity of polyphenol oxidase (PPO) and peroxidase (POD) is one of the critical issues faced by the industry. The present study assessed the suitability of non-thermal, high-intensity ultrasound (US) on the inactivation of PPO and POD in fresh Indian Gooseberry juice. Ultrasonic waves, using a 6 mm titanium alloy probe were irradiated in the juice at a maximum power of 455 W and frequency of 20 kHz. The subsequent effects on biochemical attributes were studied using response surface methodology. Inactivation rates of 90.72 % and 73.18 %, respectively, for PPO and POD enzymes, were observed at the highest US intensity and exposure time. Numerical optimisation using the three-factor, three-level Box-Behnken design suggested that an optimum process at 70 % (energy density: 1610 Wcm-2) pulsed at 5 s on and 5 s off for 7 min 30 s resulted in PPO and POD inactivation of the order of 76.42 % and 64.57 % respectively. At these experimental conditions, the optimized levels of biochemical attributes i.e., ascorbic acid (738.50 mg/100 mL), total phenols (17.10 mg/mL), DPPH antioxidant activity (58.47 %), tannins (7.11 µg/mL), colour change (ΔE = 9.04) and flavonoids (6.14 mg/mL) were achieved. The overall statistical models were significant for all the responses except for reducing sugars. Furthermore, the approximation equations for individual responses indicated that the goodness of fit was adequate (R2 > 0.90). The results suggested that ultrasound is a suitable processing technique for amla juice stabilisation compared to thermal treatments that result in the loss of quality.
    Matched MeSH terms: Antioxidants/pharmacology
  7. Azlina MF, Nafeeza MI, Khalid BA
    Asia Pac J Clin Nutr, 2005;14(4):358-65.
    PMID: 16326642
    Rats exposed to stress developed various changes in the gastrointestinal tract and hormones. The present study was designed to compare the impact of tocopherol and tocotrienol on changes that influence gastric and hormonal parameters important in maintaining gastric mucosal integrity in rats exposed to restrain stress. These include gastric acidity, gastric tissue content of parameters such as malondialdehyde, prostaglandin (PGE(2)), serum levels of gastrin and glucagon-like peptide-1 (GLP-1). Sixty male Sprague-Dawley rats (200-250 g) were randomly divided into three equal sized groups, a control group which received a normal rat diet (RC) and two treatment groups each receiving a vitamin deficient diet with oral supplementation of either tocopherol (TF) or tocotrienol (TT) at 60 mg/kg body weight. Blood samples were taken from half the number of rats (non-stressed group) after a treatment period of 28 days before they were killed. The remaining half was subjected to experimental restraint-stress, at 2 hours daily for 4 consecutive days (stressed groups), on the fourth day, blood samples were taken and the rats killed. The findings showed that the gastric acid concentration and serum gastrin level in stressed rats were significantly (P<0.05) reduced compared to the non-stressed rats in the control and TF groups. However, the gastric acidity and gastrin levels in the TT group were comparable in stressed and non-stressed rats. These findings suggest that tocotrienol is able to preserve the gastric acidity and serum gastrin level which are usually altered in stressed conditions. The PGE(2) content and the plasma GLP-1 level were, however, comparable in all stressed and non-stressed groups indicating that these parameters were not altered in stress and that supplementation with TF or TT had no effect on the gastric PGE2 content or the GLP-1 level. The malondialdehyde, an indicator of lipid peroxidation was higher from gastric tissues in the stressed groups compared to the non-stressed groups. These findings implicated that free radicals may play a role in the development of gastric injury in stress and supplementation with either TF or TT was able to reduce the lipid peroxidation levels compared to the control rats. We conclude that both tocopherol and tocotrienol are comparable in their gastro-protective ability against damage by free radicals generated in stress conditions, but only tocotrienol has the ability to block the stress-induced changes in the gastric acidity and gastrin level.
    Matched MeSH terms: Antioxidants/pharmacology*
  8. Batool T, Rasool N, Gull Y, Noreen M, Nasim FU, Yaqoob A, et al.
    PLoS One, 2014;9(12):e115457.
