Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Li S, Silvestri V, Leslie G, Rebbeck TR, Neuhausen SL, Hopper JL, et al.
    J Clin Oncol, 2022 May 10;40(14):1529-1541.
    PMID: 35077220 DOI: 10.1200/JCO.21.02112
    PURPOSE: To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management.

    METHODS: We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment.

    RESULTS: BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers.

    CONCLUSION: In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.

    Matched MeSH terms: BRCA1 Protein/genetics
  2. Couch FJ, Kuchenbaecker KB, Michailidou K, Mendoza-Fandino GA, Nord S, Lilyquist J, et al.
    Nat Commun, 2016 Apr 27;7:11375.
    PMID: 27117709 DOI: 10.1038/ncomms11375
    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
    Matched MeSH terms: BRCA1 Protein/genetics
  3. Karin BR, Das I, Jackman TR, Bauer AM
    PeerJ, 2017;5:e3762.
    PMID: 29093993 DOI: 10.7717/peerj.3762
    Episodic sea level changes that repeatedly exposed and inundated the Sunda Shelf characterize the Pleistocene. Available evidence points to a more xeric central Sunda Shelf during periods of low sea levels, and despite the broad land connections that persisted during this time, some organisms are assumed to have faced barriers to dispersal between land-masses on the Sunda Shelf. Eutropis rugifera is a secretive, forest adapted scincid lizard that ranges across the Sunda Shelf. In this study, we sequenced one mitochondrial (ND2) and four nuclear (BRCA1, BRCA2, RAG1, and MC1R) markers and generated a time-calibrated phylogeny in BEAST to test whether divergence times between Sundaic populations of E. rugifera occurred during Pleistocene sea-level changes, or if they predate the Pleistocene. We find that E. rugifera shows pre-Pleistocene divergences between populations on different Sundaic land-masses. The earliest divergence within E. rugifera separates the Philippine samples from the Sundaic samples approximately 16 Ma; the Philippine populations thus cannot be considered conspecific with Sundaic congeners. Sundaic populations diverged approximately 6 Ma, and populations within Borneo from Sabah and Sarawak separated approximately 4.5 Ma in the early Pliocene, followed by further cladogenesis in Sarawak through the Pleistocene. Divergence of peninsular Malaysian populations from the Mentawai Archipelago occurred approximately 5 Ma. Separation among island populations from the Mentawai Archipelago likely dates to the Pliocene/Pleistocene boundary approximately 3.5 Ma, and our samples from peninsular Malaysia appear to coalesce in the middle Pleistocene, about 1 Ma. Coupled with the monophyly of these populations, these divergence times suggest that despite consistent land-connections between these regions throughout the Pleistocene E. rugifera still faced barriers to dispersal, which may be a result of environmental shifts that accompanied the sea-level changes.
    Matched MeSH terms: BRCA1 Protein
  4. Ibnat N, Chowdhury EH
    Sci Rep, 2023 Jan 11;13(1):536.
    PMID: 36631481 DOI: 10.1038/s41598-022-25511-9
    Gene augmentation therapy entails replacement of the abnormal tumor suppressor genes in cancer cells. In this study, we performed gene augmentation for BRCA1/2 tumor suppressors in order to retard tumor development in breast cancer mouse model. We formulated inorganic carbonate apatite (CA) nanoparticles (NPs) to carry and deliver the purified BRCA1/2 gene- bearing plasmid DNA both in vitro and in vivo. The outcome of BRCA1/2 plasmid-loaded NPs delivery on cellular viability of three breast cancer cell lines such as MCF-7, MDA-MB-231 and 4T1 were evaluated by MTT assay. The result in MCF-7 cell line exhibited that transfection of BRCA 1/2 plasmids with CA NPs significantly reduced cancer cell growth in comparison to control group. Moreover, we noticed a likely pattern of cellular cytotoxicity in 4T1 murine cancer cell line. Following transfection with BRCA1 plasmid-loaded NPs, and Western blot analysis, a notable reduction in the phospho-MAPK protein of MAPK signaling pathway was detected, revealing reduced growth signal. Furthermore, in vivo study in 4T1 induced breast cancer mouse model showed that the tumor growth rate and final volume were decreased significantly in the mouse group treated intravenously with BRCA1 + NPs and BRCA2 + NPs formulations. Our results established that BRCA1/2 plasmids incorporated into CA NPs mitigated breast tumor growth, signifying their application in the therapy for breast cancer.
    Matched MeSH terms: BRCA1 Protein/genetics; BRCA1 Protein/metabolism; BRCA1 Protein/therapeutic use
  5. Barnes DR, Rookus MA, McGuffog L, Leslie G, Mooij TM, Dennis J, et al.
    Genet Med, 2020 10;22(10):1653-1666.
    PMID: 32665703 DOI: 10.1038/s41436-020-0862-x
    PURPOSE: We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers.

