Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Alattraqchi AG, Mohd Rani F, A Rahman NI, Ismail S, Cleary DW, Clarke SC, et al.
    mSphere, 2021 Jan 27;6(1).
    PMID: 33504662 DOI: 10.1128/mSphere.01076-20
    Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes blaNDM-1 and blaOXA-58 in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The blaNDM-1 gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas blaOXA-58 was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance.
    Matched MeSH terms: beta-Lactamases/genetics*
  2. Ibrahim N, Wajidi MF, Yusof MY, Tay ST
    Trop Biomed, 2011 Dec;28(3):668-71.
    PMID: 22433898 MyJurnal
    The increased frequency of antibiotic resistance is known to be associated with the dissemination of integrons in the Enterobacteriaceae. This study determined the prevalence and type of integrons amongst 160 extended-spectrum beta-lactamase producing enterobacterial isolates kept in our culture collection. Integrons were detected in 98(61.3%) isolates, including 28(62.2%) Escherichia coli, 34(64.2%) Klebsiella spp., 27(61.4%), Enterobacter spp. and 9(50.0%) Citrobacter spp. investigated in this study. Restriction analysis of the integron gene fragments revealed that class I integron was the principal integron detected in 92(57.5%) of our isolates. Class II integron was detected in 6(3.8%) of our isolates, while no class III integron was detected in this study. The high rates of integron prevalence particularly of the class I integron in the E. coli and Klebsiella spp. concur with previous studies in other geographical regions. The higher (≥50%) integron prevalence of Citrobacter and Enterobacter isolates comparing to previous studies suggests the potential of these isolates as sources for dissemination of resistance determinants. The finding in this study serves as a basis for further study on the antibiotic resistance mechanisms of enterobacterial species in this teaching hospital.
    Matched MeSH terms: beta-Lactamases/genetics*
  3. Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J
    ScientificWorldJournal, 2012;2012:654939.
    PMID: 22792048 DOI: 10.1100/2012/654939
    Carbapenems are the primary choice of treatment for severe Pseudomonas aeruginosa infection. However, the emergence of carbapenem resistance due to the production of metallo-β-lactamases (MBLs) is of global concern. In this study, 90 imipenem- (IPM- or IP-) resistant P. aeruginosa (IRPA) isolates, including 32 previously tested positive and genotyped for MBL genes by PCR, were subjected to double-disk synergy test (DDST), combined disk test (CDT), and imipenem/imipenem-inhibitor (IP/IPI) E-test to evaluate their MBLs detection capability. All three methods were shown to have a sensitivity of 100%. However, DDST was the most specific of the three (96.6%), followed by IP/IPI E-test interpreted based on the single criteria of IP/IPI ≥8 as positive (62.1%), and CDT was the least specific (43.1%). Based on the data from this evaluation, we propose that only IRPA with IP MIC >16 μg/mL and IP/IPI ≥8 by IP/IPI E-test should be taken as positive for MBL activity. With the new dual interpretation criteria, the MBL IP/IPI E-test was shown to achieve 100% sensitivity as well as specificity for the IRPA in this study. Therefore, the IP/IPI E-test is a viable alternative phenotypic assay to detect MBL production in IRPA in our population in circumstances where PCR detection is not a feasible option.
    Matched MeSH terms: beta-Lactamases/genetics*
  4. Wong JS, Mohd Azri ZA, Subramaniam G, Ho SE, Palasubramaniam S, Navaratnam P
    Malays J Pathol, 2003 Dec;25(2):113-9.
    PMID: 16196367
    beta-Lactamases have been identified as the major cause of antimicrobial resistance to beta-lactam antibiotics in Escherichia coli. The activities of ampicillin-sulbactam and amoxicillin-clavulanate as well as a range of beta-lactam antibiotics were studied with 87 clinical E. coli isolates from patients of the University Malaya Medical Center using the disc diffusion technique. Susceptible, intermediate and resistant categories were established based on the diameter of zones of inhibition set by the National Committee for Clinical Laboratory Standards (NCCLS). The isolates were then classified into 6 phenotypes according to the criteria stated in the methodology: S (susceptible to all beta-lactams); TL (resistant to aminopenicillins; amoxicillin-clavulanate susceptible and susceptible or intermediate to ampicillin-sulbactam); TI (resistant to aminopenicillins and ampicillin-sulbactam; susceptible to amoxicilin-clavulanate); TH-IRT (resistant to aminopenicillins; intermediate or resistant to amoxicillin-clavulanate; resistant to ampicillin-sulbactam); ESBL (resistant to aminopenicillins and oxyimino cephalosporins; positive results with the double-disc diffusion test); and CP (resistant to aminopenicillins, beta-lactam-beta-lactamase inhibitor combinations, oxyimino cephalosporins and cephamycins). Results showed that the TL phenotype was the commonest (40.2% of the isolates) followed by S (31%), TH-IRT (16.1%), ESBL and CP (3.4% each) and TI (2.3%). One isolate showed both ESBL and CP phenotypes while two isolates were classified as inconclusive. Representatives from each phenotype were further analysed for the presence of beta-lactamases which revealed a predominance of TEM and SHV enzyme producers. PCR-SSCP analysis of the SHV gene from all the ESBL and CP isolates revealed the predominance of SHV 5-type enzyme which was concurrent with our previous studies.
    Matched MeSH terms: beta-Lactamases/genetics
  5. Hasan MJ, Shamsuzzaman SM
    Malays J Pathol, 2017 Dec;39(3):277-283.
    PMID: 29279590
    BACKGROUND: The adeB gene in Acinetobacter baumannii regulates the bacterial internal drug efflux pump that plays a significant role in drug resistance. The aim of our study was to determine the occurrence of adeB gene in multidrug resistant and New Delhi metallo-beta-lactamase-1 (NDM- 1) gene in imipenem resistant Acinetobacter baumannii isolated from wound swab samples in a tertiary care hospital of Bangladesh.

