Displaying publications 1 - 20 of 411 in total

Abstract:
Sort:
  1. Thompson-Morrison H, Ariantiningsih F, Arief SM, Gaw S, Robinson B
    Sci Rep, 2024 Jan 22;14(1):1836.
    PMID: 38246913 DOI: 10.1038/s41598-023-50492-8
    The production of oil palm (Elaeis guineensis) in Southeast Asia is vital to the economies of Indonesia and Malaysia. Both fertilisers and pesticides used in palm production can contain elevated concentrations of Trace Elements (TEs) which may accumulate in soils and leaf tissues of plants. We hypothesised that leaves from oil palms may be deficient in essential elements, while containing elevated concentrations of non-essential TEs commonly found in agrichemicals. Samples of plant materials (leaves and fruitlets) were collected from active and former plantations in Sumatra, Indonesia, and analysed for essential and non-essential elements. Indonesian palm oil samples were sourced in New Zealand and their elemental concentrations determined. Leaf materials from both active and abandoned production sites were deficient in N, K, S and Mo, while leaf materials from abandoned sites were deficient in P. These deficiencies may have been a contributing factor to the abandonment of production at these sites. Concentrations of non-essential elements were below or comparable to average plant concentrations and no evidence of contamination was found in plant tissues. Palm oil contained low concentrations of TEs, which did not pose any toxicity risks. However, Na and Al were present in concentrations of 1198 and 159 mg kg-1 respectively, which were higher than have been previously reported. Tropical oil palm production could benefit from the determination of bioaccumulation factors for fertiliser contaminants in E. guineensis, to limit the transfer of contaminants to plants and products if increased fertiliser applications were used to correct nutrient deficiencies.
    Matched MeSH terms: Arecaceae*
  2. Lim FH, Rasid OA, Idris AS, As'wad AWM, Vadamalai G, Parveez GKA, et al.
    Mol Biol Rep, 2023 Mar;50(3):2367-2379.
    PMID: 36580194 DOI: 10.1007/s11033-022-08131-4
    BACKGROUND: The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today.

    METHODS AND RESULTS: This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm.

    CONCLUSION: This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.

    Matched MeSH terms: Arecaceae/genetics; Arecaceae/metabolism
  3. Zakaria L
    Plant Dis, 2023 Mar;107(3):603-615.
    PMID: 35819350 DOI: 10.1094/PDIS-02-22-0358-FE
    Basal stem rot of oil palm caused by Ganoderma boninense is the most serious disease of oil palm in Malaysia, Indonesia, and other oil-palm-producing countries. Economic losses caused by the disease can be up to USD500 million a year. For many years, basal stem rot was found to infect older palm trees of more than 25 to 30 years in age. Only in the 1950s, the disease began to appear in much younger palm trees, 10 to 15 years old, and, in the last decade or so, palm trees as young as 1 year were infected by the disease. The highest incidence occurs in coastal areas of Southeast Asia but the disease has now infected oil palm in inland areas, mainly oil palm planted in peat soils. Disease incidence is also high in areas previously growing coconut or forest. Basal stem rot infection and spread occur through root-to-root contact, and basidiospores that colonize the roots also play a role. In the early stages of infection by G. boninense, the pathogen behaves as a biotroph and later as a necrotroph, secreting cell-wall-degrading enzymes and triggering host defense responses. Genes, gene products, and metabolic pathways involved in oil palm defense mechanisms against G. boninense have been identified and these metabolites have the potential to be used as markers for early detection of the disease. Integrated disease management used to control basal stem rot includes cultural practices, chemical control, and application of biocontrol agents or fertilizers. Early detection tools have also been developed that could assist in management of basal stem rot infections. Development of resistant or tolerant oil palm is still at an early stage; therefore, the existing integrated disease management practices remain the most appropriate methods for managing basal stem rot of oil palm.
    Matched MeSH terms: Arecaceae*
  4. McCalmont J, Kho LK, Teh YA, Chocholek M, Rumpang E, Rowland L, et al.
    Sci Total Environ, 2023 Feb 01;858(Pt 1):159356.
