Displaying publications 1 - 20 of 178 in total

Abstract:
Sort:
  1. Tiash S, Chowdhury EH
    J Drug Target, 2019 03;27(3):325-337.
    PMID: 30221549 DOI: 10.1080/1061186X.2018.1525388
    Chemotherapy, the commonly favoured approach to treat cancer is frequently associated with treatment failure and recurrence of disease as a result of development of multidrug resistance (MDR) with concomitant over-expression of drug efflux proteins on cancer cells. One of the most widely used drugs, doxorubicin (Dox) is a substrate of three different ATP-binding cassette (ABC) transporters, namely, ABCB1, ABCG2 and ABCC1, predominantly contributing to MDR phenotype in cancer. To silence these transporter-coding genes and thus enhance the therapeutic efficacy of Dox, pH-sensitive carbonate apatite (CA) nanoparticles (NPs) were employed as a carrier system to co-deliver siRNAs against these genes and Dox in breast cancer cells and in a syngeneic breast cancer mouse model. siRNAs and Dox were complexed with NPs by incubation at 37 °C and used to treat cancer cell lines to check cell viability and caspase-mediated signal. 4T1 cells-induced breast cancer mouse model was used for treatment with the complex to confirm their action in tumour regression. Smaller (∼200 nm) and less polydisperse NPs that were taken up more effectively by tumour tissue could enhance Dox chemosensitivity, significantly reducing the tumour size in a very low dose of Dox (0.34 mg/kg), in contrast to the limited effect observed in breast cancer cell lines. The study thus proposes that simultaneous delivery of siRNAs against transporter genes and Dox with the help of CA NPs could be a potential therapeutic intervention in effectively treating MDR breast cancer.
    Matched MeSH terms: Breast Neoplasms/genetics
  2. Liu J, Lončar I, Collée JM, Bolla MK, Dennis J, Michailidou K, et al.
    Sci Rep, 2016 Nov 15;6:36874.
    PMID: 27845421 DOI: 10.1038/srep36874
    NBS1, also known as NBN, plays an important role in maintaining genomic stability. Interestingly, rs2735383 G > C, located in a microRNA binding site in the 3'-untranslated region (UTR) of NBS1, was shown to be associated with increased susceptibility to lung and colorectal cancer. However, the relation between rs2735383 and susceptibility to breast cancer is not yet clear. Therefore, we genotyped rs2735383 in 1,170 familial non-BRCA1/2 breast cancer cases and 1,077 controls using PCR-based restriction fragment length polymorphism (RFLP-PCR) analysis, but found no association between rs2735383CC and breast cancer risk (OR = 1.214, 95% CI = 0.936-1.574, P = 0.144). Because we could not exclude a small effect size due to a limited sample size, we further analyzed imputed rs2735383 genotypes (r2 > 0.999) of 47,640 breast cancer cases and 46,656 controls from the Breast Cancer Association Consortium (BCAC). However, rs2735383CC was not associated with overall breast cancer risk in European (OR = 1.014, 95% CI = 0.969-1.060, P = 0.556) nor in Asian women (OR = 0.998, 95% CI = 0.905-1.100, P = 0.961). Subgroup analyses by age, age at menarche, age at menopause, menopausal status, number of pregnancies, breast feeding, family history and receptor status also did not reveal a significant association. This study therefore does not support the involvement of the genotype at NBS1 rs2735383 in breast cancer susceptibility.
    Matched MeSH terms: Breast Neoplasms/genetics*
  3. Yu F, Bracken CP, Pillman KA, Lawrence DM, Goodall GJ, Callen DF, et al.
    PLoS One, 2015;10(6):e0129190.
    PMID: 26061048 DOI: 10.1371/journal.pone.0129190
    p53 is a master tumour repressor that participates in vast regulatory networks, including feedback loops involving microRNAs (miRNAs) that regulate p53 and that themselves are direct p53 transcriptional targets. We show here that a group of polycistronic miRNA-like non-coding RNAs derived from small nucleolar RNAs (sno-miRNAs) are transcriptionally repressed by p53 through their host gene, SNHG1. The most abundant of these, sno-miR-28, directly targets the p53-stabilizing gene, TAF9B. Collectively, p53, SNHG1, sno-miR-28 and TAF9B form a regulatory loop which affects p53 stability and downstream p53-regulated pathways. In addition, SNHG1, SNORD28 and sno-miR-28 are all significantly upregulated in breast tumours and the overexpression of sno-miR-28 promotes breast epithelial cell proliferation. This research has broadened our knowledge of the crosstalk between small non-coding RNA pathways and roles of sno-miRNAs in p53 regulation.
