Displaying publications 1 - 20 of 1460 in total

Abstract:
Sort:
  1. Tye SK, Razali NS, Ahmad Shauqi SA, Azeman NA, Basran NF, Liew JHJ, et al.
    Cardiol Young, 2024 Apr;34(4):900-905.
    PMID: 37965721 DOI: 10.1017/S1047951123003773
    OBJECTIVES: This study aimed to describe the perception of Malaysian patients with pulmonary hypertension towards palliative care and their receptivity towards palliative care.

    METHODS: This was a cross-sectional, single-centre study conducted via questionnaire. Patients aged 18 years old and above, who were diagnosed with non-curable pulmonary hypertension were recruited and given the assessment tool - perceptions of palliative care instrument electronically. The severity of pulmonary hypertension was measured using WHO class, N-terminal pro B-type natriuretic peptide and the 6-minute walking test distance.

    RESULTS: A total of 84 patients [mean age: 35 ±11 years, female: 83.3%, median N-terminal pro B-type natriuretic peptide: 491 pg/ml (interquartile range: 155,1317.8), median 6-minute walking test distance: 420m (interquartile range: 368.5, 480m)] completed the questionnaires. Patients with a higher WHO functional class and negative feelings (r = 0.333, p = 0.004), and cognitive reaction to palliative care: hopeless (r = 0.340, p = 0.003), supported (r = 0.258, p = 0.028), disrupted (r = 0.262, p = 0.025), and perception of burden (r = 0.239, p = 0.041) are more receptive to palliative care. WHO class, N-terminal pro B-type natriuretic peptide, and 6-minute walking test distance were not associated with higher readiness for palliative care. In logistic regression analyses, patients with positive feelings (β = 2.240, p = < 0.05), and practical needs (β = 1.346, p = < 0.05), were more receptive to palliative care.

    CONCLUSIONS: Disease severity did not directly influence patients' readiness for palliative care. Patients with a positive outlook were more receptive to palliative care.

    Matched MeSH terms: Natriuretic Peptide, Brain
  2. Fong SL, Wong KT, Tan CT
    Brain, 2024 Mar 01;147(3):830-838.
    PMID: 38079534 DOI: 10.1093/brain/awad415
    Dengue virus is a flavivirus transmitted by the mosquitoes, Aedes aegypti and Aedes albopictus. Dengue infection by all four serotypes (DEN 1 to 4) is endemic globally in regions with tropical and subtropical climates, with an estimated 100-400 million infections annually. Among those hospitalized, the mortality is about 1%. Neurological involvement has been reported to be about 5%. The spectrum of neurological manifestations spans both the peripheral and central nervous systems. These manifestations could possibly be categorized into those directly related to dengue infection, i.e. acute and chronic encephalitis, indirect complications leading to dengue encephalopathy, and post-infectious syndrome due to immune-mediated reactions, and manifestations with uncertain mechanisms, such as acute transverse myelitis, acute cerebellitis and myositis. The rising trend in global dengue incidence calls for attention to a more explicit definition of each neurological manifestation for more accurate epidemiological data. The actual global burden of dengue infection with neurological manifestation is essential for future planning and execution of strategies, especially in the development of effective antivirals and vaccines against the dengue virus. In this article, we discuss the recent findings of different spectrums of neurological manifestations in dengue infection and provide an update on antiviral and vaccine development and their challenges.
    Matched MeSH terms: Brain Diseases*
  3. Chow XH, Ting CM, Wan Hamizan AK, Zahedi FD, Tan HJ, Remli R, et al.
    J Laryngol Otol, 2024 Mar;138(3):301-309.
    PMID: 37259908 DOI: 10.1017/S0022215123000919
    OBJECTIVE: The aim of this study was to identify the potential electrophysiological biomarkers of human responses by comparing the electroencephalogram brain wave changes towards lavender versus normal saline in a healthy human population.