    PMID: 36270353 DOI: 10.1016/j.scitotenv.2022.159356
    While existing moratoria in Indonesia and Malaysia should preclude continued large-scale expansion of palm oil production into new areas of South-East Asian tropical peatland, existing plantations in the region remain a globally significant source of atmospheric carbon due to drainage driven decomposition of peatland soils. Previous studies have made clear the direct link between drainage depth and peat carbon decomposition and significant reductions in the emission rate of CO2 can be made by raising water tables nearer to the soil surface. However, the impact of such changes on palm fruit yield is not well understood and will be a critical consideration for plantation managers. Here we take advantage of very high frequency, long-term monitoring of canopy-scale carbon exchange at a mature oil palm plantation in Malaysian Borneo to investigate the relationship between drainage level and photosynthetic uptake and consider the confounding effects of light quality and atmospheric vapour pressure deficit. Canopy modelling from our dataset demonstrated that palms were exerting significantly greater stomatal control at deeper water table depths (WTD) and the optimum WTD for photosynthesis was found to be between 0.3 and 0.4 m below the soil surface. Raising WTD to this level, from the industry typical drainage level of 0.6 m, could increase photosynthetic uptake by 3.6 % and reduce soil surface emission of CO2 by 11 %. Our study site further showed that despite being poorly drained compared to other planting blocks at the same plantation, monthly fruit bunch yield was, on average, 14 % greater. While these results are encouraging, and at least suggest that raising WTD closer to the soil surface to reduce emissions is unlikely to produce significant yield penalties, our results are limited to a single study site and more work is urgently needed to confirm these results at other plantations.
    Matched MeSH terms: Arecaceae*
  5. Hau EH, Teh SS, Yeo SK, Mah SH
    J Sci Food Agric, 2022 Jan 15;102(1):233-240.
    PMID: 34081335 DOI: 10.1002/jsfa.11350
    BACKGROUND: The oil palm tree produces 90% of wastes and the limited usage of these wastes causes a major disposal problem in the mills. Nevertheless, these by-products have a large amount of nutritional components. Thus, the present study aimed to determine the physicochemical and functional properties of protein hydrolysates (PH) from oil palm leaves (OPL) extracted using different concentrations of Alcalase (0-10%) at 2 h of hydrolysis time.

    RESULTS: Fourier transform infrared spectral analyses showed that the enzymatic hydrolysis altered functional groups of OPL where a secondary amine was present in the PH. Changes were also observed in the thermal stability where the enthalpy heat obtained for PH (933.93-1142.57 J g-1 ) was much lower than OPL (7854.11 J g-1 ). The results showed that the PH extracted by 8% Alcalase exhibited absolute zeta potential, as well as a high emulsifying activity index (70.64 m2  g-1 of protein) and emulsion stability index (60.58 min). Furthermore, this PH showed higher solubility (96.32%) and emulsifying properties compared to other PHs. It is also comparable with commercial plant proteins, indicating that 8% Alcalase is an optimum concentration for hydrolysis.

    CONCLUSION: In summary, the physicochemical and functional properties of PH extracted from OPL showed good functional properties, suggesting that it can be used as an alternative plant protein in food industries. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Arecaceae/chemistry*
  6. Ahmed Z, Yusoff MS, N H MK, Abdul Aziz H
    J Air Waste Manag Assoc, 2022 01;72(1):116-130.
    PMID: 33872123 DOI: 10.1080/10962247.2021.1919240
    A massive quantity of Elaeis guineensis (oil palm) trunk biomass, containing a significant amount of natural starch, is available in Malaysia as biowaste because of annual replantation. The efficient extraction of this starch (carbohydrate polymer) would be worthwhile concerning the environmental sustainability and economy through conversion to bioresources. This study investigated the effectiveness of the bisulfite steeping method for starch synthesis from oil palm trunk (OPT) biowaste. The central composite design (CCD) of Design-Expert software executed an experimental model design, data analysis, evaluated the impacts of process variables and their interaction through response surface methodology to optimize the bisulfite steeping method for starch synthesis. The developed quadratic models for four factors (strength of sodium bisulfite solution, steeping hour, mixing ratio with the bisulfite solution, and ultrapure water) and one response (%Yield) demonstrated that a significant starch yield (13.54%) is achievable employing 0.74% bisulfite solution, 5.6 steeping hours, for 1.6 and 0.6 mixing ratio with the bisulfite solution and ultrapure water respectively. Experimental outcomes were consistent with the predicted model, which eventually sustains the significance of this method. Malvern Zetasizer test revealed a bimodal granular distribution for starch, with 7.15 µm of hydrodynamic size. Starch morphology was determined by scanning electron microscopy. X-ray diffraction investigation exhibits an A-type model, specifying persistent characteristics, while FTIR confirms the presence of hydroxyl, carboxylic, and phenolic groups like other cereal starches.Implications: Malaysia is the 2nd largest palm oil exporter in the world. About 110 million tons of palm oil trunk (OPT) biomass is available annually during replanting activities. Modification of bio-wastes into a beneficial form (only 22% presently) like starch extraction would ensure potential reuse as a natural coagulant for wastewater and leachate treatment, food source, adhesives towards boosting the country's economy by sustainable waste management. The current study achieved better starch yield (13.54%) than previous, from the OPT biomass through the novel bisulfite steeping method. Therefore, this method will ascertain the effective implication of numerous economic activities.