    METHODS: Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort.

    RESULTS: The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10-72). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10-50). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10-22) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10-12) carriers. The associations in the prospective cohort were similar.

    CONCLUSION: Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.

    Matched MeSH terms: BRCA1 Protein/genetics
  6. Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, et al.
    Nat Genet, 2015 Feb;47(2):164-71.
    PMID: 25581431 DOI: 10.1038/ng.3185
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
    Matched MeSH terms: BRCA1 Protein/genetics*
  7. Li J, Ugalde-Morales E, Wen WX, Decker B, Eriksson M, Torstensson A, et al.
    Cancer Res, 2018 11 01;78(21):6329-6338.
    PMID: 30385609 DOI: 10.1158/0008-5472.CAN-18-1018
    Genetic variants that increase breast cancer risk can be rare or common. This study tests whether the genetic risk stratification of breast cancer by rare and common variants in established loci can discriminate tumors with different biology, patient survival, and mode of detection. Multinomial logistic regression tested associations between genetic risk load [protein-truncating variant (PTV) carriership in 31 breast cancer predisposition genes-or polygenic risk score (PRS) using 162 single-nucleotide polymorphisms], tumor characteristics, and mode of detection (OR). Ten-year breast cancer-specific survival (HR) was estimated using Cox regression models. In this unselected cohort of 5,099 patients with breast cancer diagnosed in Sweden between 2001 and 2008, PTV carriers (n = 597) were younger and associated with more aggressive tumor phenotypes (ER-negative, large size, high grade, high proliferation, luminal B, and basal-like subtype) and worse outcome (HR, 1.65; 1.16-2.36) than noncarriers. After excluding 92 BRCA1/2 carriers, PTV carriership remained associated with high grade and worse survival (HR, 1.76; 1.21-2.56). In 5,007 BRCA1/2 noncarriers, higher PRS was associated with less aggressive tumor characteristics (ER-positive, PR-positive, small size, low grade, low proliferation, and luminal A subtype). Among patients with low mammographic density (<25%), non-BRCA1/2 PTV carriers were more often interval than screen-detected breast cancer (OR, 1.89; 1.12-3.21) than noncarriers. In contrast, higher PRS was associated with lower risk of interval compared with screen-detected cancer (OR, 0.77; 0.64-0.93) in women with low mammographic density. These findings suggest that rare and common breast cancer susceptibility loci are differentially associated with tumor characteristics, survival, and mode of detection.Significance: These findings offer the potential to improve screening practices for breast cancer by providing a deeper understanding of how risk variants affect disease progression and mode of detection. Cancer Res; 78(21); 6329-38. ©2018 AACR.
    Matched MeSH terms: BRCA1 Protein/genetics
  8. Li J, Wen WX, Eklund M, Kvist A, Eriksson M, Christensen HN, et al.
    Int J Cancer, 2019 03 01;144(5):1195-1204.
    PMID: 30175445 DOI: 10.1002/ijc.31841
    Breast cancer patients with BRCA1/2-driven tumors may benefit from targeted therapy. It is not clear whether current BRCA screening guidelines are effective at identifying these patients. The purpose of our study was to evaluate the prevalence of inherited BRCA1/2 pathogenic variants in a large, clinically representative breast cancer cohort and to estimate the proportion of BRCA1/2 carriers not detected by selectively screening individuals with the highest probability of being carriers according to current clinical guidelines. The study included 5,122 unselected Swedish breast cancer patients diagnosed from 2001 to 2008. Target sequence enrichment (48.48 Fluidigm Access Arrays) and sequencing were performed (Illumina Hi-Seq 2,500 instrument, v4 chemistry). Differences in patient and tumor characteristics of BRCA1/2 carriers who were already identified as part of clinical BRCA1/2 testing routines and additional BRCA1/2 carriers found by sequencing the entire study population were compared using logistic regression models. Ninety-two of 5,099 patients with valid variant calls were identified as BRCA1/2 carriers by screening all study participants (1.8%). Only 416 study participants (8.2%) were screened as part of clinical practice, but this identified 35 out of 92 carriers (38.0%). Clinically identified carriers were younger, less likely postmenopausal and more likely to be associated with familiar ovarian cancer compared to the additional carriers identified by screening all patients. More BRCA2 (34/42, 81.0%) than BRCA1 carriers (23/50, 46%) were missed by clinical screening. In conclusion, BRCA1/2 mutation prevalence in unselected breast cancer patients was 1.8%. Six in ten BRCA carriers were not detected by selective clinical screening of individuals.
    Matched MeSH terms: BRCA1 Protein/genetics*
  9. Dörk T, Peterlongo P, Mannermaa A, Bolla MK, Wang Q, Dennis J, et al.
    Sci Rep, 2019 08 29;9(1):12524.
    PMID: 31467304 DOI: 10.1038/s41598-019-48804-y
    Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
    Matched MeSH terms: BRCA1 Protein/genetics
  10. Mikropoulos C, Selkirk CGH, Saya S, Bancroft E, Vertosick E, Dadaev T, et al.
    Br J Cancer, 2018 Jan;118(2):266-276.
    PMID: 29301143 DOI: 10.1038/bjc.2017.429
    BACKGROUND: Prostate-specific antigen (PSA) and PSA-velocity (PSAV) have been used to identify men at risk of prostate cancer (PrCa). The IMPACT study is evaluating PSA screening in men with a known genetic predisposition to PrCa due to BRCA1/2 mutations. This analysis evaluates the utility of PSA and PSAV for identifying PrCa and high-grade disease in this cohort.