    METHOD: This study included a total of 44 participants without subjective olfactory disturbances. Lavender and normal saline were used as the olfactory stimulant and control. Electroencephalogram was recorded and power spectra were analysed by the spectral analysis for each alpha, beta, delta, theta and gamma bandwidth frequency upon exposure to lavender and normal saline independently.

    RESULTS: The oscillatory brain activities in response to the olfactory stimulant indicated that the lavender smell decreased the beta activity in the left frontal (F7 electrode) and central region (C3 electrode) with a reduction in the gamma activity in the right parietal region (P4 electrode) (p < 0.05).

    CONCLUSION: Olfactory stimulants result in changes of electrical brain activities in different brain regions, as evidenced by the topographical brain map and spectra analysis of each brain wave.

    Matched MeSH terms: Brain; Brain Waves*
  4. Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, et al.
    Signal Transduct Target Ther, 2024 Feb 16;9(1):37.
    PMID: 38360862 DOI: 10.1038/s41392-024-01743-1
    The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
    Matched MeSH terms: Brain/metabolism
  5. Habeeb M, Vengateswaran HT, You HW, Saddhono K, Aher KB, Bhavar GB
    J Mater Chem B, 2024 Feb 14;12(7):1677-1705.
    PMID: 38288615 DOI: 10.1039/d3tb02485g
    Glioblastoma (GBM) is a highly aggressive and lethal type of brain tumor with complex and diverse molecular signaling pathways involved that are in its development and progression. Despite numerous attempts to develop effective treatments, the survival rate remains low. Therefore, understanding the molecular mechanisms of these pathways can aid in the development of targeted therapies for the treatment of glioblastoma. Nanomedicines have shown potential in targeting and blocking signaling pathways involved in glioblastoma. Nanomedicines can be engineered to specifically target tumor sites, bypass the blood-brain barrier (BBB), and release drugs over an extended period. However, current nanomedicine strategies also face limitations, including poor stability, toxicity, and low therapeutic efficacy. Therefore, novel and advanced nanomedicine-based strategies must be developed for enhanced drug delivery. In this review, we highlight risk factors and chemotherapeutics for the treatment of glioblastoma. Further, we discuss different nanoformulations fabricated using synthetic and natural materials for treatment and diagnosis to selectively target signaling pathways involved in GBM. Furthermore, we discuss current clinical strategies and the role of artificial intelligence in the field of nanomedicine for targeting GBM.
    Matched MeSH terms: Blood-Brain Barrier/metabolism
  6. Bhatt S, Anitha K, Chellappan DK, Mukherjee D, Shilpi S, Suttee A, et al.
    Metab Brain Dis, 2024 Feb;39(2):335-346.
    PMID: 37950815 DOI: 10.1007/s11011-023-01314-3
    Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder. Approximately, around 2% to 3% percent of the general population experience symptoms of OCD over the course of their lifetime. OCD can lead to economic burden, poor quality of life, and disability. The characteristic features exhibited generally in OCD are continuous intrusive thoughts and periodic ritualized behaviours. Variations in genes, pathological function of Cortico-Striato-Thalamo-Cortical (CSTC) circuits and dysregulation in the synaptic conduction have been the major factors involved in the pathological progression of OCD. However, the basic mechanisms still largely unknown. Current therapies for OCD largely target monoaminergic neurotransmitters (NTs) in specific dopaminergic and serotonergic circuits. However, such therapies have limited efficacy and tolerability. Drug resistance has been one of the important reasons reported to critically influence the effectiveness of the available drugs. Inflammation has been a crucial factor which is believed to have a significant importance in OCD progression. A significant number of proinflammatory cytokines have been reportedly amplified in patients with OCD. Mechanisms of drug treatment involve attenuation of the symptoms via modulation of inflammatory signalling pathways, modification in brain structure, and synaptic plasticity. Hence, targeting inflammatory signaling may be considered as a suitable approach in the treatment of OCD. The present review focuses mainly on the significant findings from the animal and human studies conducted in this area, that targets inflammatory signaling in neurological conditions. In addition, it also focusses on the therapeutic approaches that target OCD via modification of the inflammatory signaling pathways.
    Matched MeSH terms: Brain/metabolism
  7. Moghadasi M, Akbari F, Najafi P
    Mol Biol Rep, 2024 Jan 16;51(1):111.
    PMID: 38227208 DOI: 10.1007/s11033-023-09197-4
    INTRODUCTION: Alzheimer's disease (AD) is characterized by progressive cognitive decline and a reduction in hippocampal neurotrophins, in which trimethytin (TMT) infusion causes tangles and neuronal dysfunction, creating an AD-like model in rats. Previous studies have demonstrated that crocin, which has anti-inflammatory properties, can enhance learning, memory acquisition, and cognitive behavior. This study aimed to assess the combined impact of aerobic exercise and crocin on memory, learning, and hippocampal Tau and neurotrophins gene expression in AD-like model rats.

