Displaying publications 1 - 20 of 149 in total

Abstract:
Sort:
  1. Siswanto, Rita Muhamad, Dzolkhifli Omar, Elna Karmawati
    Trop Life Sci Res, 2009;20(1):-.
    MyJurnal
    Helopeltis antonii is the major pest affecting cashew plants in Indonesia and causes potential damage to the plant. The development of the population was influenced by the fecundity and fertility of their eggs. The effect of mating on the eggs’ fecundity and the fertility of H. antonii was studied. Laboratory studies at Wonogiri Estate Service in Ngadirojo District, Wonogiri, Indonesia investigated the sexual maturity, the influence of female to male sex ratio on the females’ fecundity and longevity, and the influence of mating frequency to fecundity and the eggs hatchability of H. antonii. The study reveals that H. antonii females and males are ready to mate when they are two days old. The number of eggs laid and the longevity of the females’ lives were not significantly affected by the sex ratio; however, female to male sex ratios of 2:1 and 1:2 tended to produce a greater number of eggs. The fecundity of the female was not significantly influenced by the number of times the female mated. Unmated females laid fewer eggs than females paired with a mature male. The study shows that females need to mate to produce fertile eggs.
    Matched MeSH terms: Biological Processes
  2. Latiffah Zakaria, Heng Mei Hsuan, Baharuddin Salleh
    Trop Life Sci Res, 2011;22(2):93-101.
    MyJurnal
    Mating studies were conducted on 78 isolates of Fusarium species section Liseola from rice, sugarcane and maize. From the crosses with tester strains of Gibberella fujikuroi species complex, 64.1% (50 out of 78 isolates) were cross-fertile with tester strains of mating populations A to E. The results of the mating studies showed that of the 50 isolates, 19 belonged to mating population A (Gibberella moniliformis), 18 to mating population B (Gibberella sacchari), 4 to mating population E (Gibberella subglutinans), 6 to mating population D (Gibberella intermedia) and 3 to mating population C (G. fujikuroi). Identification of several mating populations from rice,sugarcane and maize could be important biological entities under field conditions.
    Matched MeSH terms: Biological Processes
  3. Quazi Nasim Ahmed, PMD Zainudin Hussain, Ahmad Sofiman Othman
    Trop Life Sci Res, 2012;23(2):17-25.
    MyJurnal
    This study was conducted to examine the variabilities in the chronology of vegetative and reproductive development of weedy rice (Oryza spp.) in comparison with commercial varieties. Data at different growth stages of 14 weedy rice morphotypes and 4 commercial rice varieties were recorded and analysed. Plant height of all weedy rice morphotypes were observed to be significantly higher compared to the commercial varieties at every growth stages; increase in height was between 10–37 cm for weedy rice morphotype, for every 2 weeks. Initial tillering ability at 14 days after planting (DAP) was higher in weedy morphotypes, however all the commercial rice varieties produced significantly higher number of tillers throughout the rest of the vegetative phases. Correlation between plant height and tiller number detected that taller plants produce fewer tillers than shorter plants. Higher leaf area index (LAI) of all weedy morphotypes except PWR01 at early growth stages indicated the vigorous growth of the morphotypes. Weedy rice morphotypes showed a wide range of anthesis and maturity duration. Accessions from the same weedy rice morphotypes were more heterogeneous in the flowering, anthesis and maturity period than the commercial varieties. These traits enables identification of weedy rice morphotypes at their different growth stages in the field.
    Matched MeSH terms: Biological Processes
  4. MILLIS J
    Med J Malaya, 1957 Dec;12(2):416-22.
    PMID: 13515872
    Matched MeSH terms: Biological Processes*
  5. WYLDE EM
    Med J Malaya, 1961 Sep;16:14-31.
    PMID: 14008613
    Matched MeSH terms: Biological Processes*
  6. WYLDE EM
    Med J Malaya, 1959 Jun;13:316-21.
    PMID: 13846272
    Matched MeSH terms: Biological Processes*
  7. Farzana Kabir Ahmad, Siti Sakira Kamaruddin
    Scientific Research Journal, 2015;12(1):1-10.
