Displaying publications 1 - 20 of 1460 in total

Abstract:
Sort:
  1. Salama M, El-Desouky S, Alsayed A, El-Hussiny M, Magdy K, Fekry E, et al.
    Neurotox Res, 2019 May;35(4):987-992.
    PMID: 30362086 DOI: 10.1007/s12640-018-9974-3
    Tauopathy is a pathological hallmark of many neurodegenerative diseases. It is characterized by abnormal aggregates of pathological phosphotau and somatodendritic redistribution. One suggested strategy for treating tauopathy is to stimulate autophagy, hence, getting rid of these pathological protein aggregates. One key controller of autophagy is mTOR. Since stimulation of mTOR leads to inhibition of autophagy, inhibitors of mTOR will cause stimulation of autophagy process. In this report, tauopathy was induced in mice using annonacin. Blocking of mTOR was achieved through stereotaxic injection of siRNA against mTOR. The behavioral and immunohistochemical evaluation revealed the development of tauopathy model as proven by deterioration of behavioral performance in open field test and significant tau aggregates in annonacin-treated mice. Blocking of mTOR revealed significant clearance of tau aggregates in the injected side; however, tau expression was not affected by mTOR blockage.
    Matched MeSH terms: Brain/metabolism; Brain/pathology*
  2. Moriya S, Tan VP, Yee AK, Parhar IS
    Neurosci Lett, 2019 08 24;708:134330.
    PMID: 31201839 DOI: 10.1016/j.neulet.2019.134330
    In Parkinson's disease (PD), several genes have been identified as the PD-related genes, however, the regulatory mechanisms of these gene expressions have not been fully identified. In this study, we investigated the effect of inflammation, one of the major risk factors in PD on expressions of the PD-related genes. Lipopolysaccharide (LPS) was intraperitoneally administered to mature male zebrafish and gene expressions in the brains were examined by real-time PCR. In the inflammation-related genes, expressions of tnfb, il1b and il6 were increased at 2 days post administration in the 10 μg group, and tnfb expression was also increased at 4 days post administration in the 1 μg and 10 μg group. In the PD-related genes, pink1 expression was significantly decreased at 4 days, atp13a2 expression was significantly increased at 7 days, and uchl1 expression was significantly decreased at 7 days. This suggests that pink1, atp13a2 and uchl1 expressions are regulated by inflammation, and this regulatory mechanism might be involved in the progress of PD.
    Matched MeSH terms: Brain/metabolism*
  3. Foo LL, Chaw SH, Chan L, Ganesan D, Karuppiah R
    Rev Bras Anestesiol, 2016 09 28;67(6):655-658.
    PMID: 27692367 DOI: 10.1016/j.bjan.2015.09.006
    Tension pneumocephalus is rare but has been well documented following trauma and neurosurgical procedures. It is a surgical emergency as it can lead to neurological deterioration, brainstem herniation and death. Unlike previous cases where tension pneumocephalus developed postoperatively, we describe a case of intraoperative tension pneumocephalus leading to sudden, massive open brain herniation out of the craniotomy site. The possible causative factors are outlined. It is imperative to rapidly identify possible causes of acute intraoperative brain herniation, including tension pneumocephalus, and institute appropriate measures to minimize neurological damage.
    Matched MeSH terms: Brain Diseases/etiology*
  4. Hagelskjaer LH, Hansen NJ, Christensen T
    Ugeskr Laeger, 1991 Sep 23;153(39):2754-5.
    PMID: 1949294
    A Danish woman aged 28 years who had travelled in the Far East developed cerebral symptoms with headache and visual disturbances. Migraine was suspected. Subsequent CT scanning revealed multiple processes and metastases were suspected. As the patient had travelled in the Far East 1 1/2 years previously, she was examined for neurocysticercosis. This diagnosis was established and the patient was successfully treated with praziquantel. On account of increased travelling activity, the possibility of neurocysticercosis should be borne in mind when dealing with patients with cerebral symptoms and relevant travelling histories.
    Matched MeSH terms: Brain Diseases/drug therapy; Brain Diseases/immunology; Brain Diseases/parasitology*
  5. Hamid A, Ibrahim FW, Ming TH, Nasrom MN, Eusoff N, Husain K, et al.
    BMC Complement Altern Med, 2018 Mar 20;18(1):101.
    PMID: 29558939 DOI: 10.1186/s12906-018-2161-5
    BACKGROUND: Zingiber zerumbet (L.) Smith belongs to the Zingiberaceae family that is widely distributed throughout the tropics, particularly in Southeast Asia. It is locally known as 'Lempoyang' and traditionally used to treat fever, constipation and to relieve pain. It is also known to possess antioxidant and anti-inflammatory activities. Based on these antioxidant and anti-inflammatory activities, this study was conducted to investigate the effects of ethyl-acetate extract of Z. zerumbet rhizomes against ethanol-induced brain damage in male Wistar rats.