    Matched MeSH terms: Breast Neoplasms/genetics*
  4. Gao Y, Zhang W, Liu C, Li G
    Sci Rep, 2019 12 11;9(1):18844.
    PMID: 31827114 DOI: 10.1038/s41598-019-54289-6
    Resistance to tamoxifen is a major clinical challenge. Research in recent years has identified epigenetic changes as mediated by dysregulated miRNAs that can possibly play a role in resistance to tamoxifen in breast cancer patients expressing estrogen receptor (ER). We report here elevated levels of EMT markers (vimentin and ZEB1/2) and reduced levels of EMT-regulating miR-200 (miR-200b and miR-200c) in ER-positive breast cancer cells, MCF-7, that were resistant to tamoxifen, in contrast with the naïve parental MCF-7 cells that were sensitive to tamoxifen. Further, we established regulation of c-MYB by miR-200 in our experimental model. C-MYB was up-regulated in tamoxifen resistant cells and its silencing significantly decreased resistance to tamoxifen and the EMT markers. Forced over-expression of miR-200b/c reduced c-MYB whereas reduced expression of miR-200b/c resulted in increased c-MYB We further confirmed the results in other ER-positive breast cancer cells T47D cells where forced over-expression of c-MYB resulted in induction of EMT and significantly increased resistance to tamoxifen. Thus, we identify a novel mechanism of tamoxifen resistance in breast tumor microenvironment that involves miR-200-MYB signaling.
    Matched MeSH terms: Breast Neoplasms/genetics
  5. Cheah YH, Azimahtol HL, Abdullah NR
    Anticancer Res, 2006 Nov-Dec;26(6B):4527-34.
    PMID: 17201174
    Xanthorrhizol is a natural sesquiterpenoid compound isolated from the rhizome of Curcuma xanthorrhiza Roxb (Zingiberaceae). Xanthorrhizol was tested for a variety of important pharmacological activities including antioxidant and anti-inflammatory activities. An antiproliferation assay using the MTT method indicated that xanthorrhizol inhibited the proliferation of the human breast cancer cell line, MCF-7, with an EC50 value of 1.71 microg/ml. Three parameters including annexin-V binding assay, Hoechst 33258 staining and accumulation of sub-G1 population in DNA histogram confirmed the apoptosis induction in response to xanthorrhizol treatment. Western-blotting revealed down-regulation of the anti-apoptotic bcl-2 protein expression. However, xanthorrhizol did not affect the expression of the pro-apoptotic protein, bax, at a concentration of 1 microg/ml, 2.5 microg/ml and 5 microg/ml. The level of p53 was greatly increased, whilst PARP-1 was cleaved to 85 kDa subunits, following the treatment with xanthorrhizol at a dose-dependent manner. These results, thereby, suggest that xanthorrhizol has antiproliferative effects on MCF-7 cells by inducing apoptosis through the modulation of bcl-2, p53 and PARP-1 protein levels.
    Matched MeSH terms: Breast Neoplasms/genetics
  6. Dörk T, Peterlongo P, Mannermaa A, Bolla MK, Wang Q, Dennis J, et al.
    Sci Rep, 2019 08 29;9(1):12524.
    PMID: 31467304 DOI: 10.1038/s41598-019-48804-y
    Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
    Matched MeSH terms: Breast Neoplasms/genetics*
  7. Ramdas P, Rajihuzzaman M, Veerasenan SD, Selvaduray KR, Nesaretnam K, Radhakrishnan AK
    Cancer Genomics Proteomics, 2011 Jan-Feb;8(1):19-31.
    PMID: 21289334
    Tocotrienols belong to the vitamin E family and have multiple anticancer effects, such as antiproliferative, antioxidant, pro-apoptosis and antimetastatic. This study aimed to identify the genes that are regulated in human breast cancer cells following exposure to various isomers of vitamin E as these may be potential targets for the treatment of breast cancer.
    Matched MeSH terms: Breast Neoplasms/genetics*
  8. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Reimann K, Razak G, et al.
    Lipids, 2004 May;39(5):459-67.
