Displaying publications 1 - 20 of 131 in total

Abstract:
Sort:
  1. Hattab D, Amer MFA, Mohd Gazzali A, Chuah LH, Bakhtiar A
    Crit Rev Clin Lab Sci, 2023 Aug;60(5):321-345.
    PMID: 36825325 DOI: 10.1080/10408363.2023.2177605
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreaks that resulted in a catastrophic threat to global health, with more than 500 million cases detected and 5.5 million deaths worldwide. Patients with a COVID-19 infection presented with clinical manifestations ranging from asymptomatic to severe symptoms, resulting in acute lung injury, acute respiratory distress syndrome, and even death. Immune dysregulation through delayed innate immune response or impairment of the adaptive immune response is the key contributor to the pathophysiology of COVID-19 and SARS-CoV-2-induced cytokine storm. Symptomatic and supportive therapy is the fundamental strategy in treating COVID-19 infection, including antivirals, steroid-based therapies, and cell-based immunotherapies. Various studies reported substantial effects of immune-based therapies for patients with COVID-19 to modulate the over-activated immune system while simultaneously refining the body's ability to destroy the virus. However, challenges may arise from the complexity of the disease through the genetic variance of the virus itself and patient heterogeneity, causing increased transmissibility and heightened immune system evasion that rapidly change the intervention and prevention measures for SARS-CoV-2. Cell-based therapy, utilizing stem cells, dendritic cells, natural killer cells, and T cells, among others, are being extensively explored as other potential immunological approaches for preventing and treating SARS-CoV-2-affected patients the similar process was effectively proven in SARS-CoV-1 and MERS-CoV infections. This review provides detailed insights into the innate and adaptive immune response-mediated cell-based immunotherapies in COVID-19 patients. The immune response linking towards engineered autologous or allogenic immune cells for either treatment or preventive therapies is subsequently highlighted in an individual study or in combination with several existing treatments. Up-to-date data on completed and ongoing clinical trials of cell-based agents for preventing or treating COVID-19 are also outlined to provide a guide that can help in treatment decisions and future trials.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  2. Awan AAY, Berenguer MC, Bruchfeld A, Fabrizi F, Goldberg DS, Jia J, et al.
    Ann Intern Med, 2023 Dec;176(12):1648-1655.
    PMID: 38079642 DOI: 10.7326/M23-2391
    DESCRIPTION: The Kidney Disease: Improving Global Outcomes (KDIGO) 2022 clinical practice guideline on prevention, diagnosis, evaluation, and treatment of hepatitis C in chronic kidney disease (CKD) is an update of the 2018 guideline from KDIGO.

    METHODS: The KDIGO Work Group (WG) updated the guideline, which included reviewing and grading new evidence that was identified and summarized. As in the previous guideline, the WG used the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach to appraise evidence and rate the strength of recommendations and used expert judgment to develop recommendations. New evidence led to updating of recommendations in the chapters on treatment of hepatitis C virus (HCV) infection in patients with CKD (Chapter 2), management of HCV infection before and after kidney transplant (Chapter 4), and diagnosis and management of kidney disease associated with HCV infection (Chapter 5). Recommendations in chapters on detection and evaluation of hepatitis C in CKD (Chapter 1) and prevention of HCV transmission in hemodialysis units (Chapter 3) were not updated because of an absence of significant new evidence.