    METHODS: PSAV was calculated using logistic regression to determine if PSA or PSAV predicted the result of prostate biopsy (PB) in men with elevated PSA values. Cox regression was used to determine whether PSA or PSAV predicted PSA elevation in men with low PSAs. Interaction terms were included in the models to determine whether BRCA status influenced the predictiveness of PSA or PSAV.

    RESULTS: 1634 participants had ⩾3 PSA readings of whom 174 underwent PB and 45 PrCas diagnosed. In men with PSA >3.0 ng ml-l, PSAV was not significantly associated with presence of cancer or high-grade disease. PSAV did not add to PSA for predicting time to an elevated PSA. When comparing BRCA1/2 carriers to non-carriers, we found a significant interaction between BRCA status and last PSA before biopsy (P=0.031) and BRCA2 status and PSAV (P=0.024). However, PSAV was not predictive of biopsy outcome in BRCA2 carriers.

    CONCLUSIONS: PSA is more strongly predictive of PrCa in BRCA carriers than non-carriers. We did not find evidence that PSAV aids decision-making for BRCA carriers over absolute PSA value alone.

    Matched MeSH terms: BRCA1 Protein/genetics
  11. Chi KN, Sandhu S, Smith MR, Attard G, Saad M, Olmos D, et al.
    Ann Oncol, 2023 Sep;34(9):772-782.
    PMID: 37399894 DOI: 10.1016/j.annonc.2023.06.009
    BACKGROUND: Patients with metastatic castration-resistant prostate cancer (mCRPC) and BRCA alterations have poor outcomes. MAGNITUDE found patients with homologous recombination repair gene alterations (HRR+), particularly BRCA1/2, benefit from first-line therapy with niraparib plus abiraterone acetate and prednisone (AAP). Here we report longer follow-up from the second prespecified interim analysis (IA2).

    PATIENTS AND METHODS: Patients with mCRPC were prospectively identified as HRR+ with/without BRCA1/2 alterations and randomized 1 : 1 to niraparib (200 mg orally) plus AAP (1000 mg/10 mg orally) or placebo plus AAP. At IA2, secondary endpoints [time to symptomatic progression, time to initiation of cytotoxic chemotherapy, overall survival (OS)] were assessed.

