Displaying publications 1 - 20 of 412 in total

Abstract:
Sort:
  1. Chen YW, Lee HV, Abd Hamid SB
    Carbohydr Polym, 2017 Feb 10;157:1511-1524.
    PMID: 27987863 DOI: 10.1016/j.carbpol.2016.11.030
    Cellulose in nanostructures was successfully isolated from empty fruit bunch biomass via a novel one-pot oxidative-hydrolysis technique. The physicochemical properties of nanocellulose prepared via one-pot process have shown comparable characteristics as products isolated via conventional multistep purification approach (namely dewaxing, chlorite bleaching process, alkalization, and acid hydrolysis). The chemical composition study indicated that the one-pot oxidative-hydrolysis process successfully extracted cellulose (91.0%), with the remaining minority being hemicellulose and lignin (∼6%) in the final product. Crystallinity profile of one-pot treated product (80.3%) was higher than that of multistep isolated nanocellulose (75.4%), which indicated that the disorder region (amorphous) in cellulose fibers was successfully removed. In additional to that, the morphology study demonstrated that nanocellulose prepared by one-pot process rendered spider-web-like network nanostructure, with an average diameter of fibers at a range of 51.6±15.4nm. The nanocellulose product showed high thermal stability (320°C), which was ready for nanocomposite application. One-pot oxidative-hydrolysis technique is a simple and versatile route for the preparation of nanocellulose from complex biomass within 90°C and 6h period, with minimum wastewater as compared to the multistep process.
    Matched MeSH terms: Arecaceae/chemistry*
  2. Ibrahim MF, Razak MN, Phang LY, Hassan MA, Abd-Aziz S
    Appl Biochem Biotechnol, 2013 Jul;170(6):1320-35.
    PMID: 23666614 DOI: 10.1007/s12010-013-0275-2
    Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2% NaOH with autoclave, which was composed of 59.7% cellulose, 21.6% hemicellulose, and 12.3% lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1% of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5% of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33% and 19.11%, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.
    Matched MeSH terms: Arecaceae/microbiology*
  3. Awg-Adeni DS, Bujang KB, Hassan MA, Abd-Aziz S
    Biomed Res Int, 2013;2013:935852.
    PMID: 23509813 DOI: 10.1155/2013/935852
    Lower concentration of glucose was often obtained from enzymatic hydrolysis process of agricultural residue due to complexity of the biomass structure and properties. High substrate load feed into the hydrolysis system might solve this problem but has several other drawbacks such as low rate of reaction. In the present study, we have attempted to enhance glucose recovery from agricultural waste, namely, "sago hampas," through three cycles of enzymatic hydrolysis process. The substrate load at 7% (w/v) was seen to be suitable for the hydrolysis process with respect to the gelatinization reaction as well as sufficient mixture of the suspension for saccharification process. However, this study was focused on hydrolyzing starch of sago hampas, and thus to enhance concentration of glucose from 7% substrate load would be impossible. Thus, an alternative method termed as cycles I, II, and III which involved reusing the hydrolysate for subsequent enzymatic hydrolysis process was introduced. Greater improvement of glucose concentration (138.45 g/L) and better conversion yield (52.72%) were achieved with the completion of three cycles of hydrolysis. In comparison, cycle I and cycle II had glucose concentration of 27.79 g/L and 73.00 g/L, respectively. The glucose obtained was subsequently tested as substrate for bioethanol production using commercial baker's yeast. The fermentation process produced 40.30 g/L of ethanol after 16 h, which was equivalent to 93.29% of theoretical yield based on total glucose existing in fermentation media.
    Matched MeSH terms: Arecaceae/metabolism*
  4. Ahmed Z, Yusoff MS, N H MK, Abdul Aziz H
    J Air Waste Manag Assoc, 2022 01;72(1):116-130.