    PMID: 25545159 DOI: 10.1371/journal.pone.0115457
    A highly convenient method has been developed for the synthesis of (prop-2-ynyloxy) benzene and its derivatives. Differently substituted phenol and aniline derivatives were allowed to react with propargyl bromide in the presence of K2CO3 base and acetone as solvent. The compounds were synthesized in good yields (53-85%). Low cost, high yields and easy availability of compounds helped in the synthesis. Electron withdrawing groups favor the formation of stable phenoxide ion thus in turn favors the formation of product while electron donating groups do not favor the reaction. Phenol derivatives gave good yields as compared to that of aniline. As aprotic polar solvents favor SN2 type reactions so acetone provided best solvation for the reactions. K2CO3 was proved to be good for the synthesis. Antibacterial, Antiurease and NO scavenging activity of synthesized compounds were also examined. 4-bromo-2-chloro-1-(prop-2-ynyloxy)benzene 2a was found most active compound against urease enzyme with a percentage inhibition of 82.00±0.09 at 100 µg/mL with IC50 value of 60.2. 2-bromo-4-methyl-1-(prop-2-ynyloxy)benzene 2d was found potent antibacterial against Bacillus subtillus showing excellent inhibitory action with percentage inhibition of 55.67±0.26 at 100 µg/ml wih IC50 value of 79.9. Based on results, it can be concluded that some of the synthesized compounds may have potential antiurease and antibacterial effects against several harmful substances.
    Matched MeSH terms: Antioxidants/pharmacology
  9. Abas F, Lajis NH, Shaari K, Israf DA, Stanslas J, Yusuf UK, et al.
    J Nat Prod, 2005 Jul;68(7):1090-3.
    PMID: 16038556
    A new labdane diterpene glucoside, curcumanggoside (1), together with nine known compounds, including labda-8(17),12-diene-15,16-dial (2), calcaratarin A (3), zerumin B (4), scopoletin, demethoxycurcumin, bisdemethoxycurcumin, 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one, curcumin, and p-hydroxycinnamic acid, have been isolated from the rhizomes of Curcuma mangga. Their structures were determined using a combination of 1D (1H NMR, 13C NMR, DEPT) and 2D (COSY, HSQC, HMBC) NMR techniques. All diarylheptanoids and scopoletin showed significant antioxidant activity. Zerumin B, demethoxycurcumin, bisdemethoxycurcumin, and curcumin also exhibited cytotoxic activity against a panel of five human tumor cell lines.
    Matched MeSH terms: Antioxidants/pharmacology
  10. Najafian L, Babji AS
    Peptides, 2012 Jan;33(1):178-85.
    PMID: 22138166 DOI: 10.1016/j.peptides.2011.11.013
    Fishes are rich sources of structurally diverse bioactive compounds. In recent years, much attention has been paid to the existence of peptides with biological activities and proteins derived from foods that might have beneficial effects for humans. Antioxidant and antimicrobial peptides isolated from fish sources may be used as functional ingredients in food formulations to promote consumer health and improve the shelf life of food products. This paper presents an overview of the antioxidant and antimicrobial peptides derived from various fishes. In addition, we discuss the extraction of fish proteins, enzymatic production, and the techniques used to isolate and characterize these compounds. Furthermore, we review the methods used to assay the bioactivities and their applications in food and nutraceuticals.
    Matched MeSH terms: Antioxidants/pharmacology*
  11. Jaganathan SK, Balaji A, Vellayappan MV, Asokan MK, Subramanian AP, John AA, et al.
    Anticancer Agents Med Chem, 2015;15(1):48-56.
    PMID: 25052987
    Recent statistics revealed that cancer is one among the main reasons for death throughout the world. Several treatments are available but still there is no cure when it is detected at late stages. One of the treatment modes for cancer is chemotherapy which utilizes anticancer drugs in order to eradicate the cancer cells by apoptosis. Apoptosis is a programmed cell death through which body maintains homeostasis or kills cancer cells by utilizing its cell machinery. Recent researches have concluded that dietary agents have a putative role in instituting apoptosis of cancer cells. Honey, one of the victuals rich in antioxidants, has a long-standing exposure to humans and its role in cancer prevention and treatment is a topic of current interest. Various researchers have been experimenting honey against different cancers and provided valuable insights about the apoptosis induced by the honey. This review will highlight the recent findings of apoptotic mechanism involved in different cancer cells. Further it also reports antitumor activity of honey in some animal models. Hence it is high-time to initiate more preclinical trials as well as clinical experiments which would further add to the knowledge of anticancer nature of honey and also endorse honey as a potential candidate in the war against cancer.
    Matched MeSH terms: Antioxidants/pharmacology
  12. Chua LS
    J Ethnopharmacol, 2013 Dec 12;150(3):805-17.