    Matched MeSH terms: Arecaceae*
  7. Paterson RRM
    J Environ Manage, 2021 Dec 15;300:113785.
    PMID: 34562818 DOI: 10.1016/j.jenvman.2021.113785
    Palms are iconic plants. Oil palms are very important economically and originate in Africa where they can act as a model for palms in general. The effect of future climate on the growth of oil palm will be very detrimental. Latitudinal migration of tropical crops to climate refuges may be impossible, and longitudinal migration has only been confirmed for oil palm, of all the tropical crops. The previous method to determine the longitudinal trend for oil palm used the longitudes of various countries in Africa and plotted these against the percentage suitable climate for growing oil palms in each country. An increasing longitudinal trend was observed from west to east. However, the longitudes of the countries were randomly distributed which may have introduced bias and the procedure was time consuming. The present report presents an optimised and systematic procedure that divided the regions, as presented on a map derived from a CLIMEX model, into ten equal sectors and the percentage suitable climates for growing oil palm were determined for each sector. This approach was quicker, systematic and straight forward and will be useful for management of oil palm plantations under climate change. The method confirmed and validated the trends reported in the original method although the suitability values were often lower and there was less spread of values around the trend. The values for the CSIRO MK3.0 and MIROC H models demonstrated considerable similarities to each other, contributing to validation of the method. The procedure of dividing maps equally into sectors derived from models, could be used for other crops, regions, or systems more generally, where the alternative may be a more superficial visual examination of the maps. Methods are required to mitigate the effects of climate change and stakeholders need to contribute more actively to the current climate debate with tangible actions.
    Matched MeSH terms: Arecaceae*
  8. Asyraf MRM, Ishak MR, Norrrahim MNF, Nurazzi NM, Shazleen SS, Ilyas RA, et al.
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1587-1599.
    PMID: 34740691 DOI: 10.1016/j.ijbiomac.2021.10.221
    Biocomposites are materials that are easy to manufacture and environmentally friendly. Sugar palm fibre (SPF) is considered to be an emerging reinforcement candidate that could provide improved mechanical stiffness and strength to the biocomposites. Numerous studies have been recently conducted on sugar palm biocomposites to evaluate their physical, mechanical and thermal properties in various conditions. Sugar palm biocomposites are currently limited to the applications of traditional household products despite their good thermal stability as a prospective substitute candidate for synthetic fibres. Thus, thermal analysis methods such as TGA and DTG are functioned to determine the thermal properties of single fibre sugar palm composites (SPCs) in thermoset and thermoplastic matrix as well as hybrid SPCs. The biocomposites showed a remarkable change considering thermal stability by varying the individual fibre compositions and surface treatments and adding fillers and coupling agents. However, literature that summarises the thermal properties of sugar palm biocomposites is unavailable. Particularly, this comprehensive review paper aims to guide all composite engineers, designers, manufacturers and users on the selection of suitable biopolymers for sugar palm biocomposites for thermal applications, such as heat shields and engine components.
    Matched MeSH terms: Arecaceae/chemistry*
  9. Goon DE, Ab-Rahim S, Mohd Sakri AH, Mazlan M, Tan JK, Abdul Aziz M, et al.
    Sci Rep, 2021 10 25;11(1):21001.
    PMID: 34697380 DOI: 10.1038/s41598-021-00454-9
    Excessive high fat dietary intake promotes risk of developing non-alcoholic fatty liver disease (NAFLD) and predisposed with oxidative stress. Palm based tocotrienol-rich fraction (TRF) has been reported able to ameliorate oxidative stress but exhibited poor bioavailability. Thus, we investigated whether an enhanced formulation of TRF in combination with palm kernel oil (medium-chain triglycerides) (ETRF) could ameliorate the effect of high-fat diet (HFD) on leptin-deficient male mice. All the animals were divided into HFD only (HFD group), HFD supplemented with ETRF (ETRF group) and HFD supplemented with TRF (TRF group) and HFD supplemented with PKO (PKO group). After 6 weeks, sera were collected for untargeted metabolite profiling using UHPLC-Orbitrap MS. Univariate analysis unveiled alternation in metabolites for bile acids, amino acids, fatty acids, sphingolipids, and alkaloids. Bile acids, lysine, arachidonic acid, and sphingolipids were downregulated while xanthine and hypoxanthine were upregulated in TRF and ETRF group. The regulation of these metabolites suggests that ETRF may promote better fatty acid oxidation, reduce oxidative stress and pro-inflammatory metabolites and acts as anti-inflammatory in fatty liver compared to TRF. Metabolites regulated by ETRF also provide insight of its role in fatty liver. However, further investigation is warranted to identify the mechanisms involved.