    PMID: 15506241
    It has recently been shown that tocotrienols are the components of vitamin E responsible for inhibiting the growth of human breast cancer cells in vitro, through an estrogen-independent mechanism. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. To investigate the molecular basis of the effect of tocotrienols, we injected MCF-7 breast cancer cells into athymic nude mice. Mice were fed orally with 1 mg/d of tocotrienol-rich fraction (TRF) for 20 wk. At end of the 20 wk, there was a significant delay in the onset, incidence, and size of the tumors in nude mice supplemented with TRF compared with the controls. At autopsy, the tumor tissue was excised and analyzed for gene expression by means of a cDNA array technique. Thirty out of 1176 genes were significantly affected. Ten genes were downregulated and 20 genes up-regulated with respect to untreated animals, and some genes in particular were involved in regulating the immune system and its function. The expression of the interferon-inducible transmembrane protein-1 gene was significantly up-regulated in tumors excised from TRF-treated animals compared with control mice. Within the group of genes related to the immune system, we also found that the CD59 glycoprotein precursor gene was up-regulated. Among the functional class of intracellular transducers/effectors/modulators, the c-myc gene was significantly down-regulated in tumors by TRF treatment. Our observations indicate that TRF supplementation significantly and specifically affects MCF-7 cell response after tumor formation in vivo and therefore the host immune function. The observed effect on gene expression is possibly exerted independently from the antioxidant activity typical of this family of molecules.
    Matched MeSH terms: Breast Neoplasms/genetics*
  9. Abdul Hafid SR, Chakravarthi S, Nesaretnam K, Radhakrishnan AK
    PLoS One, 2013;8(9):e74753.
    PMID: 24069344 DOI: 10.1371/journal.pone.0074753
    Tocotrienol-rich fraction (TRF) from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC)-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL) from 4T1 cells (DC+TL) once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF) inhibited (p<0.05) tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC)-treated 4T1 cells produced higher (p<0.05) levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL) assay also showed enhanced tumor-specific killing (p<0.05) by CD8(+) T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.
    Matched MeSH terms: Breast Neoplasms/genetics
  10. Ong YS, Saiful Yazan L, Ng WK, Abdullah R, Mustapha NM, Sapuan S, et al.
    Nanomedicine (Lond), 2018 07;13(13):1567-1582.
    PMID: 30028248 DOI: 10.2217/nnm-2017-0322
    AIM: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice.

    MATERIAL & METHODS: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice.

    RESULTS & CONCLUSION: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.

    Matched MeSH terms: Breast Neoplasms/genetics
  11. Tan SC, Low TY, Mohamad Hanif EA, Sharzehan MAK, Kord-Varkaneh H, Islam MA
    Sci Rep, 2021 Sep 20;11(1):18619.
    PMID: 34545128 DOI: 10.1038/s41598-021-97935-8
    The ESR1 rs9340799 polymorphism has been frequently investigated with regard to its association with breast cancer (BC) susceptibility, but the findings have been inconclusive. In this work, we aimed to address the inconsistencies in study findings by performing a systematic review and meta-analysis. Eligible studies were identified from the Web of Science, PubMed, Scopus, China National Knowledge Infrastructure, VIP and Wanfang databases based on the predefined inclusion and exclusion criteria. The pooled odds ratio (OR) was then calculated under five genetic models: homozygous (GG vs. AA), heterozygous (AG vs. AA), dominant (AG + GG vs. AA), recessive (GG vs. AA + AG) and allele (G vs. A). Combined results from 23 studies involving 34,721 subjects indicated a lack of significant association between the polymorphism and BC susceptibility (homozygous model, OR = 1.045, 95% CI 0.887-1.231, P = 0.601; heterozygous model, OR = 0.941, 95% CI 0.861-1.030, P = 0.186; dominant model, OR = 0.957, 95% CI 0.875-1.045, P = 0.327; recessive model, OR = 1.053, 95% CI 0.908-1.222, P = 0.495; allele model, OR = 0.987, 95% CI 0.919-1.059, P = 0.709). Subgroup analyses by ethnicity, menopausal status and study quality also revealed no statistically significant association (P > 0.05). In conclusion, our results showed that the ESR1 rs9340799 polymorphism was not associated with BC susceptibility, suggesting its limited potential as a genetic marker for BC.
    Matched MeSH terms: Breast Neoplasms/genetics*
  12. Teh LK, Mohamed NI, Salleh MZ, Rohaizak M, Shahrun NS, Saladina JJ, et al.
    AAPS J, 2012 Mar;14(1):52-9.