    PMID: 33872123 DOI: 10.1080/10962247.2021.1919240
    A massive quantity of Elaeis guineensis (oil palm) trunk biomass, containing a significant amount of natural starch, is available in Malaysia as biowaste because of annual replantation. The efficient extraction of this starch (carbohydrate polymer) would be worthwhile concerning the environmental sustainability and economy through conversion to bioresources. This study investigated the effectiveness of the bisulfite steeping method for starch synthesis from oil palm trunk (OPT) biowaste. The central composite design (CCD) of Design-Expert software executed an experimental model design, data analysis, evaluated the impacts of process variables and their interaction through response surface methodology to optimize the bisulfite steeping method for starch synthesis. The developed quadratic models for four factors (strength of sodium bisulfite solution, steeping hour, mixing ratio with the bisulfite solution, and ultrapure water) and one response (%Yield) demonstrated that a significant starch yield (13.54%) is achievable employing 0.74% bisulfite solution, 5.6 steeping hours, for 1.6 and 0.6 mixing ratio with the bisulfite solution and ultrapure water respectively. Experimental outcomes were consistent with the predicted model, which eventually sustains the significance of this method. Malvern Zetasizer test revealed a bimodal granular distribution for starch, with 7.15 µm of hydrodynamic size. Starch morphology was determined by scanning electron microscopy. X-ray diffraction investigation exhibits an A-type model, specifying persistent characteristics, while FTIR confirms the presence of hydroxyl, carboxylic, and phenolic groups like other cereal starches.Implications: Malaysia is the 2nd largest palm oil exporter in the world. About 110 million tons of palm oil trunk (OPT) biomass is available annually during replanting activities. Modification of bio-wastes into a beneficial form (only 22% presently) like starch extraction would ensure potential reuse as a natural coagulant for wastewater and leachate treatment, food source, adhesives towards boosting the country's economy by sustainable waste management. The current study achieved better starch yield (13.54%) than previous, from the OPT biomass through the novel bisulfite steeping method. Therefore, this method will ascertain the effective implication of numerous economic activities.
    Matched MeSH terms: Arecaceae*
  5. Zakry FA, Shamsuddin ZH, Abdul Rahim K, Zawawi Zakaria Z, Abdul Rahim A
    Microbes Environ, 2012;27(3):257-62.
    PMID: 22446306
    There are increasing applications of diazotrophic rhizobacteria in the sustainable agriculture system. A field experiment on young immature oil palm was conducted to quantify the uptake of N derived from N₂ fixation by the diazotroph Bacillus sphaericus strain UPMB-10, using the ¹⁵N isotope dilution method. Eight months after ¹⁵N application, young immature oil palms that received 67% of standard N fertilizer application together with B. sphaericus inoculation had significantly lower ¹⁵N enrichment than uninoculated palms that received similar N fertilizers. The dilution of labeled N served as a marker for the occurrence of biological N₂ fixation. The proportion of N uptake that was derived from the atmosphere was estimated as 63% on the whole plant basis. The inoculation process increased the N and dry matter yields of the palm leaflets and rachis significantly. Field planting of young, immature oil palm in soil inoculated with B. sphaericus UPMB-10 might mitigate inorganic fertilizer-N application through supplementation by biological nitrogen fixation. This could be a new and important source of nitrogen biofertilizer in the early phase of oil palm cultivation in the field.
    Matched MeSH terms: Arecaceae/metabolism*; Arecaceae/microbiology*
  6. Naher L, Tan SG, Ho CL, Yusuf UK, Ahmad SH, Abdullah F
    ScientificWorldJournal, 2012;2012:647504.
    PMID: 22919345 DOI: 10.1100/2012/647504
    Basal stem rot (BSR) disease caused by the fungus Ganoderma boninense is the most serious disease affecting the oil palm; this is because the disease escapes the early disease detection. The biocontrol agent Trichoderma harzianum can protect the disease only at the early stage of the disease. In the present study, the expression levels of three oil palm (Elaeis guineensis Jacq.) chitinases encoding EgCHI1, EgCHI2, and EgCHI3 at 2, 5, and 8 weeks inoculation were measured in oil palm leaves from plants treated with G. boninense or T. harzianum alone or both.
    Matched MeSH terms: Arecaceae/genetics*; Arecaceae/microbiology
  7. Omar FN, Hanipah SH, Xiang LY, Mohammed MAP, Baharuddin AS, Abdullah J
    J Mech Behav Biomed Mater, 2016 09;62:106-118.