    METHOD: Twenty-four male Wistar rats were divided into four groups which consist of normal, 1.8 g/kg ethanol (40% v/v), 200 mg/kg Z. zerumbet extract plus ethanol and 400 mg/kg Z. zerumbet plus ethanol. The extract of Z. zerumbet was given once daily by oral gavage, 30 min prior to ethanol exposure via intraperitoneal route for 14 consecutive days. The rats were then sacrificed. Blood and brain homogenate were subjected to biochemical tests and part of the brain tissue was sectioned for histological analysis.

    RESULT: Treatment with ethyl-acetate Z. zerumbet extract at 200 mg/kg and 400 mg/kg significantly reduced the level of malondialdehyde (MDA) and protein carbonyl (p brain homogenate. Both doses of extracts also significantly increased the level of serum superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities as well as glutathione (GSH) level (p brain damage as shown with higher levels of SOD, CAT, GPx and GSH in the brain homogenate as compared to 200 mg/kg dose. Histological observation of the cerebellum and cerebral cortex showed that the extract prevented the loss of Purkinje cells and retained the number and the shape of the cells.

    CONCLUSION: Ethyl-acetate extract of Z. zerumbet has protective effects against ethanol-induced brain damage and this is mediated through its antioxidant properties. Z. zerumbet extract protects against ethanol-induced brain damage via its antioxidant properties.