    METHODS: A total of 345 wound swab samples were tested for bacterial pathogens. Acinetobacter baumannii was identified by culture and biochemical tests. Antimicrobial susceptibility pattern was determined by the disc diffusion method according to CLSI standards. Extended spectrum beta-lactamases were screened using the double disc synergy technique. Gene encoding AdeB efflux pump and NDM-1 were detected by Polymerase Chain Reaction (PCR).

    RESULTS: A total 22 (6.37%) Acinetobacter baumannii were identified from 345 wound swab samples and 20 (91%) of them were multidrug resistant. High resistance rates to some antibiotics were seen namely, cefotaxime (95%), amoxyclavulanic acid (90%) and ceftriaxone (82%). All the identified Acinetobacter baumannii were sensitive to colistin and 82% to imipenem. Two (9%) ESBL producing Acinetobacter baumannii strains were detected. adeB gene was detected in 16 (80%) out of 20 multidrug resistant Acinetobacter baumannii. 4 (18%) of 22 Acinetobacter baumannii were imipenem resistant. NDM-1 gene was detected in 2 (50%) of the imipenem resistant strains of Acinetobacter baumannii.

    CONCLUSION: The results of this study provide insight into the role of adeB gene as a potential regulator of drug resistance in Acinetobacter baumanni in Bangladesh. NDM-1 gene also contributes in developing such resistance for Acinetobacter baumannii.

    Matched MeSH terms: beta-Lactamases/genetics*
  6. Kim MJ, Bae IK, Jeong SH, Kim SH, Song JH, Choi JY, et al.
    J Antimicrob Chemother, 2013 Dec;68(12):2820-4.
    PMID: 23843299 DOI: 10.1093/jac/dkt269
    To investigate the epidemiological traits of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) clinical isolates collected by the Asian Network for Surveillance of Resistant Pathogens (ANSORP).
    Matched MeSH terms: beta-Lactamases/genetics
  7. Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Heesom KJ, Avison MB
    J Antimicrob Chemother, 2018 11 01;73(11):2990-2996.
    PMID: 30053019 DOI: 10.1093/jac/dky293
    Background: In Klebsiella pneumoniae, loss-of-function mutations in the transcriptional repressors RamR and OqxR both have an impact on the production of efflux pumps and porins relevant to antimicrobial efflux/entry.