    MyJurnal
    The invention of microarray technology has enabled expression levels of thousands of genes to be monitored at once. This modernized approach has created large amount of data to be examined. Recently, gene regulatory network has been an interesting topic and generated impressive research goals in computational biology. Better understanding of the genetic regulatory processes would bring significant implications in the biomedical fields and many other pharmaceutical industries. As a result, various mathematical and computational methods have been used to model gene regulatory network from microarray data. Amongst those methods, the Bayesian network model attracts the most attention and has become the prominent technique since it can capture nonlinear and stochastic relationships between variables. However, structure learning of this model is NP-hard and computationally complex as the number of potential edges increase drastically with the number of genes. In addition, most of the studies only focused on the predicted results while neglecting the fact that microarray data is a fragmented information on the whole biological process. Hence this study proposed a network-based inference model that combined biological knowledge in order to verify the constructed gene regulatory relationships. The gene regulatory network is constructed using Bayesian network based on low-order conditional independence approach. This technique aims to identify from the data the dependencies to construct the network structure, while addressing the structure learning problem. In addition, three main toolkits such as Ensembl, TFSearch and TRANSFAC have been used to determine the false positive edges and verify reliability of regulatory relationships. The experimental results show that by integrating biological knowledge it could enhance the precision results and reduce the number of false positive edges in the trained gene regulatory network.
    Matched MeSH terms: Biological Processes
  8. Alhassan Salami Tijani, Nazri Mohammed, Werner Witt
    MyJurnal
    Industrial heat pumps are heat-recovery systems that allow the temperature of waste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses of integrating backpressure turbine of a power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency of the primary fuel is calculated for different operating range of the heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperature difference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.
    Matched MeSH terms: Biological Processes
  9. Tan, Hueyling
    Scientific Research Journal, 2012;9(1):43-61.
    MyJurnal
    Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use of peptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study of biological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries of existing disciplines. Many self-assembling systems are range from bi- and tri-block copolymers to DNA structures as well as simple and complex proteins and peptides. The ultimate goal is to harness molecular self-assembly such that design and control of bottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes of life and non-life science applications. Such aspirations can be achieved through understanding the fundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.
    Matched MeSH terms: Biological Processes
  10. Mohd Fakharul Zaman Raja Yahyai, Athifah Najwani Shahidan
    Scientific Research Journal, 2012;9(1):63-74.
    MyJurnal
    Cyclic guanosine monophosphate (cGMP) is a second messenger molecule involved in the intracellular signalling mechanism which is important in a wide range of cellular process including metabolism, gene expression, cell proliferation and cell death. This study was conducted to determine the effect of fresh (FCC)) and thermoxidized carotino oil (TCO) on erythrocyte cGMP levels from Sprague dawley rats. A total of 30 Sprague dawley rats were randomly segregated into three groups: the first of which was placed on a Fresh Carotino Oil (FCO) diet, the second on a Thermoxidized Carotino Oil (TCO) diet and the control group on commercial rat chow only for a period of 6 and 9 weeks. The two oil diets comprised of 20% (w.10 of each oil mixed with commercial rat,feed. The enzyme immunoassays, performed in week 6, revealed that the erythrocytes cGMP levels for the FCO and TCO groups were 66.198±3.193 pmol/mL and 61.990±6.318 ptnol/mL respectively, and were significantly (p
    Matched MeSH terms: Biological Processes
  11. Hidayu Abdul Rani, Nor Fadilah Mohamad, Sherif Abdulbari Ali, Matali, Sharmeela, Sharifah Aishah Sheikh Abdul kadir
    MyJurnal
    Mercury emission into the atmosphere is a global concern due to its detrimental effects on human health in general. The two main sources of mercury emission are natural sources and anthropogenic sources. Mercury emission from natural sources include volcanic activity, weathering of rocks, water movement and biological processes which are obviously inevitable. The anthropogenic sources of mercury emission are from coal combustion, cement production and waste incineration. Thus, in order to reduce mercury emission it is appropriate to investigate how mercury is released from the anthropogenic sources and consequently the mercury removal technology that can be implemented in order to reduce mercury emission into the atmosphere. Many alternatives have been developed to reduce mercury emission and the recent application of activated carbon showed high potential in the adsorption of elemental mercury. This paper discusses the ability of activated carbon and variable parameters that influence mercury removal efficiency in flue gas.
    Matched MeSH terms: Biological Processes
  12. Firdaus Kamaruzaman, Siti Habibah Shafiai
    MyJurnal
    Lattice Boltzmann Model for Shallow Water Equation with Turbulence Modeling (LABSWETM) is used to study the flow patterns of sidewall friction effects. The lattice Boltzmann method (LBM) approach in recovery the macroscopic governing equation which is shallow water equation from the microscopic flow behavior of particle movement as described by kinetic theory is explored. With the solution of force term to be used in lattice Boltzmann equation, the boundary condition of LBM is explored. With the use of bed and wall friction coefficients, the importance of Manning’s coefficient in determining the outcome of flow patterns simulation is explained. For model verification, the model represents a straight channel with a circular cavity attached to it. The result of this simulation includes the water circulation patterns, cross-section of average velocity distribution, and water depth. For validation, the cross-sections of the model in term of velocity vectors are compared against alternative numerical and experimental data.