    Matched MeSH terms: Brain/cytology; Brain/drug effects*; Brain/pathology
  6. Prakash A, Bharti K, Majeed AB
    Fundam Clin Pharmacol, 2015 Apr;29(2):131-49.
    PMID: 25659970 DOI: 10.1111/fcp.12110
    Zinc is the authoritative metal which is present in our body, and reactive zinc metal is crucial for neuronal signaling and is largely distributed within presynaptic vesicles. Zinc also plays an important role in synaptic function. At cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Different importers and transporters are involved in zinc homeostasis. ZnT-3 is a main transporter involved in zinc homeostasis in the brain. It has been found that alterations in brain zinc status have been implicated in a wide range of neurological disorders including impaired brain development and many neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion disease. Furthermore, zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.
    Matched MeSH terms: Brain/metabolism*; Brain/pathology; Brain Diseases/diagnosis; Brain Diseases/metabolism*; Brain Injuries/diagnosis; Brain Injuries/metabolism
  7. Azman MS, Wan Saudi WS, Ilhami M, Mutalib MS, Rahman MT
    Nutr Neurosci, 2009 Feb;12(1):9-12.
    PMID: 19178786 DOI: 10.1179/147683009X388904
    Neurogenesis involves cell proliferation, cell cycle arrest, differentiation, migration and the natural developmental death of the neural precursors. These processes are highly co-ordinated and governed by cell-cycle genes and neural transcription factors. Zn plays a crucial role as a functional and structural component of enzymes and transcription factors and components of the intracellular signaling pathway associated with the regulation of cell proliferation. The influence of additional Zn intake during pregnancy on the neuronal proliferation at ventricular zone of the developing fetus has been studied. Pups delivered by the group of mice provided with drinking water with 4.0 mM Zn supplement throughout pregnancy contained an increased number of proliferating neurons in the ventricular zone at P0 compared to those delivered by the mice provided with drinking water without any Zn supplement. This finding provides direct evidence to support the notion that maternal Zn levels influence the development of the nervous system of the offspring.
    Matched MeSH terms: Brain/cytology; Brain/embryology*
  8. Ismail AA, Mahboob T, Samudi Raju C, Sekaran SD
    Trop Biomed, 2019 Dec 01;36(4):888-897.
    PMID: 33597462
    Zika virus (ZIKV) is a mosquito-borne Flaviviruses. ZIKV is known to cause birth defect in pregnant women, especially microcephaly in the fetus. Hence, more study is required to understand the infection of Zika virus towards human brain microvascular endothelial cells (MECs). In this study, brain MECs were infected with ZIKV at MOI of 1 and 5 in vitro. The changes in barrier function and membrane permeability of ZIKV-infected brain MECs were determined using electric cell-substrate impedance sensing (ECIS) system followed by gene expression of ZIKV-infected brain MECs at 24 hours post infection using one-color gene expression microarray. The ECIS results demonstrated that ZIKV infection enhances vascular leakage by increasing cell membrane permeability via alteration of brain MECs barrier function. This was further supported by high expression of proinflammatory cytokine genes (lnc-IL6-2, TNFAIP1 and TNFAIP6), adhesion molecules (CERCAM and ESAM) and growth factor (FIGF). Overall, findings of this study revealed that ZIKV infection could alter the barrier function of brain MECs by altering adhesion molecules and inflammatory response.
    Matched MeSH terms: Blood-Brain Barrier/virology*; Brain/blood supply; Brain/virology
  9. Su KY, Balasubramaniam VRMT
    Front Microbiol, 2019;10:2715.
    PMID: 31824472 DOI: 10.3389/fmicb.2019.02715
    The ability of self-replicating oncolytic viruses (OVs) to preferentially infect and lyse cancer cells while stimulating anti-tumor immunity of the host strongly indicates its value as a new field of cancer therapeutics to be further explored. The emergence of Zika virus (ZIKV) as a global health threat due to its recent outbreak in Brazil has caught the attention of the scientific community and led to the discovery of its oncolytic potential for the treatment of glioblastoma multiforme (GBM), the most common and fatal brain tumor with poor prognosis. Herein, we evaluate the neurotropism of ZIKV relative to the receptor tyrosine kinase AXL and its ligand Gas6 in viral entry and the RNA-binding protein Musashi-1 (MSI1) in replication which are also overexpressed in GBM, suggesting its potential for specific targeting of the tumor. Additionally, this review discusses genetic modifications performed to enhance safety and efficacy of ZIKV as well as speculates future directions for the OV therapy.
    Matched MeSH terms: Brain Neoplasms
  10. Liu Z, Gopinath SCB, Wang Z, Li Y, Anbu P, Zhang W
    Mikrochim Acta, 2021 05 15;188(6):187.
    PMID: 33990848 DOI: 10.1007/s00604-021-04834-w
    A new zeolite-iron oxide nanocomposite (ZEO-IO) was extracted from waste fly ash of a thermal power plant and utilized for capturing aptamers used to quantify the myocardial infarction (MI) biomarker N-terminal prohormone B-type natriuretic peptide (NT-ProBNP); this was used in a probe with an integrated microelectrode sensor. High-resolution microscopy revealed that ZEO-IO displayed a clubbell structure and a particle size range of 100-200 nm. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy confirmed the presence of Si, Al, Fe, and O in the synthesized ZEO-IO. The limit of detection for NT-ProBNP was 1-2 pg/mL (0.1-0.2 pM) when the aptamer was sandwiched with antibody and showed the doubled current response even at a low NT-ProBNP abundance. A dose-dependent interaction was identified for this sandwich with a linear plot in the concentration range 1 to 32 pg/mL (0.1-3.2 pM) with a determination coefficient R2 = 0.9884; y = 0.8425x-0.5771. Without  sandwich, the detection limit was 2-4 pg/mL (0.2-0.4 pM) and the determination coefficient was R2 = 0.9854; y = 1.0996x-1.4729. Stability and nonfouling assays in the presence of bovine serum albumin, cardiac troponin I, and myoglobin revealed that the aptamer-modified surface is stable and specific for NT-Pro-BNP. Moreover, NT-ProBNP-spiked human serum exhibited selective detection. This new nanocomposite-modified surface helps in detecting NT-Pro-BNP and diagnosing MI at stages of low expression.
    Matched MeSH terms: Natriuretic Peptide, Brain/blood*; Natriuretic Peptide, Brain/immunology; Natriuretic Peptide, Brain/chemistry
  11. Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH
    Biomed Res Int, 2016;2016:9732780.
    PMID: 27556045 DOI: 10.1155/2016/9732780
    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
    Matched MeSH terms: Brain/growth & development
  12. Tiang N, Ahad MA, Murugaiyah V, Hassan Z
    J Pharm Pharmacol, 2020 Nov;72(11):1629-1644.
    PMID: 32743849 DOI: 10.1111/jphp.13345
    OBJECTIVES: Xanthones isolated from the pericarp of Garcinia mangostana has been reported to exhibit neuroprotective effect.