    Objectives: To define, in an otherwise isogenic background, the relative effects of OqxR and RamR loss-of-function mutations on envelope protein production, envelope permeability and antimicrobial susceptibility. We also investigated the clinical relevance of an OqxR loss-of-function mutation, particularly in the context of β-lactam susceptibility.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. Antimicrobial susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and quantitative RT-PCR was used to measure transcript levels.

    Results: Loss of RamR or OqxR reduced envelope permeability in K. pneumoniae by 45%-55% relative to the WT. RamR loss activated AcrAB efflux pump production ∼5-fold and this reduced β-lactam susceptibility, conferring ertapenem non-susceptibility even in the absence of a carbapenemase. In contrast, OqxR loss specifically activated OqxAB efflux pump production >10 000-fold. This reduced fluoroquinolone susceptibility but had little impact on β-lactam susceptibility even in the presence of a β-lactamase.

    Conclusions: Whilst OqxR loss and RamR loss are both seen in K. pneumoniae clinical isolates, only RamR loss significantly stimulates AcrAB efflux pump production. This means that only RamR mutants have significantly reduced β-lactamase-mediated β-lactam susceptibility and therefore represent a greater clinical threat.

    Matched MeSH terms: beta-Lactamases/genetics
  8. Jiménez-Castellanos JC, Wan Nur Ismah WAK, Takebayashi Y, Findlay J, Schneiders T, Heesom KJ, et al.
    J Antimicrob Chemother, 2018 Jan 01;73(1):88-94.
    PMID: 29029194 DOI: 10.1093/jac/dkx345
    Objectives: In Klebsiella pneumoniae, overproduction of RamA results in reduced envelope permeability and reduced antimicrobial susceptibility but clinically relevant resistance is rarely observed. Here we have tested whether RamA overproduction can enhance acquired β-lactam resistance mechanisms in K. pneumoniae and have defined the envelope protein abundance changes upon RamA overproduction during growth in low and high osmolarity media.

    Methods: Envelope permeability was estimated using a fluorescent dye accumulation assay. β-Lactam susceptibility was measured using disc testing. Total envelope protein production was quantified using LC-MS/MS proteomics and transcript levels were quantified using real-time RT-PCR.

    Results: RamA overproduction enhanced β-lactamase-mediated β-lactam resistance, in some cases dramatically, without altering β-lactamase production. It increased production of efflux pumps and decreased OmpK35 porin production, though micF overexpression showed that OmpK35 reduction has little impact on envelope permeability. A survey of K. pneumoniae bloodstream isolates revealed ramA hyperexpression in 3 of 4 carbapenemase producers, 1 of 21 CTX-M producers and 2 of 19 strains not carrying CTX-M or carbapenemases.

    Conclusions: Whilst RamA is not a key mediator of antibiotic resistance in K. pneumoniae on its own, it is potentially important for enhancing the spectrum of acquired β-lactamase-mediated β-lactam resistance. LC-MS/MS proteomics analysis has revealed that this enhancement is achieved predominantly through activation of efflux pump production.

    Matched MeSH terms: beta-Lactamases/genetics
  9. Gautam D, Dolma KG, Khandelwal B, Goyal RK, Mitsuwan W, Pereira MLG, et al.
    Indian J Med Res, 2023 Oct 01;158(4):439-446.
    PMID: 38006347 DOI: 10.4103/ijmr.ijmr_3470_21
    BACKGROUND OBJECTIVES: Acinetobacter baumannii has emerged as a nosocomial pathogen with a tendency of high antibiotic resistance and biofilm production. This study aimed to determine the occurrence of A. baumannii from different clinical specimens of suspected bacterial infections and furthermore to see the association of biofilm production with multidrug resistance and expression of virulence factor genes in A. baumannii.

    METHODS: A. baumannii was confirmed in clinical specimens by the detection of the blaOXA-51-like gene. Biofilm production was tested by microtitre plate assay and virulence genes were detected by real-time PCR.