    METHODS: Forty male Sprague Dawley rats were randomly divided into five groups: (1) healthy control, (2) Alzheimer's control, (3) endurance training, (4) crocin consumption, and (5) endurance training + crocin. Alzheimer's induction was achieved in groups 2-5 through intraperitoneal injection of 8 mg/kg TMT. Rats in groups 3 and 5 engaged in treadmill running three sessions per week, 15-30 min per session, at a speed of 15-20 m/min for eight weeks, and groups 4 and 5 received daily crocin supplementation of 25 mg/kg.

    RESULTS: Alzheimer's induction with TMT showed significant reduction in memory, learning, NGF, BDNF, and TrkB gene expression, and increase in tau gene expression (all p 

    Matched MeSH terms: Brain-Derived Neurotrophic Factor/genetics
  8. Hardiany NS, Dewi PKK, Dewi S, Tejo BA
    Sci Rep, 2024 Jan 05;14(1):603.
    PMID: 38182767 DOI: 10.1038/s41598-024-51221-5
    In this study, the potential neuroprotective ability of coriander seeds (Coriandrum sativum L.) ethanolic extract (CSES) as a neuroprotectant agent in the brains of high-fat diet-induced obese rats was analyzed. The study investigated how CSES impacts oxidative stress markers (i.e., malondialdehyde/MDA, glutathione/GSH and catalase), inflammation marker (i.e., Interleukin-6/IL-6), cellular senescence markers (i.e., senescence-associated β-galactoside/SA-β-Gal activity and p16), brain damage marker (i.e., Neuron-specific Enolase/NSE), and neurogenesis markers (i.e., mature Brain-derived Neurotropic Factor/BDNF, pro-BDNF, and mature/pro-BDNF ratio). Male adult Wistar rats were fed a high-fat diet and given CSES once daily, at 100 mg/kg body weight, for 12 weeks. CSES significantly reduced MDA concentration (p = brain of obese rats; however, the decrease of IL-6, NSE, and p16 as well as the increase of catalase specific activity and BDNF expression were not significant. Moreover, the mature/pro-BDNF ratio was significantly higher in the brains of non-obese rats, both given the control diet and the high-fat diet compared to the control. Our results suggest that obese rats benefited from consuming CSES, showing improved oxidative stress levels, reduced cellular senescence and increased endogenous antioxidants, making CSES a potential neuroprotective agent.
    Matched MeSH terms: Brain; Brain-Derived Neurotrophic Factor
  9. Seriramulu VP, Suppiah S, Lee HH, Jang JH, Omar NF, Mohan SN, et al.
    Med J Malaysia, 2024 Jan;79(1):102-110.
    PMID: 38287765
    INTRODUCTION: Magnetic resonance spectroscopy (MRS) has an emerging role as a neuroimaging tool for the detection of biomarkers of Alzheimer's disease (AD). To date, MRS has been established as one of the diagnostic tools for various diseases such as breast cancer and fatty liver, as well as brain tumours. However, its utility in neurodegenerative diseases is still in the experimental stages. The potential role of the modality has not been fully explored, as there is diverse information regarding the aberrations in the brain metabolites caused by normal ageing versus neurodegenerative disorders.