    METHODS: In this study, the effect of xanthone-enriched fraction of Garcinia mangostana (XEFGM) and α-mangostin (α-MG) were investigated on cognitive functions of the chronic cerebral hypoperfusion (CCH) rats.

    KEY FINDINGS: HPLC analysis revealed that XEFGM contained 55.84% of α-MG. Acute oral administration of XEFGM (25, 50 and 100 mg/kg) and α-MG (25 and 50 mg/kg) before locomotor activity and Morris water maze (MWM) tests showed no significant difference between the groups for locomotor activity.

    CONCLUSIONS: However, α-MG (50 mg/kg) and XEFGM (100 mg/kg) reversed the cognitive impairment induced by CCH in MWM test. α-MG (50 mg/kg) was further tested upon sub-acute 14-day treatment in CCH rats. Cognitive improvement was shown in MWM test but not in long-term potentiation (LTP). BDNF but not CaMKII was found to be down-regulated in CCH rats; however, both parameters were not affected by α-MG. In conclusion, α-MG ameliorated learning and memory deficits in both acute and sub-acute treatments in CCH rats by improving the spatial learning but not hippocampal LTP. Hence, α-MG may be a promising lead compound for CCH-associated neurodegenerative diseases, including vascular dementia and Alzheimer's disease.

    Matched MeSH terms: Brain/drug effects*; Brain/metabolism; Brain/physiopathology; Brain-Derived Neurotrophic Factor/metabolism
  13. Kamis AB, Ahmad RA, Badrul-Munir MZ
    Parasitol Res, 1992;78(5):388-91.
    PMID: 1495916
    Gonadectomized male albino rats aged 7 weeks were given 1.5 mg/kg testosterone propionate daily and inoculated with 50 third-stage larvae of Angiostrongylus malaysiensis. The treatment significantly increased the number of larvae and adult worms recovered from the brain and pulmonary arteries, respectively, and the rats exhibited smaller thymus glands. The total numbers of leukocytes, monocytes, neutrophils, and especially eosinophils increased significantly post-infection, but the counts were higher in the untreated infected controls. Presumably, immunosuppressive effects of testosterone may at least partly be responsible for the higher loads of A. malaysiensis worms found in male rats as compared with females in the field.
    Matched MeSH terms: Brain/parasitology
  14. Huggins JE, Guger C, Ziat M, Zander TO, Taylor D, Tangermann M, et al.
    PMID: 29152523 DOI: 10.1080/2326263X.2016.1275488
    The Sixth International Brain-Computer Interface (BCI) Meeting was held 30 May-3 June 2016 at the Asilomar Conference Grounds, Pacific Grove, California, USA. The conference included 28 workshops covering topics in BCI and brain-machine interface research. Topics included BCI for specific populations or applications, advancing BCI research through use of specific signals or technological advances, and translational and commercial issues to bring both implanted and non-invasive BCIs to market. BCI research is growing and expanding in the breadth of its applications, the depth of knowledge it can produce, and the practical benefit it can provide both for those with physical impairments and the general public. Here we provide summaries of each workshop, illustrating the breadth and depth of BCI research and highlighting important issues and calls for action to support future research and development.
    Matched MeSH terms: Brain-Computer Interfaces
  15. Chai WJ, Abd Hamid AI, Abdullah JM
    Front Psychol, 2018;9:401.
    PMID: 29636715 DOI: 10.3389/fpsyg.2018.00401
    Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory's capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects.
    Matched MeSH terms: Brain; Brain Injuries, Traumatic
  16. Vinodh VP, Rajapathy SK, Sellamuthu P, Kandasamy R
    Surg Neurol Int, 2018;9:136.
    PMID: 30090668 DOI: 10.4103/sni.sni_96_18
    Background: Reperfusion injury of the spinal cord or "white cord syndrome" refers to the sudden onset of neurological deterioration after spinal decompressive surgery. Associated magnetic resonance (MR) findings only include focal hyperintensity on T2-weighted images without any other pathological changes.