    RESULTS: Overall, 212 HRR+ patients received niraparib plus AAP (BRCA1/2 subgroup, n = 113). At IA2 with 24.8 months of median follow-up in the BRCA1/2 subgroup, niraparib plus AAP significantly prolonged radiographic progression-free survival {rPFS; blinded independent central review; median rPFS 19.5 versus 10.9 months; hazard ratio (HR) = 0.55 [95% confidence interval (CI) 0.39-0.78]; nominal P = 0.0007} consistent with the first prespecified interim analysis. rPFS was also prolonged in the total HRR+ population [HR = 0.76 (95% CI 0.60-0.97); nominal P = 0.0280; median follow-up 26.8 months]. Improvements in time to symptomatic progression and time to initiation of cytotoxic chemotherapy were observed with niraparib plus AAP. In the BRCA1/2 subgroup, the analysis of OS with niraparib plus AAP demonstrated an HR of 0.88 (95% CI 0.58-1.34; nominal P = 0.5505); the prespecified inverse probability censoring weighting analysis of OS, accounting for imbalances in subsequent use of poly adenosine diphosphate-ribose polymerase inhibitors and other life-prolonging therapies, demonstrated an HR of 0.54 (95% CI 0.33-0.90; nominal P = 0.0181). No new safety signals were observed.

    CONCLUSIONS: MAGNITUDE, enrolling the largest BRCA1/2 cohort in first-line mCRPC to date, demonstrated improved rPFS and other clinically relevant outcomes with niraparib plus AAP in patients with BRCA1/2-altered mCRPC, emphasizing the importance of identifying this molecular subset of patients.

    Matched MeSH terms: BRCA1 Protein/genetics
  12. Laitman Y, Feng BJ, Zamir IM, Weitzel JN, Duncan P, Port D, et al.
    Eur J Hum Genet, 2013 Feb;21(2):212-6.
    PMID: 22763381 DOI: 10.1038/ejhg.2012.124
    The 185delAG* BRCA1 mutation is encountered primarily in Jewish Ashkenazi and Iraqi individuals, and sporadically in non-Jews. Previous studies estimated that this is a founder mutation in Jewish mutation carriers that arose before the dispersion of Jews in the Diaspora ~2500 years ago. The aim of this study was to assess the haplotype in ethnically diverse 185delAG* BRCA1 mutation carriers, and to estimate the age at which the mutation arose. Ethnically diverse Jewish and non-Jewish 185delAG*BRCA1 mutation carriers and their relatives were genotyped using 15 microsatellite markers and three SNPs spanning 12.5 MB, encompassing the BRCA1 gene locus. Estimation of mutation age was based on a subset of 11 markers spanning a region of ~5 MB, using a previously developed algorithm applying the maximum likelihood method. Overall, 188 participants (154 carriers and 34 noncarriers) from 115 families were included: Ashkenazi, Iraq, Kuchin-Indians, Syria, Turkey, Iran, Tunisia, Bulgaria, non-Jewish English, non-Jewish Malaysian, and Hispanics. Haplotype analysis indicated that the 185delAG mutation arose 750-1500 years ago. In Ashkenazim, it is a founder mutation that arose 61 generations ago, and with a small group of founder mutations was introduced into the Hispanic population (conversos) ~650 years ago, and into the Iraqi-Jewish community ~450 years ago. The 185delAG mutation in the non-Jewish populations in Malaysia and the UK arose at least twice independently. We conclude that the 185delAG* BRCA1 mutation resides on a common haplotype among Ashkenazi Jews, and arose about 61 generations ago and arose independently at least twice in non-Jews.
    Matched MeSH terms: BRCA1 Protein/genetics*
  13. Zhang H, Ahearn TU, Lecarpentier J, Barnes D, Beesley J, Qi G, et al.
    Nat Genet, 2020 06;52(6):572-581.
    PMID: 32424353 DOI: 10.1038/s41588-020-0609-2
    Breast cancer susceptibility variants frequently show heterogeneity in associations by tumor subtype1-3. To identify novel loci, we performed a genome-wide association study including 133,384 breast cancer cases and 113,789 controls, plus 18,908 BRCA1 mutation carriers (9,414 with breast cancer) of European ancestry, using both standard and novel methodologies that account for underlying tumor heterogeneity by estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status and tumor grade. We identified 32 novel susceptibility loci (P 
    Matched MeSH terms: BRCA1 Protein/genetics
  14. Stebbing J, Zhang H, Xu Y, Lit LC, Green AR, Grothey A, et al.
    Oncogene, 2015 Apr 16;34(16):2103-14.
    PMID: 24909178 DOI: 10.1038/onc.2014.129
    Kinase suppressor of Ras-1 (KSR1) facilitates signal transduction in Ras-dependent cancers, including pancreatic and lung carcinomas but its role in breast cancer has not been well studied. Here, we demonstrate for the first time it functions as a tumor suppressor in breast cancer in contrast to data in other tumors. Breast cancer patients (n>1000) with high KSR1 showed better disease-free and overall survival, results also supported by Oncomine analyses, microarray data (n=2878) and genomic data from paired tumor and cell-free DNA samples revealing loss of heterozygosity. KSR1 expression is associated with high breast cancer 1, early onset (BRCA1), high BRCA1-associated ring domain 1 (BARD1) and checkpoint kinase 1 (Chk1) levels. Phospho-profiling of major components of the canonical Ras-RAF-mitogen-activated protein kinases pathway showed no significant changes after KSR1 overexpression or silencing. Moreover, KSR1 stably transfected cells formed fewer and smaller size colonies compared to the parental ones, while in vivo mouse model also demonstrated that the growth of xenograft tumors overexpressing KSR1 was inhibited. The tumor suppressive action of KSR1 is BRCA1 dependent shown by 3D-matrigel and soft agar assays. KSR1 stabilizes BRCA1 protein levels by reducing BRCA1 ubiquitination through increasing BARD1 abundance. These data link these proteins in a continuum with clinical relevance and position KSR1 in the major oncoprotein pathways in breast tumorigenesis.
    Matched MeSH terms: BRCA1 Protein/metabolism*
  15. Ho PJ, Khng AJ, Loh HW, Ho WK, Yip CH, Mohd-Taib NA, et al.
    Genome Med, 2021 Dec 02;13(1):185.
    PMID: 34857041 DOI: 10.1186/s13073-021-00978-9
    BACKGROUND: Mutations in certain genes are known to increase breast cancer risk. We study the relevance of rare protein-truncating variants (PTVs) that may result in loss-of-function in breast cancer susceptibility genes on tumor characteristics and survival in 8852 breast cancer patients of Asian descent.