    PMID: 27183430 DOI: 10.1016/j.jmbbm.2016.04.043
    Experimental and numerical investigation was conducted to study the micromechanics of oil palm empty fruit bunch fibres containing silica bodies. The finite viscoelastic-plastic material model called Parallel Rheological Network model was proposed, that fitted well with cyclic and stress relaxation tensile tests of the fibres. Representative volume element and microstructure models were developed using finite element method, where the models information was obtained from microscopy and X-ray micro-tomography analyses. Simulation results showed that difference of the fibres model with silica bodies and those without ones is larger under shear than compression and tension. However, in comparison to geometrical effect (i.e. silica bodies), it is suggested that ultrastructure components of the fibres (modelled using finite viscoelastic-plastic model) is responsible for the complex mechanical behaviour of oil palm fibres. This can be due to cellulose, hemicellulose and lignin components and the interface behaviour, as reported on other lignocellulosic materials.
    Matched MeSH terms: Arecaceae/chemistry*
  8. Omar FN, Hafid HS, Samsu Baharuddin A, Mohammed MAP, Abdullah J
    Planta, 2017 Sep;246(3):567-577.
    PMID: 28620814 DOI: 10.1007/s00425-017-2717-5
    MAIN CONCLUSION: X-ray microtomography results revealed that delignification process damaged the oil palm fibers, which correlated well with reduction of lignin components and increase of the phenolic content. Biodegradation investigation of natural fibers normally focuses on physico-chemical analysis, with less emphasis on physical aspect like fiber structures affect from microbial activity. In this work, the performance of Pycnoporus sanguineus to delignify oil palm empty fruit bunch fibers through solid-state fermentation utilizing various ratio of POME sludge was reported. In addition to tensile testing, physico-chemical and X-ray microtomography (µ-CT) analyses on the oil palm fibers were conducted to determine the effectiveness of the degradation process. The best ratio of fiber to fungi (60:40) was chosen based on the highest lignin loss and total phenolic content values and further investigation was performed to obtain fermentation kinetics data of both laccase and manganese peroxidase. µ-CT results revealed that delignification process damaged the pre-treated and untreated fibers structure, as evident from volume reduction after degradation process. This is correlated with reduction of lignin component and increase of the phenolic content, as well as lower stress-strain curves of the pre-treated fibers compared to the untreated ones (from tensile testing). It is suggested that P. sanguineus preferred to consume the outer layer of the fiber, before it penetrates through the cellular structure of the inner fiber.
    Matched MeSH terms: Arecaceae/metabolism*
  9. Ho CL, Kwan YY, Choi MC, Tee SS, Ng WH, Lim KA, et al.
    BMC Genomics, 2007;8:381.
    PMID: 17953740
    Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm.
    Matched MeSH terms: Arecaceae/genetics*
  10. Yusuf CYL, Abdullah JO, Shaharuddin NA, Abu Seman I, Abdullah MP
    Plant Cell Rep, 2018 Feb;37(2):265-278.
    PMID: 29090330 DOI: 10.1007/s00299-017-2228-7
    KEY MESSAGE: The oil palm EgPAL1 gene promoter and its regulatory region were functional as a promoter in the heterologous system of Arabidopsis according to the cis-acting elements present in that region. The promoter was developmentally regulated, vascular tissue specific and responsive to water stress agents. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the key enzyme of the phenylpropanoid pathway which plays important roles in plant development and adaptation. To date, there is no report on the study of PAL from oil palm (Elaeis guineensis), an economically important oil crop. In this study, the 5' regulatory sequence of a highly divergent oil palm PAL gene (EgPAL1) was isolated and fused with GUS in Arabidopsis to create two transgenic plants carrying the minimal promoter with (2302 bp) and without its regulatory elements (139 bp). The regulatory sequence contained cis-acting elements known to be important for plant development and stress response including the AC-II element for lignin biosynthesis and several stress responsive elements. The promoter and its regulatory region were fully functional in Arabidopsis. Its activities were characterised by two common fundamental features of PAL which are responsive to plant internal developmental programme and external factors. The promoter was developmentally regulated in certain organs; highly active in young organs but less active or inactive in mature organs. The presence of the AC elements and global activity of the EgPAL1 promoter in all organs resembled the property of lignin-related genes. The existence of the MBS element and enhancement of the promoter activity by PEG reflected the behaviour of drought-responsive genes. Our findings provide a platform for evaluating oil palm gene promoters in the heterologous system of Arabidopsis and give insights into the activities of EgPAL1 promoter in oil palm.