    Case Description: A patient with cervical stenosis secondary to metastatic tumor in the intradural and extradural compartments presented with lower limb paraparesis. She underwent an uneventful tumor excision accompanied by posterior cervical decompression and fusion. Postoperatively, she was quadriplegic and required ventilator support. The emergent postoperative MR scan revealed focal hyperintensity on the T2-weighted image consistent with spinal cord edema extending into the lower brain stem.

    Conclusion: Very few cases of reperfusion injury of the cervical spinal cord or "white cord syndrome" are described in the literature. Here we present a patient who, following cervical laminectomy and fusion for excision of metastatic tumor, developed quadriplegia. Notably, postoperative MR showed only findings of upper cervical cord and lower brain stem edema consistent with a "white cord syndrome" without other compressive pathology.

    Matched MeSH terms: Brain Stem
  17. Sulaiman W, Othman A, Mohamad M, Salleh HR, Mushahar L
    Malays J Med Sci, 2002 Jul;9(2):43-6.
    PMID: 22844223 MyJurnal
    Two cases of Wernicke's encephalopathy due to hyperemesis gravidarum are described. The first patient presented with bilateral papilloedema, altered sensorium and the second with bilateral retinal haemorrhages, ophthalmoplegia and nystagmus. Both patients were diagnosed with Wernicke's encephalopathy on clinical ground since there were no laboratory facilities to measure red cell transketolase and thiamine pyrophosphate levels. This is a rare but treatable complication of hyperemesis gravidarum (HG) and due to lack of diagnostic tools, there is often diagnostic uncertainty, delay in commencing appropriate treatment, as well as irreversible damage to the upper brain stem and death.
    Matched MeSH terms: Brain Stem
  18. Law HL, Tan S, Sedi R
    Malays J Med Sci, 2011 Jul;18(3):71-4.
    PMID: 22135604
    We report a case of Wernicke's encephalopathy in a patient with nasopharyngeal carcinoma with a 3-month history of poor oral intake related to nausea and vomiting due to chemotherapy. The patient later developed deep coma while receiving in-patient therapy. Magnetic resonance imaging of the brain revealed typical findings of Wernicke's encephalopathy. The patient was treated with thiamine injections, which resulted in subsequent partial recovery of neurological function. This paper stresses the importance of magnetic resonance imaging for prompt diagnosis of Wernicke's encephalopathy.
    Matched MeSH terms: Brain
  19. Saffor A, bin Ramli AR, Ng KH
    Australas Phys Eng Sci Med, 2003 Jun;26(2):39-44.
    PMID: 12956184
    Wavelet-based image coding algorithms (lossy and lossless) use a fixed perfect reconstruction filter-bank built into the algorithm for coding and decoding of images. However, no systematic study has been performed to evaluate the coding performance of wavelet filters on medical images. We evaluated the best types of filters suitable for medical images in providing low bit rate and low computational complexity. In this study a variety of wavelet filters are used to compress and decompress computed tomography (CT) brain and abdomen images. We applied two-dimensional wavelet decomposition, quantization and reconstruction using several families of filter banks to a set of CT images. Discreet Wavelet Transform (DWT), which provides efficient framework of multi-resolution frequency was used. Compression was accomplished by applying threshold values to the wavelet coefficients. The statistical indices such as mean square error (MSE), maximum absolute error (MAE) and peak signal-to-noise ratio (PSNR) were used to quantify the effect of wavelet compression of selected images. The code was written using the wavelet and image processing toolbox of the MATLAB (version 6.1). This results show that no specific wavelet filter performs uniformly better than others except for the case of Daubechies and bi-orthogonal filters which are the best among all. MAE values achieved by these filters were 5 x 10(-14) to 12 x 10(-14) for both CT brain and abdomen images at different decomposition levels. This indicated that using these filters a very small error (approximately 7 x 10(-14)) can be achieved between original and the filtered image. The PSNR values obtained were higher for the brain than the abdomen images. For both the lossy and lossless compression, the 'most appropriate' wavelet filter should be chosen adaptively depending on the statistical properties of the image being coded to achieve higher compression ratio.
    Matched MeSH terms: Brain/radiography*
  20. Iqbal Jamaludin, Mohd Zulfaezal Che Azemin, Abdul Halim Sapuan, Radhiana Hassan
    MyJurnal
    The brain is the most complex organ in the human body. Robust and vigorous daily activities may cause changes to the brain structure. Huffaz, individuals who memorise the Quran undergo intensive memorization training which may lead to structural changes in specific regions of the brain.
    Matched MeSH terms: Brain
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links