    PMID: 24184193 DOI: 10.1016/j.jep.2013.10.036
    Rutin is a common dietary flavonoid that is widely consumed from plant-derived beverages and foods as traditional and folkloric medicine worldwide. Rutin is believed to exhibit significant pharmacological activities, including anti-oxidation, anti-inflammation, anti-diabetic, anti-adipogenic, neuroprotective and hormone therapy. Till date, over 130 registered therapeutic medicinal preparations are containing rutin in their formulations. This article aims to critically review the extraction methods for plant-based rutin and its pharmacological activities. This review provides comprehensive data on the performance of rutin extraction methods and the extent of its pharmacological activities using various in vitro and in vivo experimental models.
    Matched MeSH terms: Antioxidants/pharmacology
  13. Ibrahim MH, Jaafar HZ
    Molecules, 2013 Jul 05;18(7):7957-76.
    PMID: 23884129 DOI: 10.3390/molecules18077957
    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.
    Matched MeSH terms: Antioxidants/pharmacology
  14. Yim HS, Chye FY, Mah SY, Sia CM, Samuagam L, Ho CW
    Int J Med Mushrooms, 2013;15(1):9-19.
    PMID: 23510280
    Pleurotus porrigens is a well-known edible, wild mushroom enjoyed as a delicacy by aborigines in Sabah and as source of income for the aborigines who collect and sell them at tamu (local market). This study aimed to evaluate the antioxidant activity in vitro and identify potent antioxidative components of aqueous extracts of P. porrigens. The antioxidant activities were evaluated using DPPH radical scavenging ability, ABTS radical cation inhibition activity, ferric reducing/antioxidant power, and total phenolic content. Activity-guided purifications based on DPPH radical scavenging ability resulted in 5 subfractions (SF). The highest DPPH radical scavenging ability was found in SF-III and SF-IV, but all were lower than butylated hydroxyanisole (BHA) and α-tocopherol. Analysis with high-performance liquid chromatography-diode array detectors found presence of ascorbic acid and (+)-catechin in SFs of P. porrigens, as well as some unidentified components that may have contributed to the radical scavenging ability. In conclusion, aqueous extract of P. porrigens possesses promising antioxidant activities, although they are lesser in their partially purified SFs. Nonetheless, P. porrigens could be promoted as an antioxidant-rich food as part of a normal diet that provides antioxidative benefit.
    Matched MeSH terms: Antioxidants/pharmacology*
  15. Ranneh Y, Mahmoud AM, Fadel A, Albujja M, Akim AM, Hamid HA, et al.
    PMID: 32957878 DOI: 10.2174/1386207323999200918152111
    BACKGROUND: Systemic acute inflammation is the hallmark of sepsis and is associated with multiple organ dysfunction.

    OBJECTIVE: This study investigated the potential of Stingless Bee Honey (SBH) to suppress lipopolysaccharide (LPS)-induced systemic acute inflammation in rats and to reveal the probable mechanism of action.

    METHODS: Rats received 4.6 and 9.2 g/kg SBH for 7 days followed by a single injection of LPS after which blood samples were taken 6h later.

    RESULTS: LPS induced liver, kidney, heart, and lung injury, were manifested by increased serum transaminases, alkaline phosphatase, creatine kinase, creatinine, and urea, along with multiple histological alterations, particularly leukocyte infiltration. Pro-inflammatory cytokines were elevated in the serum, and NF-κB p65, p38 MAPK, and HMGB-1 were significantly increased in different tissues of LPS-challenged rats. SBH prevented tissue injury, ameliorated pro-inflammatory cytokines, and suppressed NF-κB p65, p38 MAPK, and HMGB-1 in rats that had received LPS. In addition, SBH diminished reactive oxygen species (ROS) production, lipid peroxidation, and oxidative DNA damage, and enhanced glutathione and Nrf2 in LPS-treated rats.

    CONCLUSION: SBH prevents systemic acute inflammation by suppressing NF-κB, p38 MAPK, HMGB-1, oxidative stress, and tissue injury in rats. Thus, SBH may represent an effective anti-inflammatory nutraceutical, pending further mechanistic studies.

    Matched MeSH terms: Antioxidants/pharmacology*
  16. Golbabapour S, Hajrezaie M, Hassandarvish P, Abdul Majid N, Hadi AH, Nordin N, et al.
    Biomed Res Int, 2013;2013:974185.