    RESULTS: A. baumannii was isolated from a total of 307 clinical specimens. The isolate which showed the highest number of A. baumannii was an endotracheal tube specimen (44.95%), then sputum (19.54%), followed by pus (17.26%), urine (7.49%) and blood (5.86%), and <2 per cent from body fluids, catheter-tips and urogenital specimens. A resistance rate of 70-81.43 per cent against all antibiotics tested, except colistin and tigecycline, was noted, and 242 (78.82%) isolates were multidrug-resistant (MDR). Biofilm was detected in 205 (66.78%) with a distribution of 54.1 per cent weak, 10.42 per cent medium and 2.28 per cent strong biofilms. 71.07 per cent of MDR isolates produce biofilm (P<0.05). Amongst virulence factor genes, 281 (91.53%) outer membrane protein A (OmpA) and 98 (31.92%) biofilm-associated protein (Bap) were detected. Amongst 100 carbapenem-resistant A. baumannii, the blaOXA-23-like gene was predominant (96%), the blaOXA-58-like gene (6%) and none harboured the blaOXA-24-like gene. The metallo-β-lactamase genes blaIMP-1 (4%) and blaVIM-1(8%) were detected, and 76 per cent showed the insertion sequence ISAba1.

    INTERPRETATION CONCLUSIONS: The majority of isolates studied were from lower respiratory tract specimens. The high MDR rate and its positive association with biofilm formation indicate the nosocomial distribution of A. baumannii. The biofilm formation and the presence of Bap were not interrelated, indicating that biofilm formation was not regulated by a single factor. The MDR rate and the presence of OmpA and Bap showed a positive association (P<0.05). The isolates co-harbouring different carbapenem resistance genes were the predominant biofilm producers, which will seriously limit the therapeutic options suggesting the need for strict antimicrobial stewardship and molecular surveillance in hospitals.

    Matched MeSH terms: beta-Lactamases/genetics
  10. Menon RK, Gomez A, Brandt BW, Leung YY, Gopinath D, Watt RM, et al.
    Sci Rep, 2019 12 10;9(1):18761.
    PMID: 31822712 DOI: 10.1038/s41598-019-55056-3
    Routine postoperative antibiotic prophylaxis is not recommended for third molar extractions. However, amoxicillin still continues to be used customarily in several clinical practices worldwide to prevent infections. A prospective cohort study was conducted in cohorts who underwent third molar extractions with (group EA, n = 20) or without (group E, n = 20) amoxicillin (250 mg three times daily for 5 days). Further, a control group without amoxicillin and extractions (group C, n = 17) was included. Salivary samples were collected at baseline, 1-, 2-, 3-, 4-weeks and 3 months to assess the bacterial shift and antibiotic resistance gene changes employing 16S rRNA gene sequencing (Illumina-Miseq) and quantitative polymerase chain reaction. A further 6-month follow-up was performed for groups E and EA. Seven operational taxonomic units reported a significant change from baseline to 3 months for group EA (adjusted p  0.05). In conclusion, the salivary microbiome is resilient to an antibiotic challenge by a low-dose regimen of amoxicillin. Further studies evaluating the effect of routinely used higher dose regimens of amoxicillin on gram-negative bacteria and antibiotic resistance genes are warranted.
    Matched MeSH terms: beta-Lactamases/genetics
  11. Mohd Khari FI, Karunakaran R, Rosli R, Tee Tay S
    PLoS One, 2016;11(3):e0150643.
    PMID: 26963619 DOI: 10.1371/journal.pone.0150643
    OBJECTIVES: The objective of this study was to determine the occurrence of chromosomal and plasmid-mediated β-lactamases (AmpC) genes in a collection of Malaysian isolates of Enterobacter species. Several phenotypic tests for detection of AmpC production of Enterobacter spp. were evaluated and the agreements between tests were determined.

    METHODS: Antimicrobial susceptibility profiles for 117 Enterobacter clinical isolates obtained from the Medical Microbiology Diagnostic Laboratory, University Malaya Medical Centre, Malaysia, from November 2012-February 2014 were determined in accordance to CLSI guidelines. AmpC genes were detected using a multiplex PCR assay targeting the MIR/ACT gene (closely related to chromosomal EBC family gene) and other plasmid-mediated genes, including DHA, MOX, CMY, ACC, and FOX. The AmpC β-lactamase production of the isolates was assessed using cefoxitin disk screening test, D69C AmpC detection set, cefoxitin-cloxacillin double disk synergy test (CC-DDS) and AmpC induction test.