    PMID: 22183189 DOI: 10.1208/s12248-011-9313-6
    CYP2D6 plays a major role in the metabolism of tamoxifen, and polymorphism of P-glycoprotein has been associated with resistance of many drug therapies. This study investigates the clinical impact of genetic variants of CYP2D6 and ABCB1 in breast cancer patients treated with tamoxifen. Blood samples from 95 breast cancer patients treated with tamoxifen were collected and genotyped for CYP2D6 and ABCB1 variants using allele-specific PCR method. Recurrence risks were calculated using Kaplan-Meier analysis and compared using the log-rank test. Patients carrying CYP2D6*10/*10 and heterozygous null allele (IM) showed higher risks of developing recurrence and metastasis (OR 13.14; 95% CI 1.57-109.94; P = 0.004) than patients with CYP2D6*1/*1 and *1/*10 genotypes. Patients with homozygous CC genotypes of ABCB1 C3435T showed a shorter time to recurrence. Patients who were CYP2D6 IM and homozygous CC genotype of C3435T have statistically significant higher risks of recurrence (P = 0.002). Similarly, median time to recurrence in these patients was only 12 months (95% CI = 0.79-23.2) compared to those without this combination which was 48 months (95% CI = 14.7-81.2). Patients with CYP2D6 IM and homozygous CC genotype of ABCB1 C3435T have shorter times to recurrence. The results confirmed the findings of previous studies and support FDA recommendation to perform pre-genotyping in patients before the choice of therapy is determined in breast cancer patients.
    Matched MeSH terms: Breast Neoplasms/genetics
  13. Tan YO, Han S, Lu YS, Yip CH, Sunpaweravong P, Jeong J, et al.
    Cancer, 2010 Dec 1;116(23):5348-57.
    PMID: 20715159 DOI: 10.1002/cncr.25476
    Overexpression of the epidermal growth factor receptor-related gene ErbB2 occurs in 18% to 25% of patients with breast cancer in Western countries and is associated with a poor prognosis. The prevalence of ErbB2-positive tumors in Asia is unclear, partly because data are limited. The objective of this review was to summarize the reported prevalence of ErbB2-positive tumors from a large sample of Asian patients and to examine ErbB2 assessment methods in Asia. From searches of MEDLINE, local language journals, and local and international conference proceedings as well as locoregional breast cancer experts' recommendations, the authors selected up to 5 studies each from India, Korea, Malaysia, the Philippines, Singapore, Taiwan, and Thailand that reported ErbB2 results based on assessment with immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH). The reported prevalence of ErbB2-positive tumors in 22 studies on 24,671 patients, of whom 14,398 patients were assessed for ErbB2 status, varied widely (range, 6%-65%) as did the assessment methods used. Most studies (n=21) used IHC to assess ErbB2 status, but definitions for positivity varied. When robust assessment methods were used, the median prevalence was 19% based on strong IHC staining (IHC3+; n=9812 patients) and 25% based on FISH (n=681 patients). Data on the prevalence of ErbB2-positive breast cancer in Asia are limited. The current survey indicated that the prevalence in Asia may be similar to that in Western countries; thus, up to 1 in 4 Asian patients with breast cancer potentially could benefit from ErbB2-targeted treatment. A standard, reliable ErbB2 assessment method available to patients across Asia is urgently required.
    Matched MeSH terms: Breast Neoplasms/genetics*
  14. Pan JW, Zabidi MMA, Ng PS, Meng MY, Hasan SN, Sandey B, et al.
    Nat Commun, 2020 Dec 22;11(1):6433.
    PMID: 33353943 DOI: 10.1038/s41467-020-20173-5
    Molecular profiling of breast cancer has enabled the development of more robust molecular prognostic signatures and therapeutic options for breast cancer patients. However, non-Caucasian populations remain understudied. Here, we present the mutational, transcriptional, and copy number profiles of 560 Malaysian breast tumours and a comparative analysis of breast cancers arising in Asian and Caucasian women. Compared to breast tumours in Caucasian women, we show an increased prevalence of HER2-enriched molecular subtypes and higher prevalence of TP53 somatic mutations in ER+ Asian breast tumours. We also observe elevated immune scores in Asian breast tumours, suggesting potential clinical response to immune checkpoint inhibitors. Whilst HER2-subtype and enriched immune score are associated with improved survival, presence of TP53 somatic mutations is associated with poorer survival in ER+ tumours. Taken together, these population differences unveil opportunities to improve the understanding of this disease and lay the foundation for precision medicine in different populations.