    MATERIALS AND METHODS: A literature search was carried out to gather eligible studies from the following widely sourced electronic databases such as Scopus, PubMed and Google Scholar using the combination of the following keywords: AD, MRS, brain metabolites, deep learning (DL), machine learning (ML) and artificial intelligence (AI); having the aim of taking the readers through the advancements in the usage of MRS analysis and related AI applications for the detection of AD.

    RESULTS: We elaborate on the MRS data acquisition, processing, analysis, and interpretation techniques. Recommendation is made for MRS parameters that can obtain the best quality spectrum for fingerprinting the brain metabolomics composition in AD. Furthermore, we summarise ML and DL techniques that have been utilised to estimate the uncertainty in the machine-predicted metabolite content, as well as streamline the process of displaying results of metabolites derangement that occurs as part of ageing.

    CONCLUSION: MRS has a role as a non-invasive tool for the detection of brain metabolite biomarkers that indicate brain metabolic health, which can be integral in the management of AD.

    Matched MeSH terms: Brain/pathology
  10. Jamil Al-Obaidi MM, Desa MNM
    J Neurosci Res, 2024 Jan;102(1).
    PMID: 38284852 DOI: 10.1002/jnr.25288
    Parasites have a significant impact on the neurological, cognitive, and mental well-being of humans, with a global population of over 1 billion individuals affected. The pathogenesis of central nervous system (CNS) injury in parasitic diseases remains limited, and prevention and control of parasitic CNS infections remain significant areas of research. Parasites, encompassing both unicellular and multicellular organisms, have intricate life cycles and possess the ability to infect a diverse range of hosts, including the human population. Parasitic illnesses that impact the central and peripheral nervous systems are a significant contributor to morbidity and mortality in low- to middle-income nations. The precise pathways through which neurotropic parasites infiltrate the CNS by crossing the blood-brain barrier (BBB) and cause neurological harm remain incompletely understood. Investigating brain infections caused by parasites is closely linked to studying neuroinflammation and cerebral impairment. The exact molecular and cellular mechanisms involved in this process remain incomplete, but understanding the exact mechanisms could provide insight into their pathogenesis and potentially reveal novel therapeutic targets. This review paper explores the underlying mechanisms involved in the development of neurological disorders caused by parasites, including parasite-derived elements, host immune responses, and modifications in tight junctions (TJs) proteins.
    Matched MeSH terms: Blood-Brain Barrier*; Brain
  11. Khor SLQ, Ng KY, Koh RY, Chye SM
    CNS Neurol Disord Drug Targets, 2024;23(3):315-330.
    PMID: 36999187 DOI: 10.2174/1871527322666230330093829
    The blood-brain barrier (BBB) plays a crucial role in the central nervous system by tightly regulating the influx and efflux of biological substances between the brain parenchyma and peripheral circulation. Its restrictive nature acts as an obstacle to protect the brain from potentially noxious substances such as blood-borne toxins, immune cells, and pathogens. Thus, the maintenance of its structural and functional integrity is vital in the preservation of neuronal function and cellular homeostasis in the brain microenvironment. However, the barrier's foundation can become compromised during neurological or pathological conditions, which can result in dysregulated ionic homeostasis, impaired transport of nutrients, and accumulation of neurotoxins that eventually lead to irreversible neuronal loss. Initially, the BBB is thought to remain intact during neurodegenerative diseases, but accumulating evidence as of late has suggested the possible association of BBB dysfunction with Parkinson's disease (PD) pathology. The neurodegeneration occurring in PD is believed to stem from a myriad of pathogenic mechanisms, including tight junction alterations, abnormal angiogenesis, and dysfunctional BBB transporter mechanism, which ultimately causes altered BBB permeability. In this review, the major elements of the neurovascular unit (NVU) comprising the BBB are discussed, along with their role in the maintenance of barrier integrity and PD pathogenesis. We also elaborated on how the neuroendocrine system can influence the regulation of BBB function and PD pathogenesis. Several novel therapeutic approaches targeting the NVU components are explored to provide a fresh outlook on treatment options for PD.
    Matched MeSH terms: Brain/pathology
  12. Yeoh CW, Law WC
    Medicine (Baltimore), 2023 Dec 22;102(51):e36676.
    PMID: 38134114 DOI: 10.1097/MD.0000000000036676
    RATIONALE: Heat-related illnesses have protean manifestations that can mimic other life-threatening conditions. The diagnosis of heat stroke requires a high index of suspicion if the patient has been exposed to a high-temperature environment. Central nervous system dysfunction is a cardinal feature. Strict adherence to temperature criteria can potentially lead to misdiagnosis.