    Matched MeSH terms: Arecaceae/chemistry*
  10. Romes NB, Abdul Wahab R, Abdul Hamid M, Oyewusi HA, Huda N, Kobun R
    Sci Rep, 2021 10 21;11(1):20851.
    PMID: 34675286 DOI: 10.1038/s41598-021-00409-0
    Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
    Matched MeSH terms: Arecaceae/chemistry*
  11. Soo YT, Ng SW, Tang TK, Ab Karim NA, Phuah ET, Lee YY
    J Sci Food Agric, 2021 Aug 15;101(10):4161-4172.
    PMID: 33428211 DOI: 10.1002/jsfa.11054
    BACKGROUND: Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability.

    RESULTS: PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL.

    CONCLUSIONS: CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Arecaceae/chemistry*
  12. Jikal M, Mori D, Yusoff AF, Rai SB, Mukhsam MH, Ali I, et al.
    Am J Trop Med Hyg, 2021 07 12;105(3):777-782.
    PMID: 34255740 DOI: 10.4269/ajtmh.21-0036
    Foodborne outbreaks of hepatitis A virus (HAV) are most commonly associated with fresh and frozen produce and with various types of shellfish. Alcoholic beverage-borne outbreaks of hepatitis A are extremely rare. Here, we report an outbreak of hepatitis A associated with the consumption of a traditional wine at a funeral ceremony in the Sabah state of Malaysian Borneo. Confirmed cases were determined by serum anti-HAV immunoglobulin M and/or for fecal HAV by reverse transcription polymerase chain reaction (RT-PCR). The amplicons of RT-PCR were subjected to nucleotide sequencing followed by phylogenetic analysis. We conducted a 1:2 case-control study to identify the possible exposure that led to the outbreak. Sixteen patients met the case definition, they were 18 to 58 years old and 90% of them were males. The case-control study showed that the consumption of nipa palm wine during the ceremony was significantly associated (P = 0.0017) with hepatitis A infection (odds ratio, 5.44; 95% CI, 1.80-16.43). Untreated river water was used to dilute the traditional wine, which was assumed to be the source of the infection. Phylogenetically, these viruses belonged to genotype IA and formed an independent cluster with strains from Taiwan, Japan, and the Philippines. This strain might be an emerging HAV in Asian countries. Environmental assessments were performed and environmental samples were negative for HAV. The incidence of hepatitis A in Sabah was also determined and it was 0.795/100,000 population. Strict monitoring of traditional wine production should be implemented by the local authority to prevent future outbreaks.
    Matched MeSH terms: Arecaceae
  13. Ooi SE, Feshah I, Nuraziyan A, Sarpan N, Ata N, Lim CC, et al.
    Plant Cell Rep, 2021 Jul;40(7):1141-1154.
    PMID: 33929599 DOI: 10.1007/s00299-021-02698-1
    KEY MESSAGE: Potentially embryogenic oil palms can be identified through leaf transcriptomic signatures. Differential expression of genes involved in flowering time, and stress and light responses may associate with somatic embryogenesis potential. Clonal propagation is an attractive approach for the mass propagation of high yielding oil palms. A major issue hampering the effectiveness of oil palm tissue culture is the low somatic embryogenesis rate. Previous studies have identified numerous genes involved in oil palm somatic embryogenesis, but their association with embryogenic potential has not been determined. In this study, differential expression analysis of leaf transcriptomes from embryogenic and non-embryogenic mother palms revealed that transcriptome profiles from non- and poor embryogenic mother palms were more similar than highly embryogenic palms. A total of 171 genes exhibiting differential expression in non- and low embryogenesis groups could also discriminate high from poor embryogenesis groups of another tissue culture agency. Genes related to flowering time or transition such as FTIP, FRIGIDA-LIKE, and NF-YA were up-regulated in embryogenic ortets, suggesting that reproduction timing of the plant may associate with somatic embryogenesis potential. Several light response or photosynthesis-related genes were down-regulated in embryogenic ortets, suggesting a link between photosynthesis activity and embryogenic potential. As expression profiles of the differentially expressed genes are very similar between non- and low embryogenic groups, machine learning approaches with several candidate genes may generate a more sensitive model to better discriminate non-embryogenic from embryogenic ortets.