    Matched MeSH terms: Arecaceae/genetics*
  11. Ramin M, Alimon AR, Panandam JM, Sijam K, Javanmard A, Abdullah N
    Pak J Biol Sci, 2008 Feb 15;11(4):583-8.
    PMID: 18817130
    The digestion and Volatile Fatty Acid (VFA) production from rice straw and oil palm fronds by cellulolytic bacteria isolated from the termite Coptotermes curvignathus were investigated. The bacteria were Acinetobacter strain Raminalimon, Enterobacter aerogenes strain Razmin C, Enterobacter cloacae strain Razmin B, Bacillus cereus strain Razmin A and Chryseobacterium kwangyangense strain Cb. Acinetobacter strain Raminalimon is an aerobic bacterium, while the other species are facultative anaerobes. There were significant differences (p<0.05) among the bacteria for Dry Matter (DM) lost and acetic acid production from rice straw and Acinetobacter strain Raminalimon showed the highest activity. The facultative bacteria C. kwangyangense strain Cb (cfu mL(-1) 231 x 10(-6), OD: 0.5), E. cloacae (cfu mL(-1) 68 x 10(-7), OD: 0.5) and E. aerogenes (cfu mL(-1) 33 x 10(-7), OD: 0.5) were used for digestion study with the rumen fluid microflora. The in vitro gas production technique was applied for the comparative study and the parameters measured were pH, gas (volume), dry matter lost, acetic acid, propionic acid and butyric acid concentrations. pH was not significantly (p<0.05) different among the five treatments. The bacterium C. kwangyangense strain Cb showed the highest activity (p<0.05) for DM lost, acetic acid, propionic acid and butyric acid production from rice straw when compared to the other bacterial activities. There was no significance (p<0.05) difference between the three bacteria for the dry matter lost of oil palm fronds but the production of Volatile Fatty Acids (VFA) was significantly (p<0.05) high in the treatment which was inoculated with C. kwangyangense strain Cb. The Gen Bank NCBI/EMBL accession numbers for the bacterial strains are EU332791, EU305608, EU305609, EU294508 and EU169201.
    Matched MeSH terms: Arecaceae/anatomy & histology; Arecaceae/metabolism*; Arecaceae/chemistry
  12. Varatharajan R, Sattar MZ, Chung I, Abdulla MA, Kassim NM, Abdullah NA
    PMID: 24074026 DOI: 10.1186/1472-6882-13-242
    Catechins-rich oil palm (Elaeis guineensis) leaves extract (OPLE) is known to have antioxidant activity. Several polyphenolic compounds reported as antioxidants such as quercetin, catechins and gallic acid have been highlighted to have pro-oxidant activity at high doses. Therefore, the present study was conducted to investigate the antioxidant and pro-oxidant effects of chronically administering high dose of OPLE (1000 mg kg⁻¹) in an animal model of diabetic nephropathy (DN).
    Matched MeSH terms: Arecaceae/chemistry*
  13. Saed Taha R, Ismail I, Zainal Z, Abdullah SN
    J Plant Physiol, 2012 Sep 01;169(13):1290-300.
    PMID: 22658816 DOI: 10.1016/j.jplph.2012.05.001
    The stearoyl-acyl-carrier-protein (ACP) desaturase is a plastid-localized enzyme that catalyzes the conversion of stearoyl-ACP to oleoyl-ACP and plays an important role in the determination of the properties of the majority of cellular glycerolipids. Functional characterization of the fatty acid desaturase genes and their specific promoters is a prerequisite for altering the composition of unsaturated fatty acids of palm oil by genetic engineering. In this paper, the specificity and strength of the oil palm stearoyl-ACP desaturase gene promoter (Des) was evaluated in transgenic tomato plants. Transcriptional fusions between 5' deletions of the Des promoter (Des1-4) and the β-glucuronidase (GUS) reporter gene were generated and their expression analyzed in different tissues of stably transformed tomato plants. Histochemical analysis of the Des promoter deletion series revealed that GUS gene expression was confined to the tomato fruits. No expression was detected in vegetative tissues of the transgenic plants. The highest levels of GUS activity was observed in different tissues of ripe red fruits (vascular tissue, septa, endocarp, mesocarp and columella) and in seeds, which harbored the promoter region located between -590 and +10. A comparison of the promoter-deletion constructs showed that the Des4 promoter deletion (314bp) produced a markedly low level of GUS expression in fruits and seeds. Fluorometric analysis of the GUS activity revealed a 4-fold increase in the activity of the full-length Des promoter compared to the CaMV35S promoter. RNA-hybridization analyses provided additional evidence of increased GUS expression in fruits driven by a Des fragment. Taken together, these results demonstrate the potential of the Des promoter as a tool for the genetic engineering of oil palms and other species, including dicots, in improving the quality and nutritional value of the fruits.