    RESULTS: Among the Enterobacter isolates in this study, 39.3% were resistant to cefotaxime and ceftriaxone and 23.9% were resistant to ceftazidime. Ten (8.5%) of the isolates were resistant to cefepime, and one isolate was resistant to meropenem. Chromosomal EBC family gene was amplified from 36 (47.4%) E. cloacae and three (25%) E. asburiae. A novel blaDHA type plasmid-mediated AmpC gene was identified for the first time from an E. cloacae isolate. AmpC β-lactamase production was detected in 99 (89.2%) of 111 potential AmpC β-lactamase producers (positive in cefoxitin disk screening) using D69C AmpC detection set. The detection rates were lower with CC-DDS (80.2%) and AmpC induction tests (50.5%). There was low agreement between the D69C AmpC detection set and the other two phenotypic tests. Of the 40 isolates with AmpC genes detected in this study, 87.5%, 77.5% and 50.0% of these isolates were positive by the D69C AmpC detection set, CC-DDS and AmpC induction tests, respectively.

    CONCLUSIONS: Besides MIR/ACT gene, a novel plasmid-mediated AmpC gene belonging to the DHA-type was identified in this study. Low agreement was noted between the D69C AmpC detection set and two other phenotypic tests for detection of AmpC production in Enterobacter spp. As plasmid-mediated genes may serve as the reservoir for the emergence of antibiotic resistance in a clinical setting, surveillance and infection control measures are necessary to limit the spread of these genes in the hospital.

    Matched MeSH terms: beta-Lactamases/genetics*
  12. Al-Marzooq F, Mohd Yusof MY, Tay ST
    PLoS One, 2015;10(7):e0133654.
    PMID: 26203651 DOI: 10.1371/journal.pone.0133654
    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6')-Ib, aac(6')-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.
    Matched MeSH terms: beta-Lactamases/genetics
  13. Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, et al.
    PLoS One, 2019;14(4):e0214326.
    PMID: 30939149 DOI: 10.1371/journal.pone.0214326
    Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.
    Matched MeSH terms: beta-Lactamases/genetics
  14. Lemlem M, Aklilu E, Mohammed M, Kamaruzzaman F, Zakaria Z, Harun A, et al.
    PLoS One, 2023;18(5):e0285743.
    PMID: 37205716 DOI: 10.1371/journal.pone.0285743
    Antimicrobial resistance is one of the major public health threats globally. This challenge has been aggravated with the overuse and misuse of antibiotics in food animals and humans. The present study aimed to investigate the prevalence of Extended-Spectrum β-lactamase (ESBL) genes in Escherichia coli (E. coli) isolated from broiler chickens in Kelantan, Malaysia. A total of 320 cloacal swabs were collected from farms in different districts of Kelantan and were analyzed using routine bacteriology, antimicrobial susceptibility test, and molecular techniques for further identification and characterization of ESBL encoding genes. Based on PCR detection for the E. coli species-specific Pho gene, 30.3% (97/320) of isolates were confirmed as E. coli, and 84.5% (82/97) of the isolates were positive for at least one ESBL gene. Majority of the isolates, 62.9% (61/97) were harboring blaCTX-M followed by 45.4% (44/97) of blaTEM genes, while 16.5% (16/97) of the isolates were positive for both mcr-1 and ESBL genes. Overall, 93.8% (90/97) of the E. coli were resistant to three or more antimicrobials; indicating that the isolates were multi-drug resistance. 90.7% of multiple antibiotic resistance (MAR) index value greater than 0.2, would also suggest the isolates were from high-risk sources of contamination. The MLST result shows that the isolates are widely diverse. Our findings provide insight into the alarmingly high distribution of antimicrobial resistant bacteria, mainly ESBL producing E. coli in apparently healthy chickens indicating the role of food animals in the emergence and spread of antimicrobial resistance, and the potential public health threats it may pose.
    Matched MeSH terms: beta-Lactamases/genetics
  15. Hosuru Subramanya S, Bairy I, Nayak N, Amberpet R, Padukone S, Metok Y, et al.
    PLoS One, 2020;15(5):e0227725.
    PMID: 32469888 DOI: 10.1371/journal.pone.0227725
    The surge in the prevalence of drug-resistant bacteria in poultry is a global concern as it may pose an extended threat to humans and animal health. The present study aimed to investigate the colonization proportion of extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae (EPE and CPE, respectively) in the gut of healthy poultry, Gallus gallus domesticus in Kaski district of Western Nepal. Total, 113 pooled rectal swab specimens from 66 private household farms and 47 commercial poultry farms were collected by systematic random sampling from the Kaski district in western Nepal. Out of 113 pooled samples, 19 (28.8%) samples from 66 backyard farms, and 15 (31.9%) from 47 commercial broiler farms were positive for EPE. Of the 38 EPE strains isolated from 34 ESBL positive rectal swabs, 31(81.6%) were identified as Escherichia coli, five as Klebsiella pneumoniae (13.2%), and one each isolate of Enterobacter species and Citrobacter species (2.6%). Based on genotyping, 35/38 examined EPE strains (92.1%) were phylogroup-1 positive, and all these 35 strains (100%) had the CTX-M-15 gene and strains from phylogroup-2, and 9 were of CTX-M-2 and CTX-M-14, respectively. Among 38 ESBL positive isolates, 9 (23.7%) were Ambler class C (Amp C) co-producers, predominant were of DHA, followed by CIT genes. Two (6.5%) E. coli strains of ST131 belonged to clade C, rest 29/31 (93.5%) were non-ST131 E. coli. None of the isolates produced carbapenemase. Twenty isolates (52.6%) were in-vitro biofilm producers. Univariate analysis showed that the odd of ESBL carriage among commercial broilers were 1.160 times (95% CI 0.515, 2.613) higher than organically fed backyard flocks. This is the first study in Nepal, demonstrating the EPE colonization proportion, genotypes, and prevalence of high-risk clone E. coli ST131 among gut flora of healthy poultry. Our data indicated that CTX-M-15 was the most prevalent ESBL enzyme, mainly associated with E. coli belonging to non-ST131clones and the absence of carbapenemases.
    Matched MeSH terms: beta-Lactamases/genetics*
  16. Ng HK, Puah SM, Teh CSJ, Idris N, Chua KH
    PeerJ, 2023;11:e15304.
    PMID: 37214089 DOI: 10.7717/peerj.15304
    BACKGROUND: Acinetobacter baumannii was reported to have resistance towards carbapenems and the ability to form an air-liquid biofilm (pellicle) which contributes to their virulence. The GacSA two-component system has been previously shown to play a role in pellicle formation. Therefore, this study aims to detect the presence of gacA and gacS genes in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates recovered from patients in intensive care units and to investigate their pellicle forming ability.