    METHODS: Gene panel sequencing was performed for 34 known or suspected breast cancer predisposition genes, of which nine genes (ATM, BRCA1, BRCA2, CHEK2, PALB2, BARD1, RAD51C, RAD51D, and TP53) were associated with breast cancer risk. Associations between PTV carriership in one or more genes and tumor characteristics were examined using multinomial logistic regression. Ten-year overall survival was estimated using Cox regression models in 6477 breast cancer patients after excluding older patients (≥75years) and stage 0 and IV disease.

    RESULTS: PTV9genes carriership (n = 690) was significantly associated (p < 0.001) with more aggressive tumor characteristics including high grade (poorly vs well-differentiated, odds ratio [95% confidence interval] 3.48 [2.35-5.17], moderately vs well-differentiated 2.33 [1.56-3.49]), as well as luminal B [HER-] and triple-negative subtypes (vs luminal A 2.15 [1.58-2.92] and 2.85 [2.17-3.73], respectively), adjusted for age at diagnosis, study, and ethnicity. Associations with grade and luminal B [HER2-] subtype remained significant after excluding BRCA1/2 carriers. PTV25genes carriership (n = 289, excluding carriers of the nine genes associated with breast cancer) was not associated with tumor characteristics. However, PTV25genes carriership, but not PTV9genes carriership, was suggested to be associated with worse 10-year overall survival (hazard ratio [CI] 1.63 [1.16-2.28]).

    CONCLUSIONS: PTV9genes carriership is associated with more aggressive tumors. Variants in other genes might be associated with the survival of breast cancer patients. The finding that PTV carriership is not just associated with higher breast cancer risk, but also more severe and fatal forms of the disease, suggests that genetic testing has the potential to provide additional health information and help healthy individuals make screening decisions.