    PATIENT CONCERNS: A 37-year-old construction worker was brought in by his wife and coworker due to a sudden loss of consciousness while resting after completing his work.

    DIAGNOSES: Due to challenges faced during the coronavirus disease 2019 pandemic, as well as language barriers, a detailed history from the coworker who witnessed the patient's altered sensorium was not available. He was initially suspected of having encephalitis and brainstem stroke. However, subsequent investigations revealed multiorgan dysfunction with a normal brain computed tomography and cerebral computed tomography angiogram. In view of the multiple risk factors for heat stroke, pupillary constriction, and urine color suggestive of rhabdomyolysis, a diagnosis of heat stroke was made.

    INTERVENTIONS: Despite delayed diagnosis, the patient's multiorgan dysfunction recovered within days with basic supportive care.

    OUTCOMES: There were no noticeable complications on follow-up 14 months later.

    LESSONS: Heat stroke can be easily confused with other neurological pathologies, particularly if no history can be obtained from the patient or informant. When approaching a comatose patient, we propose that serum creatinine kinase should be considered as an initial biochemical screening test.

    Matched MeSH terms: Brain/pathology
  13. Woei TJ, Mazlan R, Tamil AM, Rosli NSM, Hasbi SM, Hashim ND, et al.
    Int Tinnitus J, 2023 Dec 04;27(1):75-81.
    PMID: 38050889 DOI: 10.5935/0946-5448.20230013
    OBJECTIVE: The purpose of this study was to compare the reliability and accuracy of chirp-based Multiple Auditory Steady State Response (MSSR) and Auditory Brainstem Response (ABR) in children.

    METHODS: The prospective clinical study was conducted at Selayang Hospital (SH) and Hospital Canselor Tuanku Muhriz (HCTM) within one year. A total of 38 children ranging from 3 to 18 years old underwent hearing evaluation using ABR tests and MSSR under sedation. The duration of both tests were then compared.

    RESULTS: The estimated hearing threshold of frequency specific chirp MSSR showed good correlation with ABR especially in higher frequencies such as 2000 Hz and 4000Hz with the value of cronbach alpha of 0.890, 0.933, 0.970 and 0.969 on 500Hz, 1000Hz, 2000Hz and 4000Hz. The sensitivity of MSSR is 0.786, 0.75, 0.957 and 0.889 and specificity is 0.85, 0.882, 0.979 and 0.966 over 500Hz, 1000Hz, 2000Hz and 4000Hz. The duration of MSSR tests were shorter than ABR tests in normal hearing children with an average of 35.3 minutes for MSSR tests and 46.4 minutes for ABR tests. This can also be seen in children with hearing loss where the average duration for MSSR tests is 40.0 minutes and 52.0 minutes for ABR tests.

    CONCLUSION: MSSR showed good correlation and reliability in comparison with ABR especially on higher frequencies. Hence, MSSR is a good clinical test to diagnose children with hearing loss.