    METHODS: The gacS and gacA genes were screened in 96 clinical CRAB isolates using PCR assay. Pellicle formation assay was performed in Mueller Hinton medium and Luria Bertani medium using borosilicate glass tubes and polypropylene plastic tubes. The biomass of the pellicle was quantitated using the crystal violet staining assay. The selected isolates were further assessed for their motility using semi-solid agar and monitored in real-time using real-time cell analyser (RTCA).

    RESULTS: All 96 clinical CRAB isolates carried the gacS and gacA genes, however, only four isolates (AB21, AB34, AB69 and AB97) displayed the ability of pellicle-formation phenotypically. These four pellicle-forming isolates produced robust pellicles in Mueller Hinton medium with better performance in borosilicate glass tubes in which biomass with OD570 ranging from 1.984 ± 0.383 to 2.272 ± 0.376 was recorded. The decrease in cell index starting from 13 hours obtained from the impedance-based RTCA showed that pellicle-forming isolates had entered the growth stage of pellicle development.

    CONCLUSION: These four pellicle-forming clinical CRAB isolates could be potentially more virulent, therefore further investigation is warranted to provide insights into their pathogenic mechanisms.

    Matched MeSH terms: beta-Lactamases/genetics
  17. Yap PSX, Chong CW, Ponnampalavanar S, Ramli R, Harun A, Tengku Jamaluddin TZM, et al.
    PeerJ, 2023;11:e16393.
    PMID: 38047021 DOI: 10.7717/peerj.16393
    BACKGROUND: The high burden of extended-spectrum beta-lactamase-producing (ESBL)-producing Enterobacterales worldwide, especially in the densely populated South East Asia poses a significant threat to the global transmission of antibiotic resistance. Molecular surveillance of ESBL-producing pathogens in this region is vital for understanding the local epidemiology, informing treatment choices, and addressing the regional and global implications of antibiotic resistance.