    Matched MeSH terms: Arecaceae/enzymology*
  14. Bari MN, Alam MZ, Muyibi SA, Jamal P, Abdullah-Al-Mamun
    Bioresour Technol, 2009 Jun;100(12):3113-20.
    PMID: 19231166 DOI: 10.1016/j.biortech.2009.01.005
    A sequential optimization based on statistical design and one-factor-at-a-time (OFAT) method was employed to optimize the media constituents for the improvement of citric acid production from oil palm empty fruit bunches (EFB) through solid state bioconversion using Aspergillus niger IBO-103MNB. The results obtained from the Plackett-Burman design indicated that the co-substrate (sucrose), stimulator (methanol) and minerals (Zn, Cu, Mn and Mg) were found to be the major factors for further optimization. Based on the OFAT method, the selected medium constituents and inoculum concentration were optimized by the central composite design (CCD) under the response surface methodology (RSM). The statistical analysis showed that the optimum media containing 6.4% (w/w) of sucrose, 9% (v/w) of minerals and 15.5% (v/w) of inoculum gave the maximum production of citric acid (337.94 g/kg of dry EFB). The analysis showed that sucrose (p<0.0011) and mineral solution (p<0.0061) were more significant compared to inoculum concentration (p<0.0127) for the citric acid production.
    Matched MeSH terms: Arecaceae/metabolism*
  15. Azwandi A, Abu Hassan A
    Trop Biomed, 2009 Apr;26(1):1-10.
    PMID: 19696721 MyJurnal
    This study was carried out in an oil palm plantation in Bandar Baharu, Kedah using monkey carcasses and focuses in documenting the decomposition and dipteran colonization sequences in 50 days. This is the first study of Diptera associated with the exploitation of carcasses conducted in the north of peninsular Malaysia during the dry and wet seasons thereat. During the process of decomposition in both seasons, five phases of decay were recognized namely fresh, bloated, active decay, advance decay and dry remain. In this decomposition study, biomass loss of carcass occurred rapidly during the fresh to active decay stage due to the colonization and feeding activity of the Diptera larvae. The duration of the fresh and bloated stages of decay were the same in wet and dry seasons but later stages of decay were markedly shorter during the wet season. Twenty one species of adult Diptera were identified colonizing carcasses in the study period. Among the flies from the family Calliphoridae, Chrysomya megacephala Fabricius and Chrysomya nigripes Aubertin were recognized as the earliest arrivals on the first day of exposure. Adult Ch. nigripes was abundant for approximately two weeks after placement of the carcasses. By comparing the percentages of adults collected during the study period, the calliphorids abundance in percentages in wet season was 50.83%, but in dry season, the abundance was only about 35.2%. In contrast, the percentage of Sphaeroceridae in wet season was only 3.33%, but in the dry season, the abundance was 20.8%. Dipteran in family Phoridae, Piophilidae, Sepsidae, Drosophilidae and Dolichopodidae colonized the carcasses for a long period of time and were categorized as long term colonizers.
    Matched MeSH terms: Arecaceae
  16. Muhamad H, Zainol M, Sahid I, Abu Seman I
    Drug Test Anal, 2012 Aug;4 Suppl 1:112-7.