    RECOMMENDATIONS: The 2022 updated guideline includes 43 graded recommendations and 20 ungraded recommendations, 7 of which are new or modified on the basis of the most recent evidence and consensus among the WG members. The updated guidelines recommend expanding treatment of hepatitis C with sofosbuvir-based regimens to patients with CKD glomerular filtration rate categories G4 and G5, including those receiving dialysis; expanding the donor pool for kidney transplant recipients by accepting HCV-positive kidneys regardless of the recipient's HCV status; and initiating direct-acting antiviral treatment of HCV-infected patients with clinical evidence of glomerulonephritis without requiring kidney biopsy. The update also addresses the use of immunosuppressive regimens in such patients.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  3. Yoneda M
    Nippon Rinsho, 2016 12;74(12):1973-1978.
    PMID: 30550652
    Nipah and Hendra virus were first identified in mid 1990s in Australia and Malaysia, caus- ing epidemics with high mortality rate in affected animals and humans. Since their first emer- gence, they continued to re-emerge in Australia and South East Asia almost every year. Nipah and Hendra virus were classified in the new genus Henipavirus because of their un- common features amongst Paramyxoviridae. Henipaviruses are zoonotic paramyxoviruses with a broad tropism, and cause severe acute respiratory disease and encephalitis. Their high virulence and wide host range make them to be given Biosecurity Level 4 status. This review summarizes details of Henipavirus emergence, reservoir hosts and pathology, and introduce recent progress in vaccines and antivirals.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  4. Perveen RA, Nasir M, Talha KA, Selina F, Islam MA
    Med J Malaysia, 2020 11;75(6):710-716.
    PMID: 33219182
    INTRODUCTION: Currently, there are several attempts to find an effective antiviral drugs against the COVID-19. Although majority of the COVID-19 patients have mild to moderate clinical events, up to 5-10% may have severe, life threatening events that urgently require effective drugs. The purpose of this systematic review is to evaluate the effectiveness of antiviral therapies in the treatment of COVID-19.

    METHODS: An extensive search was performed in PubMed, EMBASE, Cochrane Library for randomised controlled trials (RCTs), prospective case series studies that evaluated therapies COVID-19. The outcomes searched for were mortality, recovery rate, length of hospital stay and clinical improvement from January to May 15, 2020. Independent reviewers searched, identified, screened, and related studies were included.

    RESULTS: Total of five RCTs on 439 patients and seventeen case series involving 1656 patients were found in the specified review period that reported the use of Lopinavir, Ritonavir, Remdesivir. Oseltamivir, Ribavirin in patients with COVID-19; but none of which showed efficacy of antiviral therapy. Such current findings impede researchers from recommending an appropriate and effective antiviral therapy against COVID-19, making it a serious concern for the global community.