    Matched MeSH terms: Arecaceae/drug effects; Arecaceae/genetics*; Arecaceae/metabolism
  14. Supramaniam J, Low DYS, Wong SK, Tan LTH, Leo BF, Goh BH, et al.
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071337 DOI: 10.3390/ijms22115781
    Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.
    Matched MeSH terms: Arecaceae/chemistry*
  15. Holzner A, Balasubramaniam KN, Weiß BM, Ruppert N, Widdig A
    Sci Rep, 2021 May 14;11(1):10353.
    PMID: 33990658 DOI: 10.1038/s41598-021-89783-3
    Human-induced habitat alterations globally threaten animal populations, often evoking complex behavioural responses in wildlife. This may be particularly dramatic when negatively affecting social behaviour, which fundamentally determines individual fitness and offspring survival in group-living animals. Here, we provide first evidence for significant behavioural modifications in sociality of southern pig-tailed macaques visiting Malaysian oil palm plantations in search of food despite elevated predation risk. Specifically, we found critical reductions of key positive social interactions but higher rates of aggression in the plantation interior compared to the plantation edge (i.e. plantation areas bordering the forest) and the forest. At the plantation edge, affiliation even increased compared to the forest, while central positions in the macaques' social network structure shifted from high-ranking adult females and immatures to low-ranking individuals. Further, plantations also affected mother-infant relationships, with macaque mothers being more protective in the open plantation environment. We suggest that although primates can temporarily persist in human-altered habitats, their ability to permanently adapt requires the presence of close-by forest and comes with a trade-off in sociality, potentially hampering individual fitness and infant survival. Studies like ours remain critical for understanding species' adaptability to anthropogenic landscapes, which may ultimately contribute to facilitating their coexistence with humans and preserving biodiversity.
    Matched MeSH terms: Arecaceae*
  16. Siddiqui Y, Surendran A, Paterson RRM, Ali A, Ahmad K
    Saudi J Biol Sci, 2021 May;28(5):2840-2849.
    PMID: 34012325 DOI: 10.1016/j.sjbs.2021.02.016
    The rapid expansion of oil palm (OP) has led to its emergence as a commodity of strategic global importance. Palm oil is used extensively in food and as a precursor for biodiesel. The oil generates export earnings and bolsters the economy of many countries, particularly Indonesia and Malaysia. However, oil palms are prone to basal stem rot (BSR) caused by Ganoderma boninense which is the most threatening disease of OP. The current control measures for BSR management including cultural practices, mechanical and chemical treatment have not proved satisfactory. Alternative control measures to overcome the G. boninense problem are focused on the use of biological control agents and many potential bioagents were identified with little proven practical application. Planting OP varieties resistant to G. boninense could provide the ideal long-term solution to basal stem rot. The total resistance of palms to G. boninense has not yet been reported, and few examples of partial resistances have been observed. Importantly, basidiospores are now recognized as the method by which the disease is spread, and control methods require to be revaluated because of this phenomenon. Many methods developed to prevent the spread of the disease effectively are only tested at nursery levels and are only reported in national journals inhibiting the development of useful techniques globally. The initial procedures employed by the fungus to infect the OP require consideration in terms of the physiology of the growth of the fungus and its possible control. This review assesses critically the progress that has been made in BSR development and management in OP.
    Matched MeSH terms: Arecaceae
  17. Paterson RRM
    Environ Sci Pollut Res Int, 2021 May;28(17):21193-21203.
    PMID: 33410008 DOI: 10.1007/s11356-020-12072-5
    Palms are highly significant tropical plants. Oil palms produce palm oil, the basic commodity of a highly important industry. Climate change from greenhouse gasses is likely to decrease the ability of palms to survive, irrespective of them providing ecosystem services to communities. Little information about species survival in tropical regions under climate change is available and data on species migration under climate change is important. Palms are particularly significant in Africa: a palm oil industry already exists with Nigeria being the largest producer. Previous work using CLIMEX modelling indicated that Africa will have reduced suitable climate for oil palm in Africa. The current paper employs this modelling to assess how suitable climate for growing oil palm changed in Africa from current time to 2100. An increasing trend in suitable climate from west to east was observed indicating that refuges could be obtained along the African tropical belt. Most countries had reduced suitable climates but others had increased, with Uganda being particularly high. There may be a case for developing future oil palm plantations towards the east of Africa. The information may be usefully applied to other palms. However, it is crucial that any developments will fully adhere to environmental regulations. Future climate change will have severe consequences to oil palm cultivation but there may be scope for eastwards mitigation in Africa.