    PMID: 22851367 DOI: 10.1002/dta.1351
    In oil palm plantations, the fungicide hexaconazole is used to control Ganoderma infection that threatens to destroy or compromisethe palm. The application of hexaconazole is usually through soil drenching, trunk injection, or a combination of these two methods. It is therefore important to have a method to determine the residual amount of hexaconazole in the field such as in samples of water, soil, and leaf to monitor the use and fate of the fungicide in oil palm plantations. This study on the behaviour of hexaconazole in oil palm agro-environment was carried out at the UKM-MPOB Research Station, Bangi Lama, Selangor. Three experimental plots in this estate with 7-year-old Dura x Pisifera (DxP) palms were selected for the field trial. One plot was sprayed with hexaconazole at the manufacturer's recommended dosage, one at double the recommended dosage, and the third plot was untreated control. Hexaconazole residues in the soil, leaf, and water were determined before and after fungicide treatment. Soil samples were randomly collected from three locations at different depths (0-50 cm) and soil collected fromthe same depth were bulked together. Soil, water, and palm leaf were collected at -1 (day before treatment), 0 (day of treatment), 1, 3, 7, 14, 21, 70, 90, and 120 days after treatment. Hexaconazole was detected in soil and oil palm leaf, but was not detected in water from the nearby stream.
    Matched MeSH terms: Arecaceae/chemistry*
  17. Ahmadi P, Muharam FM, Ahmad K, Mansor S, Abu Seman I
    Plant Dis, 2017 Jun;101(6):1009-1016.
    PMID: 30682927 DOI: 10.1094/PDIS-12-16-1699-RE
    Ganoderma boninense is a causal agent of basal stem rot (BSR) and is responsible for a significant portion of oil palm (Elaeis guineensis) losses, which can reach US$500 million a year in Southeast Asia. At the early stage of this disease, infected palms are symptomless, which imposes difficulties in detecting the disease. In spite of the availability of tissue and DNA sampling techniques, there is a particular need for replacing costly field data collection methods for detecting Ganoderma in its early stage with a technique derived from spectroscopic and imagery data. Therefore, this study was carried out to apply the artificial neural network (ANN) analysis technique for discriminating and classifying fungal infections in oil palm trees at an early stage using raw, first, and second derivative spectroradiometer datasets. These were acquired from 1,016 spectral signatures of foliar samples in four disease levels (T1: healthy, T2: mildly-infected, T3: moderately infected, and T4: severely infected). Most of the satisfactory results occurred in the visible range, especially in the green wavelength. The healthy oil palms and those which were infected by Ganoderma at an early stage (T2) were classified satisfactorily with an accuracy of 83.3%, and 100.0% in 540 to 550 nm, respectively, by ANN using first derivative spectral data. The results further indicated that the sensitive frond number modeled by ANN provided the highest accuracy of 100.0% for frond number 9 compared with frond 17. This study showed evidence that employment of ANN can predict the early infection of BSR disease on oil palm with a high degree of accuracy.
    Matched MeSH terms: Arecaceae
  18. Kerfahi D, Tripathi BM, Lee J, Edwards DP, Adams JM
    PLoS One, 2014;9(11):e111525.
    PMID: 25405609 DOI: 10.1371/journal.pone.0111525
    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.
    Matched MeSH terms: Arecaceae/physiology*
  19. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, et al.
    Mol Ecol, 2016 May;25(10):2244-57.
    PMID: 26994316 DOI: 10.1111/mec.13620
    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.
    Matched MeSH terms: Arecaceae/growth & development
  20. Hameed BH, Tan IA, Ahmad AL
    J Hazard Mater, 2008 Oct 30;158(2-3):324-32.
    PMID: 18329169 DOI: 10.1016/j.jhazmat.2008.01.088
    Oil palm fibre was used to prepare activated carbon using physiochemical activation method which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of three preparation variables: the activation temperature, activation time and chemical impregnation (KOH:char) ratio on methylene blue (MB) uptake from aqueous solutions and activated carbon yield were investigated. Based on the central composite design (CCD), a quadratic model and a two factor interaction (2FI) model were respectively developed to correlate the preparation variables to the MB uptake and carbon yield. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from oil palm fibre was obtained by using activation temperature of 862 degrees C, activation time of 1h and chemical impregnation ratio of 3.1. The optimum activated carbon showed MB uptake of 203.83 mg/g and activated carbon yield of 16.50%. The equilibrium data for adsorption of MB on the optimum activated carbon were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 400mg/g at 30 degrees C.
    Matched MeSH terms: Arecaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links