    Matched MeSH terms: Breast Neoplasms/genetics*
  15. Abubakar MB, Wei K, Gan SH
    Pharmacogenet Genomics, 2014 Dec;24(12):575-81.
    PMID: 25203739 DOI: 10.1097/FPC.0000000000000092
    Breast cancer is a common cause of cancer mortality among women. Several genetic factors have been implicated in its development. Current treatment guidelines for estrogen receptor-positive breast cancer recommend that anastrozole [or any of the other two aromatase inhibitors (letrozole and exemestane)] is used as an alternative to tamoxifen or following several years of tamoxifen treatment. Nevertheless, this approach is still associated with many challenges, ranging from the recurrence of breast cancer to considerable interindividual variability in the tolerability of anastrozole, which may cause adverse effects, such as musculoskeletal symptoms, and lead to the withdrawal of many patients from treatment. Variabilities in the genes encoding the drug target (aromatase) or its metabolizing enzymes (CYP3A and UGT1A) contribute toward the interindividual variability in anastrozole's pharmacokinetics and/or pharmacodynamics. This paper reviews the role of genetic polymorphisms of CYP19A1, CYP3A4, and UGT1A4 in the responses of female hormone receptor-positive postmenopausal breast cancer patients to anastrozole. Many reviews in the literature have suggested that the study of functional polymorphisms and investigation of relevant genetic markers may provide valuable information in predicting responses to anastrozole in terms of its therapeutic and adverse effects. Nevertheless, more studies are required before the knowledge of its pharmacogenomics can be applied to the individualization of treatment to ensure that patients receive the maximum benefits. Therefore, future analyses, including but not limited to genome-wide association studies, are encouraged to address some of the gray areas in the pharmacogenomics of anastrozole therapy in postmenopausal breast cancer cases; this will help in providing guidance for future pharmacogenomics protocols when anastrozole is utilized in patients' management.
    Matched MeSH terms: Breast Neoplasms/genetics
  16. Ahmad FK, Deris S, Othman NH
    J Biomed Inform, 2012 Apr;45(2):350-62.
    PMID: 22179053 DOI: 10.1016/j.jbi.2011.11.015
    Understanding the mechanisms of gene regulation during breast cancer is one of the most difficult problems among oncologists because this regulation is likely comprised of complex genetic interactions. Given this complexity, a computational study using the Bayesian network technique has been employed to construct a gene regulatory network from microarray data. Although the Bayesian network has been notified as a prominent method to infer gene regulatory processes, learning the Bayesian network structure is NP hard and computationally intricate. Therefore, we propose a novel inference method based on low-order conditional independence that extends to the case of the Bayesian network to deal with a large number of genes and an insufficient sample size. This method has been evaluated and compared with full-order conditional independence and different prognostic indices on a publicly available breast cancer data set. Our results suggest that the low-order conditional independence method will be able to handle a large number of genes in a small sample size with the least mean square error. In addition, this proposed method performs significantly better than other methods, including the full-order conditional independence and the St. Gallen consensus criteria. The proposed method achieved an area under the ROC curve of 0.79203, whereas the full-order conditional independence and the St. Gallen consensus criteria obtained 0.76438 and 0.73810, respectively. Furthermore, our empirical evaluation using the low-order conditional independence method has demonstrated a promising relationship between six gene regulators and two regulated genes and will be further investigated as potential breast cancer metastasis prognostic markers.
    Matched MeSH terms: Breast Neoplasms/genetics*
  17. Ugai T, Milne RL, Ito H, Aronson KJ, Bolla MK, Chan T, et al.
    Mol Genet Genomic Med, 2019 Jun;7(6):e707.
    PMID: 31066241 DOI: 10.1002/mgg3.707
    BACKGROUND: Epidemiological studies consistently indicate that alcohol consumption is an independent risk factor for female breast cancer (BC). Although the aldehyde dehydrogenase 2 (ALDH2) polymorphism (rs671: Glu>Lys) has a strong effect on acetaldehyde metabolism, the association of rs671 with BC risk and its interaction with alcohol intake have not been fully elucidated. We conducted a pooled analysis of 14 case-control studies, with individual data on Asian ancestry women participating in the Breast Cancer Association Consortium.

    METHODS: We included 12,595 invasive BC cases and 12,884 controls for the analysis of rs671 and BC risk, and 2,849 invasive BC cases and 3,680 controls for the analysis of the gene-environment interaction between rs671 and alcohol intake for BC risk. The pooled odds ratios (OR) with 95% confidence intervals (CI) associated with rs671 and its interaction with alcohol intake for BC risk were estimated using logistic regression models.