    Matched MeSH terms: Arecaceae*
  18. Mohd Hilmi Tan MIS, Jamlos MF, Omar AF, Dzaharudin F, Chalermwisutkul S, Akkaraekthalin P
    Sensors (Basel), 2021 Apr 27;21(9).
    PMID: 33925576 DOI: 10.3390/s21093052
    Ganoderma boninense (G. boninense) infection reduces the productivity of oil palms and causes a serious threat to the palm oil industry. This catastrophic disease ultimately destroys the basal tissues of oil palm, causing the eventual death of the palm. Early detection of G. boninense is vital since there is no effective treatment to stop the continuing spread of the disease. This review describes past and future prospects of integrated research of near-infrared spectroscopy (NIRS), machine learning classification for predictive analytics and signal processing towards an early G. boninense detection system. This effort could reduce the cost of plantation management and avoid production losses. Remarkably, (i) spectroscopy techniques are more reliable than other detection techniques such as serological, molecular, biomarker-based sensor and imaging techniques in reactions with organic tissues, (ii) the NIR spectrum is more precise and sensitive to particular diseases, including G. boninense, compared to visible light and (iii) hand-held NIRS for in situ measurement is used to explore the efficacy of an early detection system in real time using ML classifier algorithms and a predictive analytics model. The non-destructive, environmentally friendly (no chemicals involved), mobile and sensitive leads the NIRS with ML and predictive analytics as a significant platform towards early detection of G. boninense in the future.
    Matched MeSH terms: Arecaceae*
  19. Danylo O, Pirker J, Lemoine G, Ceccherini G, See L, McCallum I, et al.
    Sci Data, 2021 03 30;8(1):96.
    PMID: 33785753 DOI: 10.1038/s41597-021-00867-1
    In recent decades, global oil palm production has shown an abrupt increase, with almost 90% produced in Southeast Asia alone. To understand trends in oil palm plantation expansion and for landscape-level planning, accurate maps are needed. Although different oil palm maps have been produced using remote sensing in the past, here we use Sentinel 1 imagery to generate an oil palm plantation map for Indonesia, Malaysia and Thailand for the year 2017. In addition to location, the age of the oil palm plantation is critical for calculating yields. Here we have used a Landsat time series approach to determine the year in which the oil palm plantations are first detected, at which point they are 2 to 3 years of age. From this, the approximate age of the oil palm plantation in 2017 can be derived.
    Matched MeSH terms: Arecaceae*
  20. Swaray S, Y Rafii M, Din Amiruddin M, Firdaus Ismail M, Jamian S, Jalloh M, et al.
    Insects, 2021 Mar 04;12(3).
    PMID: 33806613 DOI: 10.3390/insects12030221
    This study was conducted to assess the Elaeidobius kamerunicus (EK) population density among the biparental dura × pisifera hybrids' palms on deep peat-soil. Twenty-four hybrids derived from 10 genetic sources were used. Variance analysis showed that the EK population density varies between different oil palm hybrids, with a more noticeable variation of a low population mean in the male weevil across the hybrids. The highest weevil population mean/spikelet was attained on the third day of anthesis. The maximum monthly population of EK/spikelet (12.81 ± 0.23) and population density of EK (1846.49 ± 60.69) were recorded in January. Accordingly, 41.67% of the hybrids recorded an EK population density greater than the trial means of 973.68 weevils. Hybrid ECPHP550 had the highest mean of EK/spikelet (10.25 ± 0.11) and the highest population density of EK/palm (1241.39 ± 73.74). The parental mean population was 963.24 weevils and parent Deli-Banting × AVROS recorded the highest EK population density (1173.01). The overall results showed a notable disparity in the EK population among the biparental hybrids. Parental Deli-Banting × AVROS and hybrid ECPHP550 could be more useful to optimize the weevil population for pollination improvements in palm plantations. However, we suggest that volatile production should be included as a desirable trait in oil palm selective breeding.
    Matched MeSH terms: Arecaceae
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links