    DISCUSSION: In the present pandemic and any future epidemics, all the related authorities should pursue many more RCTs, cohort and case series for a prospective outcome in the management and treatment guidelines.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  5. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Sinha BN, et al.
    Mini Rev Med Chem, 2021;21(8):1004-1016.
    PMID: 33280595 DOI: 10.2174/1389557520666201204162103
    The novel coronavirus disease-19 (COVID-19) is a global pandemic that emerged from Wuhan, China, and has spread all around the world, affecting 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 updates of August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine exists. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID- 19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in clinical uses or studies on COVID-19 and also focuses on the mode of action of drugs being repositioned against COVID-19.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  6. Wallace J, Hamid S, Mohamed R, Wong T
    Lancet Gastroenterol Hepatol, 2023 Sep;8(9):778-780.
    PMID: 37348526 DOI: 10.1016/S2468-1253(23)00161-9
    Matched MeSH terms: Antiviral Agents/therapeutic use
  7. Low Z, Lani R, Tiong V, Poh C, AbuBakar S, Hassandarvish P
    Int J Mol Sci, 2023 May 31;24(11).
    PMID: 37298539 DOI: 10.3390/ijms24119589
    Despite the fact that coronavirus disease 2019 (COVID-19) treatment and management are now considerably regulated, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still one of the leading causes of death in 2022. The availability of COVID-19 vaccines, FDA-approved antivirals, and monoclonal antibodies in low-income countries still poses an issue to be addressed. Natural products, particularly traditional Chinese medicines (TCMs) and medicinal plant extracts (or their active component), have challenged the dominance of drug repurposing and synthetic compound libraries in COVID-19 therapeutics. Their abundant resources and excellent antiviral performance make natural products a relatively cheap and readily available alternative for COVID-19 therapeutics. Here, we deliberately review the anti-SARS-CoV-2 mechanisms of the natural products, their potency (pharmacological profiles), and application strategies for COVID-19 intervention. In light of their advantages, this review is intended to acknowledge the potential of natural products as COVID-19 therapeutic candidates.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  8. Gokada MR, Pasupuleti VR, Bollikolla HB
    Mini Rev Med Chem, 2021;21(10):1173-1181.
    PMID: 33397236 DOI: 10.2174/1389557521666210104165733
    The novel Coronavirus disease (COVID-19) is an epidemic disease that appeared at the end of the year 2019 with a sudden increase in number and came to be considered as a pandemic disease caused by a viral infection which has threatened most countries for an emergency search for new anti-SARS-COV drugs /vaccines. At present, the number of clinical trials is ongoing worldwide on different drugs i.e. Hydroxychloroquine, Remedisvir, Favipiravir that utilize various mechanisms of action. A few countries are currently processing clinical trials, which may result in a positive outcome. Favipiravir (FPV) represents one of the feasible treatment options for COVID-19, if the result of the trials turns out positive. Favipiravir will be one of the developed possibly authoritative drugs to warrant benefits to mankind with large-scale production to meet the demands of the current pandemic Covid-19 outbreak and future epidemic outbreaks. In this review, the authors tried to explore key molecules, which will be supportive for devising COVID-19 research.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  9. Chan Y, Ng SW, Mehta M, Anand K, Kumar Singh S, Gupta G, et al.
    Med Hypotheses, 2020 Nov;144:110298.
    PMID: 33254489 DOI: 10.1016/j.mehy.2020.110298
    Outbreaks of influenza infections in the past have severely impacted global health and socioeconomic growth. Antivirals and vaccines are remarkable medical innovations that have been successful in reducing the rates of morbidity and mortality from this disease. However, the relentless emergence of drug resistance has led to a worrisome increase in the trend of influenza outbreaks, characterized by worsened clinical outcomes as well as increased economic burden. This has prompted the need for breakthrough innovations that can effectively manage influenza outbreaks. This article provides an insight into a novel hypothesis that describes how the integration of nanomedicine, with the development of drugs and vaccines can potentially enhance body immune response and the efficacies of anti-viral therapeutics to combat influenza infections.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  10. Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL
    Pharmacol Rep, 2022 Dec;74(6):1166-1181.
    PMID: 36401119 DOI: 10.1007/s43440-022-00432-6
    The global pandemic of COVID-19 is a serious public health concern. Over 625 million confirmed cases and more than 6 million deaths have been recorded worldwide. Although several vaccines and antiviral medications have been developed, their efficacy is limited by the emerging new SARS-CoV-2 strains. Peptide-based therapeutics is a fast-growing class of new drugs and have unique advantages over large proteins and small molecules. Antiviral peptides (AVPs) are short polycationic antivirals with broad-spectrum effects, which have been shown to exert both prophylactic and therapeutic actions against reported coronaviruses. The potential therapeutic targets of AVPs are located either on the virus (e.g., E-protein and S-protein) to prohibit viral binding or host cells, particularly, those present on the cell surface (e.g., ACE2 and TMPRSS2). Despite AVPs having promising antiviral effects, their efficacy is limited by low bioavailability. Thus, nanoformulation is a prerequisite for prolonged bioavailability and efficient delivery. This review aimed to present an insight into the therapeutic AVP targets on both virus and host cells by discussing their antiviral activities and associated molecular mechanisms. Besides, it described the technique for discovering and developing possible AVPs based on their targets, as well as the significance of using nanotechnology for their efficient delivery against SARS-CoV-2.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  11. Tan MP, Sekawi Z, Abdul Manap R, Razali RM, Mahadzir H, Nordin N, et al.
    BMC Infect Dis, 2022 Dec 15;22(1):943.
    PMID: 36522615 DOI: 10.1186/s12879-022-07920-3
    BACKGROUND: Older persons are at high-risk of developing severe complications from influenza. This consensus statement was developed to provide guidance on appropriate influenza prevention strategies relevant to the Malaysian healthcare setting.

    METHODS: Under the initiative of the Malaysian Influenza Working Group (MIWG), a panel comprising 11 multi-speciality physicians was convened to develop a consensus statement. Using a modified Delphi process, the panellists reviewed published evidence on various influenza management interventions and synthesised 10 recommendations for the prevention of influenza among the aged population via group discussions and a blinded rating exercise.

    RESULTS: Overall, annual influenza vaccination is recommended for individuals aged ≥ 60 years, particularly those with specific medical conditions or residing in aged care facilities (ACFs). There is no preference for a particular vaccine type in this target population. Antiviral agents can be given for post-exposure chemoprophylaxis or when vaccine contraindication exists. Infection control measures should serve as adjuncts to prevent the spread of influenza, especially during Hajj.

    CONCLUSION: This consensus statement presents 10 evidence-based recommendations that can be adopted by healthcare providers to prevent influenza among the aged population in Malaysia. It could also serve as a basis for health policy planning in other lower- and middle-income countries.