    METHODS: Therefore, an inventory surveillance of the ESBL-Escherichia coli (ESBL-EC) isolates responsible for infections in Malaysian hospitals was conducted. Additionally, the in vitro efficacy of flomoxef and other established antibiotics against ESBL-EC was evaluated.

    RESULTS: A total of 127 non-repetitive ESBL-EC strains isolated from clinical samples were collected during a multicentre study performed in five representative Malaysian hospitals. Of all the isolates, 33.9% were isolated from surgical site infections and 85.8% were hospital-acquired infections. High rates of resistance to cefotaxime (100%), cefepime (100%), aztreonam (100%) and trimethoprim-sulfamethoxazole (100%) were observed based on the broth microdilution test. Carbapenems remained the most effective antibiotics against the ESBL-EC, followed by flomoxef. Antibiotic resistance genes were identified by PCR. The blaCTX-M-1 was the most prevalent ESBL gene, with 28 isolates (22%) harbouring blaCTX-M-1 only, 27 isolates (21.3%) co-harbouring blaCTX-M-1 and blaTEM, and ten isolates (7.9%) co-harbouring blaCTX-M-1, blaTEM and blaSHV. A generalised linear model showed significant antibacterial activity of imipenem against different types of infection. Besides carbapenems, this study also demonstrated a satisfactory antibacterial activity of flomoxef (81.9%) on ESBL-EC, regardless of the types of ESBL genes.

    Matched MeSH terms: beta-Lactamases/genetics
  18. Hashim RB, Husin S, Rahman MM
    Pak J Biol Sci, 2011 Jan 01;14(1):41-6.
    PMID: 21913496
    The present study was aimed to identify the gene of drug resistance betalactamase producing bacteria and clinical features of the infected patients at Hospital University Kebangsaan Malaysia. Blood samples from the patients were collected, processed and betalactamase producing drug resistance bacteria were identified by antibiotic sensitivity testing. Genes of the drug resistance bacteria were detected and characterized by polymerase chain reaction. A total of 34 isolates of drug resistance Betalactamase producing E. coli and Klebsiella spp. were isolated from 2,502 patients. Most common drug resistance gene TEM was found in 50% of the isolates. 11% was found positive for both TEM and SHV. Next 11% of the isolates expressed only SHV genes. Clinical features of the patients were recorded from where the bacteria isolated. Regarding community affiliations 70.5% of the infected patients were Malay 17.6% were Indian and 11.7% were Chinese. Majority of the patients has an underlying pre-morbid condition as reflected by their diagnosis. Better infection control and hygiene in hospitals, plus controlled and prudent use of antibiotics, is required to minimize the impact of drug resistance betalactamase producing bacteria and the spread of infections.
    Matched MeSH terms: beta-Lactamases/genetics
  19. Roberts LW, Harris PNA, Forde BM, Ben Zakour NL, Catchpoole E, Stanton-Cook M, et al.
    Nat Commun, 2020 01 24;11(1):466.
    PMID: 31980604 DOI: 10.1038/s41467-019-14139-5
    Carbapenem-resistant Enterobacteriaceae (CRE) represent an urgent threat to human health. Here we report the application of several complementary whole-genome sequencing (WGS) technologies to characterise a hospital outbreak of blaIMP-4 carbapenemase-producing E. hormaechei. Using Illumina sequencing, we determined that all outbreak strains were sequence type 90 (ST90) and near-identical. Comparison to publicly available data linked all outbreak isolates to a 2013 isolate from the same ward, suggesting an environmental source in the hospital. Using Pacific Biosciences sequencing, we resolved the complete context of the blaIMP-4 gene on a large IncHI2 plasmid carried by all IMP-4-producing strains across different hospitals. Shotgun metagenomic sequencing of environmental samples also found evidence of ST90 E. hormaechei and the IncHI2 plasmid within the hospital plumbing. Finally, Oxford Nanopore sequencing rapidly resolved the true relationship of subsequent isolates to the initial outbreak. Overall, our strategic application of three WGS technologies provided an in-depth analysis of the outbreak.
    Matched MeSH terms: beta-Lactamases/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links