    Matched MeSH terms: BRCA1 Protein/genetics
  16. Liu J, Lončar I, Collée JM, Bolla MK, Dennis J, Michailidou K, et al.
    Sci Rep, 2016 Nov 15;6:36874.
    PMID: 27845421 DOI: 10.1038/srep36874
    NBS1, also known as NBN, plays an important role in maintaining genomic stability. Interestingly, rs2735383 G > C, located in a microRNA binding site in the 3'-untranslated region (UTR) of NBS1, was shown to be associated with increased susceptibility to lung and colorectal cancer. However, the relation between rs2735383 and susceptibility to breast cancer is not yet clear. Therefore, we genotyped rs2735383 in 1,170 familial non-BRCA1/2 breast cancer cases and 1,077 controls using PCR-based restriction fragment length polymorphism (RFLP-PCR) analysis, but found no association between rs2735383CC and breast cancer risk (OR = 1.214, 95% CI = 0.936-1.574, P = 0.144). Because we could not exclude a small effect size due to a limited sample size, we further analyzed imputed rs2735383 genotypes (r2 > 0.999) of 47,640 breast cancer cases and 46,656 controls from the Breast Cancer Association Consortium (BCAC). However, rs2735383CC was not associated with overall breast cancer risk in European (OR = 1.014, 95% CI = 0.969-1.060, P = 0.556) nor in Asian women (OR = 0.998, 95% CI = 0.905-1.100, P = 0.961). Subgroup analyses by age, age at menarche, age at menopause, menopausal status, number of pregnancies, breast feeding, family history and receptor status also did not reveal a significant association. This study therefore does not support the involvement of the genotype at NBS1 rs2735383 in breast cancer susceptibility.
    Matched MeSH terms: BRCA1 Protein/genetics
  17. Qian F, Wang S, Mitchell J, McGuffog L, Barrowdale D, Leslie G, et al.
    J Natl Cancer Inst, 2019 Apr 01;111(4):350-364.
    PMID: 30312457 DOI: 10.1093/jnci/djy132
    BACKGROUND: BRCA1/2 mutations confer high lifetime risk of breast cancer, although other factors may modify this risk. Whether height or body mass index (BMI) modifies breast cancer risk in BRCA1/2 mutation carriers remains unclear.

    METHODS: We used Mendelian randomization approaches to evaluate the association of height and BMI on breast cancer risk, using data from the Consortium of Investigators of Modifiers of BRCA1/2 with 14 676 BRCA1 and 7912 BRCA2 mutation carriers, including 11 451 cases of breast cancer. We created a height genetic score using 586 height-associated variants and a BMI genetic score using 93 BMI-associated variants. We examined both observed and genetically determined height and BMI with breast cancer risk using weighted Cox models. All statistical tests were two-sided.

    RESULTS: Observed height was positively associated with breast cancer risk (HR = 1.09 per 10 cm increase, 95% confidence interval [CI] = 1.0 to 1.17; P = 1.17). Height genetic score was positively associated with breast cancer, although this was not statistically significant (per 10 cm increase in genetically predicted height, HR = 1.04, 95% CI = 0.93 to 1.17; P = .47). Observed BMI was inversely associated with breast cancer risk (per 5 kg/m2 increase, HR = 0.94, 95% CI = 0.90 to 0.98; P = .007). BMI genetic score was also inversely associated with breast cancer risk (per 5 kg/m2 increase in genetically predicted BMI, HR = 0.87, 95% CI = 0.76 to 0.98; P = .02). BMI was primarily associated with premenopausal breast cancer.

    CONCLUSION: Height is associated with overall breast cancer and BMI is associated with premenopausal breast cancer in BRCA1/2 mutation carriers. Incorporating height and BMI, particularly genetic score, into risk assessment may improve cancer management.