    Matched MeSH terms: Antiviral Agents/therapeutic use
  12. Tan RSL, Hassandarvish P, Chee CF, Chan LW, Wong TW
    Carbohydr Polym, 2022 Aug 15;290:119500.
    PMID: 35550778 DOI: 10.1016/j.carbpol.2022.119500
    The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  13. Dini Fatini Mohammad Faizal N, Cairul Iqbal Mohd Amin M
    Int J Pharm, 2023 Jan 05;630:122421.
    PMID: 36410670 DOI: 10.1016/j.ijpharm.2022.122421
    The unprecedented outbreak of severe acute respiratory syndrome-2 (SARS-CoV-2) worldwide has rendered it one of the most notorious pandemics ever documented in human history. As of November 2022, nearly 626 million cases of infection and over 6.6 million deaths have been reported globally. The scientific community has made significant progress in therapeutics and prevention for the management of coronavirus disease (COVID-19), including the development of vaccines and antiviral agents such as monoclonal antibodies and antiviral drugs. Although many advancements and a plethora of positive results have been obtained and global restrictions are being uplifted, obstacles in efficiently delivering these therapies, such as their rapid clearance, suboptimal biodistribution, and toxicity to organs, have yet to be addressed. To address these drawbacks, researchers have attempted applying nanotechnology-based formulations. Here, we summarized the recent data about COVID-19, its emergence, pathophysiology and life cycle, diagnosis, and currently-available medications. Subsequently, we discussed the progress in lipid nanocarriers, such as liposomes in infection detection and control. This review provides critical insights into the design of the latest liposomal-based formulations for tackling the barriers to detecting, preventing, and treating SARS-CoV-2.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  14. Norshidah H, Leow CH, Ezleen KE, Wahab HA, Vignesh R, Rasul A, et al.
    Front Cell Infect Microbiol, 2023;13:1061937.
    PMID: 36864886 DOI: 10.3389/fcimb.2023.1061937
    An increase in the occurrence of viral infectious diseases is a global concern for human health. According to a WHO report, dengue virus (DENV) is one of the most common viral diseases affecting approximately 400 million people annually, with worsening symptoms in nearly 1% of cases. Both academic and industrial researchers have conducted numerous studies on viral epidemiology, virus structure and function, source and route of infection, treatment targets, vaccines, and drugs. The development of CYD-TDV or Dengvaxia® vaccine has been a major milestone in dengue treatment. However, evidence has shown that vaccines have some drawbacks and limitations. Therefore, researchers are developing dengue antivirals to curb infections. DENV NS2B/NS3 protease is a DENV enzyme essential for replication and virus assembly, making it an interesting antiviral target. For faster hit and lead recognition of DENV targets, methods to screen large number of molecules at lower costs are essential. Similarly, an integrated and multidisciplinary approach involving in silico screening and confirmation of biological activity is required. In this review, we discuss recent strategies for searching for novel DENV NS2B/NS3 protease inhibitors from the in silico and in vitro perspectives, either by applying one of the approaches or by integrating both. Therefore, we hope that our review will encourage researchers to integrate the best strategies and encourage further developments in this area.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  15. Sea YL, Gee YJ, Lal SK, Choo WS
    J Appl Microbiol, 2023 Jan 23;134(1).
    PMID: 36626776 DOI: 10.1093/jambio/lxac036
    Cannabis is a plant notorious for its psychoactive effect, but when used correctly, it provides a plethora of medicinal benefits. With more than 400 active compounds that have therapeutic properties, cannabis has been accepted widely as a medical treatment and for recreational purposes in several countries. The compounds exhibit various clinical benefits, which include, but are not limited to, anticancer, antimicrobial, and antioxidant properties. Among the vast range of compounds, multiple research papers have shown that cannabinoids, such as cannabidiol and delta-9-tetrahydrocannabinol, have antiviral effects. Recently, scientists found that both compounds can reduce severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral infection by downregulating ACE2 transcript levels and by exerting anti-inflammatory properties. These compounds also act as the SARS-CoV-2 main protease inhibitors that block viral replication. Apart from cannabinoids, terpenes in cannabis plants have also been widely explored for their antiviral properties. With particular emphasis on four different viruses, SARS-CoV-2, human immunodeficiency virus, hepatitis C virus, and herpes simplex virus-1, this review discussed the role of cannabis compounds in combating viral infections and the potential of both cannabinoids and terpenes as novel antiviral therapeutics.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  16. Loo CY, Lee WH, Zhou QT