    RESULTS: The Lys/Lys genotype of rs671 was associated with increased BC risk (OR = 1.16, 95% CI 1.03-1.30, p = 0.014). According to tumor characteristics, the Lys/Lys genotype was associated with estrogen receptor (ER)-positive BC (OR = 1.19, 95% CI 1.05-1.36, p = 0.008), progesterone receptor (PR)-positive BC (OR = 1.19, 95% CI 1.03-1.36, p = 0.015), and human epidermal growth factor receptor 2 (HER2)-negative BC (OR = 1.25, 95% CI 1.05-1.48, p = 0.012). No evidence of a gene-environment interaction was observed between rs671 and alcohol intake (p = 0.537).

    CONCLUSION: This study suggests that the Lys/Lys genotype confers susceptibility to BC risk among women of Asian ancestry, particularly for ER-positive, PR-positive, and HER2-negative tumor types.

    Matched MeSH terms: Breast Neoplasms/genetics*
  18. Al-Joudi FS, Iskandar ZA, Rusli J
    Med J Malaysia, 2008 Jun;63(2):96-9.
    PMID: 18942291
    The p53 gene is a tumour suppressor gene that encodes a 393-amino-acid nuclear DNA-binding phosphoprotein. The significance of p53 detection is that p53 mutation is linked with chemo-resistance and transformation to more aggressive disease in a large number of tumour types and it was confirmed that mutant p53 is involved in neoplastic transformations. In addition, the expression of p53 has been closely correlated with clinicopathological findings. Since breast cancer has been reported as one of the most frequent malignancies in women in Malaysia, the expression of p53 was studied in 382 cases of invasive ductal carcinoma of the breast, obtained from three major hospitals in the North-East States of Malaysia. The study utilized an enzyme immunohistochemistry assay for the detection of p53. It was found that p53 was expressed in 29.6% of all the study cases. Furthermore, its expression was significantly correlated with the age and the clinical grading of the disease. No significant statistical correlations were depicted with lymph node status, tumour size, side of tumour, and expression of estrogen and progesterone receptors. Nevertheless, knowledge of the p53 status may be valuable in making clinical decisions regarding diagnosis, prognosis and therapy.
    Matched MeSH terms: Breast Neoplasms/genetics*
  19. Razif SM, Sulaiman S, Hanie SS, Aina EN, Rohaizak M, Fuad I, et al.
    Med J Malaysia, 2011 Aug;66(3):220-6.
    PMID: 22111444 MyJurnal
    Breast cancer is the most common cancer among Malaysian women. This study aimed to determine the reproductive for premenopausal breast cancer risk in Kuala Lumpur, Malaysia. A case-control study was conducted in 216 histopathologically confirmed cases of premenopausal breast cancer and 216 community-based controls that were matched by age within a 5-year period and ethnicity. The results of this study showed that premenopausal breast cancer risks were strongly related to parity, number of live births and family history of breast cancer. Premenopausal women with these known reproductive and family history risk factors should take extra measures to undergo appropriate screening method for early detection of breast cancer.
    Matched MeSH terms: Breast Neoplasms/genetics
  20. Siddig A, Tengku Din TADA, Mohd Nafi SN, Yahya MM, Sulong S, Wan Abdul Rahman WF
    Genes (Basel), 2021 03 05;12(3).
    PMID: 33807872 DOI: 10.3390/genes12030372
    Breast cancer commonly affects women of older age; however, in developing countries, up to 20% of breast cancer cases present in young women (younger than 40 years as defined by oncology literature). Breast cancer in young women is often defined to be aggressive in nature, usually of high histological grade at the time of diagnosis and negative for endocrine receptors with poor overall survival rate. Several researchers have attributed this aggressive nature to a hidden unique biology. However, findings in this aspect remain controversial. Thus, in this article, we aimed to review published work addressing somatic mutations, chromosome copy number variants, single nucleotide polymorphisms, differential gene expression, microRNAs and gene methylation profile of early-onset breast cancer, as well as its altered pathways resulting from those aberrations. Distinct biology behind early-onset of breast cancer was clear among estrogen receptor-positive and sporadic cases. However, further research is needed to determine and validate specific novel markers, which may help in customizing therapy for this group of patients.
    Matched MeSH terms: Breast Neoplasms/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links