    Matched MeSH terms: Biological Processes
  13. Ariff, A.B., Ooi, T.C., Shamsuddin, Z.H., Halimi, M.S.
    MyJurnal
    The exponential fed-batch cultivation of Bacillus sphaericus UPMB10 in 2 l stirred tank fermenter was performed by feeding the initial batch culture with 14 g l-1 of glycerol according to the algorithm aimed at controlling the specific growth rate (μ) of the bacterium. Very high viable cell count (1.14 x 1010 cfu ml-1), which was four times higher as compared to batch cultivation, was achieved in the fed-batch with a controlled μ at 0.4 h-1. In repeated exponential fed-batch cultivation, consisting of four cycles of harvesting and recharging, a final cell concentration of 1.9 x 1011 cfu ml-1 was obtained at the end of the fourth cycle (46 h). Meanwhile, acetylene reduction of cell samples collected from repeated fed-batch cultivation remained unchanged and was maintained at around 20 nmol C2H2 h-1 ml-1 after prolonged cultivation period, and was comparable to those obtained in batch and exponential fed-batch cultivation. Glycerol could be used as a carbon source for high performance cultivation of B. sphaericus, a nitrogen fixing bacterium, in repeated fed-batch cultivation with high cell yield and cell productivity. The productivity (0.68 g l-1 h-1) for repeated fed-batch cultivation increased about 6 times compared to that obtained in conventional batch cultivation (0.11 g l1 h-1). A innovative method in utilizing glycerol for efficient cultivation of nitrogen fixing bacterium could be beneficial to get more understanding and reference in manipulating the integrated plans for sustainable and profitable biodiesel industry.
    Matched MeSH terms: Biological Processes
  14. Ali, A.H.M., Sobri, S., Salmiaton, A., Faizah, M.Y.
    MyJurnal
    The process of etching is the most crucial part of the work of manufacturing printed circuit boards (PCB). In the etching process by nitric acid, a spent etching waste solution of composition 250 g/L HNO3, 30-40 g/L Cu, 30-40 g/L Sn, 30-40 g/L Pb and 20-25 g/L Fe is produced. High metal concentrations in the spent etching waste solution make it a viable candidate for the recovery of metals. Recovery of metals from spent etching waste solution is a significant concern as the recent growth in production of printed circuit boards has generated a drastic increase of spent etching waste solution each year. This study concerns itself with the recovery of metals from spent etching waste. In this study a dilution was made in order to increase the pH of the solution as spent etching waste solution has high acidity, and the electrowinning method was performed to recover metals from the spent etching waste solution. Glassy carbon and platinum were used as cathode and anode in order to investigate the electrodeposition of metals and cyclic voltammetry investigation suggests that the deposition of metals on glassy carbon electrodes occurs at four different overpotentials mainly at -0.15 V, -0.35 V, -0.45 V and -0.75 V. Microscopy observation demonstrates that there is a deposition of metals by applying the potentials in a set of current-time transient study for a duration of 60 seconds and the metals recovered formed as aggregates.
    Matched MeSH terms: Biological Processes
  15. Mohd Ashraf Ahmad, Zaharuddin Mohamed
    MyJurnal
    This paper presents investigations into the development of control schemes for end-point vibration
    suppression and input tracking of a flexible manipulator. A constrained planar single-link flexible manipulator is considered and the dynamic model of the system is derived using the assumed mode method. To study the effectiveness of the controllers, a Linear Quadratic Regulator (LQR) was initially developed for control of rigid body motion. This is then extended to incorporate a noncollocated PID controller and a feedforward controller based on input shaping techniques to control vibration (flexible motion) of the system. For feedforward controller, positive and modified specified negative amplitude (SNA) input shapers are proposed and designed based on the properties of the system. Results from the simulation of the manipulator responses with the controllers are presented in time and frequency domains. The performances of the control schemes are assessed in terms of level of vibration reduction, input tracking capability and time response specifications. Finally, a comparative assessment of the control techniques is presented and discussed.
    Matched MeSH terms: Biological Processes
  16. Yeoh, S.J., Taip, F.S., Endan, J., Talib, R.A., Sita Mazlina, M.K.
    MyJurnal
    Aquaculture is a growing industry with a great potential towards the contribution of the country’s total
    fish requirement. Serious efforts have been done to develop and improve the production of fish by rearing high value fish in tanks or ponds. Under the Third National Agricultural Policy (1998-2010), the target is to annually produce 1.93 million tonnes of fish worth approximately RM8.3 billion by the year 2010. Consequently, the development of an automatic fish feeding machine can be very beneficial to the growth of the aquaculture industry. This device was developed to overcome labour problems in the industry and introduce a semi-automatic process in the aquaculture industry. It has the ability to dispense dried fish food in various forms such as pellets, sticks, tablets or granules into fish tanks or ponds in a controlled manner for a stipulated time. The automatic fish feeder is controlled by a digital timer and it is capable of feeding the fish in accordance with a pre-determined time schedule without the presence of an operator, and at a feeding rate of 250g/min. The feeder can be adjusted to the desired height and conveniently moved around to be positioned adjacent to the pond or tank. Meanwhile, its hopper can be covered and easily dissembled to change the size of the hopper to accommodate different capacities of feed. This automatic fish feeder can be implemented in aquaculture system to convenience to fish culturists.