    Matched MeSH terms: Evoked Potentials, Auditory, Brain Stem/physiology
  14. Mohamad Najib NH, Yahaya MF, Das S, Teoh SL
    Int J Neurosci, 2023 Dec;133(8):822-833.
    PMID: 34623211 DOI: 10.1080/00207454.2021.1990916
    INTRODUCTION: Parkinson's disease (PD) is the second most common neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Metallothionein has been shown to act as a neuroprotectant in various brain injury. Thus, this study aims to identify the effects of full-length human metallothionein 2 peptide (hMT2) in paraquat-induced brain injury in the zebrafish.

    METHODOLOGY: A total of 80 adult zebrafish were divided into 4 groups namely control, paraquat-treated, pre-hMT2-treated, and post-hMT2-treated groups. Fish were treated with paraquat intraperitoneally every 3 days for 15 days. hMT2 were injected intracranially on day 0 (pre-treated group) and day 16 (post-treated group). Fish were sacrificed on day 22 and the brains were collected for qPCR, ELISA and immunohistochemistry analysis.

    RESULTS: qPCR analysis showed that paraquat treatment down-regulated the expression of genes related to dopamine activity and biosynthesis (dat and th1) and neuroprotective agent (bdnf). Paraquat treatment also up-regulated the expression of the mt2, smtb and proinflammatory genes (il-1α, il-1β, tnf-α and cox-2). hMT2 treatment was able to reverse the effects of paraquat. Lipid peroxidation decreased in the paraquat and pre-hMT2-treated groups. However, lipid peroxidation increased in the post-hMT2-treated group. Paraquat treatment also led to a reduction of dopaminergic neurons while their numbers showed an increase following hMT2 treatment.

    CONCLUSION: Paraquat has been identified as one of the pesticides that can cause the death of dopaminergic neurons and affect dopamine biosynthesis. Treatment with exogenous hMT2 could reverse the effects of paraquat in the zebrafish brain.

    Matched MeSH terms: Brain Injuries*
  15. Alforaidi S, Zreaqat M, Hassan R
    J Contemp Dent Pract, 2023 Dec 01;24(12):987-990.
    PMID: 38317397 DOI: 10.5005/jp-journals-10024-3606
    AIM: To determine dental arch relationships of Saudi children born with nonsyndromic complete unilateral cleft lip and palate (UCLP).

    MATERIAL AND METHODS: This is a retrospective cohort study that comprised dental study models of 74 UCLP Saudi children aged 8-10 years who were recruited from 14 referral cleft centers. All participants had their cleft lip and palate repaired with no history of alveolar bone graft or any orthodontic treatment. Dental arch relationships of UCLP patients were assessed using the Great Ormond Street, London, and Oslo (GOSLON) Yardstick-a clinical tool that categorizes dental relationships of UCLP children into five discrete grades from I to V. The reliability of the rating was assessed with weighted kappa (κ) statistics.

    RESULTS: Three children (4.1%) had excellent surgical outcomes (grade I), 18 children (24.3%) filled into grade II (good outcome), 22 subjects (29.7%) had grade III (fair outcome), 27 children (36.5%) had grade IV (poor outcome), and 4 subjects (5.4%) were ranked as having very poor outcomes (grade V). The mean GOSLON score was 3.39. Intrarater and interrater agreements were high indicating good reproducibility.

    CONCLUSION: Based on the dental arch relationships, the treatment outcome of UCLP Saudi children was unsatisfactory, with a mean GOSLON score of 3.39. Delayed palate repair and the use of presurgical orthopedics may be considered in the future for cleft deformity management.

    CLINICAL SIGNIFICANCE: To address the effect of particular cleft surgical protocol on dental arch relationships of UCLP patients. How to cite this article: Alforaidi S, Zreaqat M, Hassan R. Dental Arch Relationships of Saudi Children with Unilateral Cleft Lip and Palate. J Contemp Dent Pract 2023;24(12):987-990.

    Matched MeSH terms: Brain/abnormalities*
  16. Azab WA
    Childs Nerv Syst, 2023 Dec;39(12):3371-3372.
    PMID: 37328661 DOI: 10.1007/s00381-023-06030-y
    BACKGROUND: One of the main difficulties in third ventricle surgery is its deep and central location within the brain, surrounded by many eloquent neurovascular structures. Such anatomical environment obviously makes it very hard to safely approach and excise lesions in there.