    Matched MeSH terms: BRCA1 Protein/genetics*
  18. Engku Fatimah Syairah Engku Safruddin, Wan Zainira Wan Zain, Bhavaraju, Venkata Murali Krishna, Kannan, Thirumulu Ponnuraj
    MyJurnal
    Given that the germline mutations of BRCA1 and BRCA2 confer genetic susceptibility to cancer, the
    genetic variations, polymorphisms or mutations are widely analyzed in Western countries. However, in Asian
    population, the prevalence of BRCA1 and BRCA2 polymorphisms is very limited. In Asia, breast cancer occurs in
    women early with an age of onset under 50 years. This review comprises the incidence of BRCA1 and BRCA2
    polymorphisms in the Japanese, Korean and Malaysian population. Founder mutations of BRCA1 and BRCA2
    were also compared to mark the genetic difference in these populations. The mutational analysis performed to
    analyze the entire coding region of BRCA1 and BRCA2 include the next generation sequencing and full
    sequencing of all exons and intron-exon junctions. From the diagnosis of triple negative breast cancer (TNBC)
    patients, TNBC is associated with the lack of tailored therapies and the treatment option available for TNBC
    patients is mainly chemotherapy. The poor prognosis of TNBC leads to determine the predictive biomarkers in
    order to develop treatment efficacy. This review will address the current clinical therapies available to treat TNBC
    patients.
    Matched MeSH terms: BRCA1 Protein
  19. Wen WX, Leong CO
    PLoS One, 2019;14(4):e0215381.
    PMID: 31022191 DOI: 10.1371/journal.pone.0215381
    Immune checkpoint inhibitors have demonstrated effective anti-tumour response in cancer types with high mutation burden (e.g. melanoma) and in subset of cancers with features of genomic instability (e.g. mismatch-repair deficiency). One possible explanation for this effect is the increased expression of immune checkpoint molecules and pre-existing adaptive immune response in these cancers. Given that BRCA1 and BRCA2 are integral in maintaining genomic integrity, we hypothesise that the inactivation of these genes may give rise to breast cancers with such immunogenic phenotype. Therefore, using two large series of publicly available breast cancer datasets, namely that from The Cancer Genome Atlas and Wellcome Trust Institute, we sought to investigate the association between BRCA1- and BRCA2-deficiency with features of genomic instability, expression of PD-L1 and PD-1, landscape of inferred tumour-infiltrating immune cells, and T-cell inflamed signature in breast cancers. Here, we report that BRCA1 and BRCA2-deficient breast cancers were associated with features of genomic instability including increased mutation burden. Interestingly, BRCA1-, but not BRCA2-, deficient breast cancers were associated with increased expression of PD-L1 and PD-1, higher abundance of tumour-infiltrating immune cells, and enrichment of T cell-inflamed signature. The differences in immunophenotype between BRCA1- and BRCA2-deficient breast cancers can be attributed, in part, to PTEN gene mutation. Therefore, features of genomic instability such as that mediated by BRCA1- and BRCA2- deficiency in breast cancer were necessary, but not always sufficient, for yielding T cell-inflamed tumour microenvironment, and by extension, predicting clinical benefit from immunotherapy.
    Matched MeSH terms: BRCA1 Protein/deficiency*; BRCA1 Protein/genetics
  20. Chi KN, Rathkopf D, Smith MR, Efstathiou E, Attard G, Olmos D, et al.
    J Clin Oncol, 2023 Jun 20;41(18):3339-3351.
    PMID: 36952634 DOI: 10.1200/JCO.22.01649
    PURPOSE: Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease with current standard-of-care therapies. Homologous recombination repair (HRR) gene alterations, including BRCA1/2 alterations, can sensitize cancer cells to poly (ADP-ribose) polymerase inhibition, which may improve outcomes in treatment-naïve mCRPC when combined with androgen receptor signaling inhibition.

    METHODS: MAGNITUDE (ClinicalTrials.gov identifier: NCT03748641) is a phase III, randomized, double-blinded study that evaluates niraparib and abiraterone acetate plus prednisone (niraparib + AAP) in patients with (HRR+, n = 423) or without (HRR-, n = 247) HRR-associated gene alterations, as prospectively determined by tissue/plasma-based assays. Patients were assigned 1:1 to receive niraparib + AAP or placebo + AAP. The primary end point, radiographic progression-free survival (rPFS) assessed by central review, was evaluated first in the BRCA1/2 subgroup and then in the full HRR+ cohort, with secondary end points analyzed for the full HRR+ cohort if rPFS was statistically significant. A futility analysis was preplanned in the HRR- cohort.

    RESULTS: Median rPFS in the BRCA1/2 subgroup was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.6 v 10.9 months; hazard ratio [HR], 0.53; 95% CI, 0.36 to 0.79; P = .001). In the overall HRR+ cohort, rPFS was significantly longer in the niraparib + AAP group compared with the placebo + AAP group (16.5 v 13.7 months; HR, 0.73; 95% CI, 0.56 to 0.96; P = .022). These findings were supported by improvement in the secondary end points of time to symptomatic progression and time to initiation of cytotoxic chemotherapy. In the HRR- cohort, futility was declared per the prespecified criteria. Treatment with niraparib + AAP was tolerable, with anemia and hypertension as the most reported grade ≥ 3 adverse events.

    CONCLUSION: Combination treatment with niraparib + AAP significantly lengthened rPFS in patients with HRR+ mCRPC compared with standard-of-care AAP.

    [Media: see text].

    Matched MeSH terms: BRCA1 Protein
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links