    PMID: 23781513 DOI: 10.1155/2013/974185
    The investigation was to evaluate gastroprotective effects of ethanolic extract of M. pruriens leaves on ethanol-induced gastric mucosal injuries in rats. Forty-eight rats were divided into 8 groups: negative control, extract control, ulcer control, reference control, and four experimental groups. As a pretreatment, the negative control and the ulcer control groups were orally administered carboxymethylcellulose (CMC). The reference control was administered omeprazole orally (20 mg/kg). The ethanolic extract of M. pruriens leaves was given orally to the extract control group (500 mg/kg) and the experimental groups (62.5, 125, 250, and 500 mg/kg). After 1 h, CMC was given orally to the negative and the extract control groups. The other groups received absolute ethanol. The rats were sacrificed after 1 h. The ulcer control group exhibited significant mucosal injuries with decreased gastric wall mucus and severe damage to the gastric mucosa. The extract caused upregulation of Hsp70 protein, downregulation of Bax protein, and intense periodic acid schiff uptake of glandular portion of stomach. Gastric mucosal homogenate showed significant antioxidant properties with increase in synthesis of PGE2, while MDA was significantly decreased. The ethanolic extract of M. pruriens leaves was nontoxic (<5 g/kg) and could enhance defensive mechanisms against hemorrhagic mucosal lesions.
    Matched MeSH terms: Antioxidants/pharmacology
  17. Alnajar ZA, Abdulla MA, Ali HM, Alshawsh MA, Hadi AH
    Molecules, 2012;17(3):3547-59.
    PMID: 22433579 DOI: 10.3390/molecules17033547
    Melastoma malabathricum (MM) is a well-known plant in Malaysian traditional medicine, locally known as senduduk. Its ethanol and aqueous extracts have been used in the present investigation to study the immunomodulatory role on human peripheral blood mononuclear cell (PBMC), and the DPPH, ABTS and FRAP free radical scavenging activities were also measured. Total flavonoids and total phenolic contents were assayed and the antibacterial effect was tested against four species of bacteria; two Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) and two Gram-negative (Escherichia coli and Klebsilla pneumonia). The tests were carried out using the disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Moreover, the acute toxicity was evaluated in vivo on the ethanol extract of MM to establish its safety when administered orally. In our results, both extracts of MM showed abilities to scavenge DPPH and ABTS free radicals, IC(50) values: (11.599 ± 0.84, 10.573 ± 0.58 µmol/L) and (62.657 ± 0.78, 63.939 ± 0.48 µmol/L) for ethanol and aqueous extracts respectively. Indeed the ethanol extract evidenced high phenolic content (384.33 ± 0.005 mg/g), flavonoids contents (85.8 ± 0.009 mg/g) and ferric reducing antioxidant power (33,590 ± 0.038 mmol/g), with high activity against S. aureus and S. agalactiae (11 ± 0.3 and 12 ± 0.6 mm inhibition zones). Likewise, the percentage of peripheral blood mononuclear cells (PBMC) viability was increased in response to MM, IC(50) values (1.781 ± 1.2 and 6.545 ± 0.93 µg/mL) for ethanol and aqueous extracts, respectively. In addition, our results showed that the MM extract is safe even at a high dose of 5,000 mg/kg and has no oral toxicity. These findings suggest the excellent medicinal bioactivity of MM and explain the popularity of this plant in the folk medicine as a remedy for different illnesses.
    Matched MeSH terms: Antioxidants/pharmacology*
  18. Moniruzzaman M, Khalil MI, Sulaiman SA, Gan SH
    PMID: 23983317
    Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. In an effort to combat free radical activity, scientists are studying the effects of increasing individuals' antioxidant levels through diet and dietary supplements. Honey appears to act as an antioxidant in more ways than one. In the body, honey can mop up free radicals and contribute to better health. Various antioxidant activity methods have been used to measure and compare the antioxidant activity of honey. In recent years, DPPH (Diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power), ORAC (The Oxygen Radical Absorbance Capacity), ABTS [2, 2-azinobis (3ehtylbenzothiazoline-6-sulfonic acid) diamonium salt], TEAC [6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid (Trolox)-equivalent antioxidant capacity] assays have been used to evaluate antioxidant activity of honey. The antioxidant activity of honey is also measured by ascorbic acid content and different enzyme assays like Catalase (CAT), Glutathione Peroxidase (GPO), Superoxide Dismutase (SOD). Among the different methods available, methods that have been validated, standardized and widely reported are recommended.
    Matched MeSH terms: Antioxidants/pharmacology*
  19. De Rubis G, Paudel KR, Manandhar B, Singh SK, Gupta G, Malik R, et al.
    Nutrients, 2023 Feb 17;15(4).
    PMID: 36839377 DOI: 10.3390/nu15041019
    Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
    Matched MeSH terms: Antioxidants/pharmacology
  20. Thiyagarasaiyar K, Goh BH, Jeon YJ, Yow YY
    Mar Drugs, 2020 Jun 19;18(6).
    PMID: 32575468 DOI: 10.3390/md18060323
    Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.
    Matched MeSH terms: Antioxidants/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links