    Matched MeSH terms: Biological Processes
  17. Hasiah Mohamed@Omar, Rohana Yusoff, Azizah Jaafar
    MyJurnal
    Heuristic Evaluation (HE) is used as a basis in developing a new technique to evaluate usability or
    educational computer games known as Playability Heuristic Evaluation for Educational Computer Game (PHEG). PHEG was developed to identify usability problems that accommodate five heuristics, namely, interface, educational elements, content, playability and multimedia. In HE process, usability problems are rated based on severity score and this is followed by presentation of a mean value. The mean value is used to determine the level of usability problems; however, in some cases, this value may not accurate because it will ignore the most critical problems found in a specific part. In developing PHEG, a new quantitative approach was proposed in analyzing usability problems data. Numbers of sub-heuristics for each heuristic involved were taken into account in calculating percentage for each heuristic. Functions to calculate critical problems were also introduced. Evaluation for one educational game that was still in development process was conducted and the results showed that most of the critical problems were found in educational elements and content heuristics (57.14%), while the least usability problems were found in playability heuristic. In particular, the mean value in this analysis can be used as an indicator in identifying critical problems for educational computer games.
    Matched MeSH terms: Biological Processes
  18. Sirageldin, Abubakr, Baharum Baharudin, Low, Tang Jung
    MyJurnal
    Developing a trust management scheme in mobile computing environment is increasingly important,
    and the effective trust management model is a challenging task. Business, education, military, and
    entertainment have motivated the growth of ubiquitous and pervasive computing environments, which are always available due to the widespread of portable and embedded devices. Wireless and mobile computing are good example of ubiquitous and pervasive computing environments. Due to the uncertainty and mobility in such environments, the issue of trust has been regarded as an important security problem. Malicious nodes are a major threat to these networks; the trust system can monitor the behaviour of nodes and accordingly rewards well-behaved nodes and punishes misbehaving ones. At present, there are a lot of endeavours on the trust model of the pervasive computing environment. In this paper, a trust management framework for mobile computing is presented. The hybrid framework is based on a fusion of the support vector machine (SVM) and fuzzy logic system. From the results, it can be stated that the framework is effective, dynamic, lightweight, and applicable.
    Matched MeSH terms: Biological Processes
  19. Chatterji, Ani, Faizah Shaharom
    MyJurnal
    The central coast of Tamil Nadu, Andaman and Nicobar Islands, along with other regions, was severely hit by the tsunami on 26 December 2004. A strange spawning behaviour of the Indian horseshoe crabs (Tachypleus gigas, Müller) was observed after the tsunami disturbance. Along the northeast coast of India, the horseshoe crabs normally migrate towards the shore in large numbers coinciding with the tidal height and grain size of the sediment and spawn in nests made in sand. The spawning behaviour was normal until November 2004 and throughout that period about 35 to 45 nests in 200 m2 of area of the breeding beach were examined. However, no nesting was observed from December 2004 to March 2005, i.e. after the occurrence of tsunami. The number of nests per 200 m2 of area (~82) and the number of eggs per nest (750-1000 eggs) were increased considerably when the normal conditions were restored in April 2005. The absence of spawning migration, from December 2004 to March 2005, is totally an unusual behaviour and this happened for the first time during the past several years of the study period.
    Matched MeSH terms: Biological Processes
  20. Shamsabadi, H.T., Biabani, A., Desa Ahmad
    MyJurnal
    A field study was conducted on the effect of four primary tillage implements and three seed densities on the grain yield of rain fed wheat (Tajan cultivar), using a drill planting machine with the end wheels. The experimental design was a split plot design in a 4×3 factorial with three replications. In this study, the main plots were the tillage treatments, namely Mouldboard plough, Disc Plough, Chisel Plough, Offset Disc, and sub-plots were seed rates of 350, 400 and 450 seeds.m-2. Determinations included grain yield and selected yield components. The results showed that grain yield was not affected by the densities of seed and tillage machine treatments. The use of Chisel Plough, with 400 seeds.m-2 sowing rate, had the highest grain yield of wheat grown in the Golestan province (Iran), a region with an average annual rainfall of 450 mm.
    Matched MeSH terms: Biological Processes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links