    METHODS: The introduction of the surgical microscope into the neurosurgical field undoubtedly played an important and pivotal role in improving the surgical results and increasing the safety of operations in and around the third ventricle. Although the surgical microscope remained the gold standard of intraoperative visualization for many decades, the advent of endoscopes revolutionized surgery of the third ventricle. Neuroendoscopic procedures for lesions of the third ventricle encompass a greatly variable array of endochannel, endoscope-assisted and endoscope-controlled techniques.

    CONCLUSION: In this collection on purely endoscopic and endoscope-assisted approaches to lesions of the third ventricle in pediatric age, the readership is presented with a selected group of these operations performed by experts in the field, shedding light mainly on their technical aspects and surgical pearls. The text description in each article is supplemented by a surgical video.

    Matched MeSH terms: Brain/surgery
  17. Kamis MFAK, Ishak A, Bahari N, Yaakob MNM, Abdul Rahim E, Baharin J, et al.
    Med J Malaysia, 2023 Dec;78(7):890-892.
    PMID: 38159923
    INTRODUCTION: Diffusion-weighted imaging (DWI) in magnetic resonance imaging (MRI) has been proposed as the first line of neuroimaging for acute ischaemic stroke. The reliability of DWI in detecting intracranial haemorrhage, however, is still unproven, compared with susceptibility-weighted imaging (SWI) and CT scan which being considered the gold standard. This study seeks to establish the reliability of DWI as a first-line imaging modality to detect the intracranial haemorrhage in the patients present within the thrombolysis window.

    MATERIALS AND METHODS: A retrospective cross-sectional analysis was performed on patients who presented to our institution from April 2020 until July 2021 for acute stroke and had MRI brain as first-line neuroimaging. A total of 31 subjects were included in this study. Two radiologists assessed the signal patterns in DWI sequence and compared them with SWI and CT Brain, whenever available, as the gold standard for observing the presence of intracranial haemorrhage.

    RESULTS: The majority of patients with hyperacute bleed proven to be revealed on SWI or CT, thus showed characteristics of central hyperintensity and peripheral hypointense rim, on DWI. Slightly more than half (51.6%) presented with mild to moderate NIHSS scores (1-15). The sensitivity, specificity, positive predictive value and negative predictive value of DWI in detecting intracranial intra-axial haemorrhages were exceptionally high. There is strong interobserver level of agreement in identifying central haemorrhagic signal intensity [kappa = 0.94 (0.06), p < 0.05].

    CONCLUSION: This study supported the DWI sequence as a reliable sequence in MRI, to detect intracranial haemorrhage in hyperacute stroke.