    Pharm Res, 2023 May;40(5):1015-1036.
    PMID: 37186073 DOI: 10.1007/s11095-023-03520-1
    With the rapid outbreak of respiratory viral infections, various biological (e.g. vaccines, peptides, recombinant proteins, antibodies and genes) and antiviral agents (e.g. ribavirin, palivizumab and valaciclovir) have been successfully developed for the treatment of respiratory virus infections such as influenza, respiratory syncytial virus and SARS-CoV-2 infections. These therapeutics are conventionally delivered via oral, intramuscular or injection route and are associated with several adverse events due to systemic toxicity. The inherent in vivo instability of biological therapeutics may hinder them from being administered without proper formulations. Therefore, we have witnessed a boom in nanotechnology coupled with a needle-free administration approach such as the inhalation route for the delivery of complex therapeutics to treat respiratory infections. This review discussed the recent advances in the inhalation strategies of nanoformulations that target virus respiratory infections.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  17. Lee MF, Wu YS, Poh CL
    Viruses, 2023 Mar 08;15(3).
    PMID: 36992414 DOI: 10.3390/v15030705
    Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  18. Rajangam J, Lakshmanan AP, Rao KU, Jayashree D, Radhakrishnan R, Roshitha B, et al.
    CNS Neurol Disord Drug Targets, 2024;23(2):203-214.
    PMID: 36959147 DOI: 10.2174/1871527322666230321120618
    Bell palsy is a non-progressive neurological condition characterized by the acute onset of ipsilateral seventh cranial nerve paralysis. People who suffer from this type of facial paralysis develop a droop on one side of their face, or sometimes both. This condition is distinguished by a sudden onset of facial paralysis accompanied by clinical features such as mild fever, postauricular pain, dysgeusia, hyperacusis, facial changes, and drooling or dry eyes. Epidemiological evidence suggests that 15 to 23 people per 100,000 are affected each year, with a recurrence rate of 12%. It could be caused by ischaemic compression of the seventh cranial nerve, which could be caused by viral inflammation. Pregnant women, people with diabetes, and people with respiratory infections are more likely to have facial paralysis than the general population. Immune, viral, and ischemic pathways are all thought to play a role in the development of Bell paralysis, but the exact cause is unknown. However, there is evidence that Bell's hereditary proclivity to cause paralysis is a public health issue that has a greater impact on patients and their families. Delay or untreated Bell paralysis may contribute to an increased risk of facial impairment, as well as a negative impact on the patient's quality of life. For management, antiviral agents such as acyclovir and valacyclovir, and steroid treatment are recommended. Thus, early diagnosis accompanied by treatment of the uncertain etiology of the disorder is crucial. This paper reviews mechanistic approaches, and emerging medical perspectives on recent developments that encounter Bell palsy disorder.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  19. Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, et al.
    Mol Pharm, 2023 Aug 07;20(8):3698-3740.
    PMID: 37486263 DOI: 10.1021/acs.molpharmaceut.2c01080
    Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  20. Howell J, Seaman C, Wallace J, Xiao Y, Scott N, Davies J, et al.
    Hepatology, 2023 Sep 01;78(3):976-990.
    PMID: 37125643 DOI: 10.1097/HEP.0000000000000430
    Hepatitis B (HBV) is a major cause of global morbidity and mortality, and the leading cause of liver cancer worldwide. Significant advances have recently been made toward the development of a finite HBV treatment that achieves permanent loss of HBsAg and HBV DNA (so-called "HBV cure"), which could provide the means to eliminate HBV as a public health threat. However, the HBV cure is just one step toward achieving WHO HBV elimination targets by 2030, and much work must be done now to prepare for the successful implementation of the HBV cure. In this review, we describe the required steps to rapidly scale-up future HBV cure equitably. We present key actions required for successful HBV cure implementation, integrated within the World Health Organization (WHO) Global Health Sector Strategy (GHSS) 2022-2030 framework. Finally, we highlight what can be done now to progress toward the 2030 HBV elimination targets using available tools to ensure that we are preparing, but not waiting, for the cure.
    Matched MeSH terms: Antiviral Agents/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links