    Matched MeSH terms: Brain Ischemia*
  18. Yeo XY, Chae WR, Lee HU, Bae HG, Pettersson S, Grandjean J, et al.
    Gut Microbes, 2023 Dec;15(2):2283911.
    PMID: 38010368 DOI: 10.1080/19490976.2023.2283911
    The complex symbiotic relationship between the mammalian body and gut microbiome plays a critical role in the health outcomes of offspring later in life. The gut microbiome modulates virtually all physiological functions through direct or indirect interactions to maintain physiological homeostasis. Previous studies indicate a link between maternal/early-life gut microbiome, brain development, and behavioral outcomes relating to social cognition. Here we present direct evidence of the role of the gut microbiome in brain development. Through magnetic resonance imaging (MRI), we investigated the impact of the gut microbiome on brain organization and structure using germ-free (GF) mice and conventionalized mice, with the gut microbiome reintroduced after weaning. We found broad changes in brain volume in GF mice that persist despite the reintroduction of gut microbes at weaning. These data suggest a direct link between the maternal gut or early-postnatal microbe and their impact on brain developmental programming.
    Matched MeSH terms: Brain
  19. Hood RJ, Sanchez-Bezanilla S, Beard DJ, Rust R, Turner RJ, Stuckey SM, et al.
    J Neurochem, 2023 Dec;167(6):733-752.
    PMID: 38010732 DOI: 10.1111/jnc.16008
    We have previously demonstrated that a cortical stroke causes persistent impairment of hippocampal-dependent cognitive tasks concomitant with secondary neurodegenerative processes such as amyloid-β accumulation in the hippocampus, a region remote from the primary infarct. Interestingly, there is emerging evidence suggesting that deposition of amyloid-β around cerebral vessels may lead to cerebrovascular structural changes, neurovascular dysfunction, and disruption of blood-brain barrier integrity. However, there is limited knowledge about the temporal changes of hippocampal cerebrovasculature after cortical stroke. In the current study, we aimed to characterise the spatiotemporal cerebrovascular changes after cortical stroke. This was done using the photothrombotic stroke model targeting the motor and somatosensory cortices of mice. Cerebrovascular morphology as well as the co-localisation of amyloid-β with vasculature and blood-brain barrier integrity were assessed in the cortex and hippocampal regions at 7, 28 and 84 days post-stroke. Our findings showed transient cerebrovascular remodelling in the peri-infarct area up to 28 days post-stroke. Importantly, the cerebrovascular changes were extended beyond the peri-infarct region to the ipsilateral hippocampus and were sustained out to 84 days post-stroke. When investigating vessel diameter, we showed a decrease at 84 days in the peri-infarct and CA1 regions that were exacerbated in vessels with amyloid-β deposition. Lastly, we showed sustained vascular leakage in the peri-infarct and ipsilateral hippocampus, indicative of a compromised blood-brain-barrier. Our findings indicate that hippocampal vasculature may represent an important therapeutic target to mitigate the progression of post-stroke cognitive impairment.
    Matched MeSH terms: Blood-Brain Barrier/metabolism
  20. Anuar MA, Lee JX, Musa H, Abd Hadi D, Majawit E, Anandakrishnan P, et al.
    Brain Dev, 2023 Nov;45(10):547-553.
    PMID: 37661525 DOI: 10.1016/j.braindev.2023.06.004
    INTRODUCTION: Since the emergence of COVID-19, we have experienced potent variants and sub-variants of the virus with non-specific neurological manifestations. We observed a surge of the Omicron variant of COVID-19 patients with neurological manifestations where less cases of multisystem inflammatory syndrome in children (MIS-C) were reported. This article describes our experience of children with severe and rare neurological manifestations following COVID-19 infection.

    METHODS: This is a retrospective observational case series of patients under 18 years old who fulfilled the WHO COVID-19 case definition and were referred to our paediatric neurology unit at Hospital Tunku Azizah Kuala Lumpur. Their demographic data, neurological symptoms, laboratory and supporting investigations, neuroimaging, treatment and outcomes were collected and analysed.

    RESULTS: There were eleven patients with neurological manifestations who fulfilled the WHO COVID-19 case definition. Nine patients presented with seizures and/or encephalopathy, one patient with eye opsoclonus and another patient with persistent limbs myokymia. Based on the history, clinical, electrophysiological and radiological findings, two of them had febrile infection-related epilepsy syndrome, two had acute disseminated encephalomyelitis, two had acute necrotising encephalopathy of childhood, one each had hemiconvulsion-hemiplegia-epilepsy syndrome, acute encephalopathy with bilateral striatal necrosis, hemi-acute encephalopathy with biphasic seizures and reduced diffusion, infection-associated opsoclonus and myokymia.

    CONCLUSIONS: This case series highlighted a wide spectrum of neurological manifestations of COVID-19 infection. Early recognition and prompt investigations are important to provide appropriate interventions. It is essential that these investigations should take place in a timely fashion and COVID-19 quarantine period should not hinder the confirmation of various presenting clinical syndromes.

    Matched MeSH terms: Brain Diseases*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links