Displaying publications 1 - 20 of 199 in total

Abstract:
Sort:
  1. Zare-Zardini H, Amiri A, Shanbedi M, Taheri-Kafrani A, Kazi SN, Chew BT, et al.
    J Biomed Mater Res A, 2015 Sep;103(9):2959-65.
    PMID: 25690431 DOI: 10.1002/jbm.a.35425
    One of the novel applications of the nanostructures is the modification and development of membranes for hemocompatibility of hemodialysis. The toxicity and hemocompatibility of Ag nanoparticles and arginine-treated multiwalled carbon nanotubes (MWNT-Arg) and possibility of their application in membrane technology are investigated here. MWNT-Arg is prepared by amidation reactions, followed by characterization by FTIR spectroscopy, Raman spectroscopy, and thermogravimetric analysis. The results showed a good hemocompatibility and the hemolytic rates in the presence of both MWNT-Arg and Ag nanoparticles. The hemolytic rate of Ag nanoparticles was lower than that of MWNT-Arg. In vivo study revealed that Ag nanoparticle and MWNT-Arg decreased Hematocrit and mean number of red blood cells (RBC) statistically at concentration of 100 µg mL(-1) . The mean decrease of RBC and Hematocrit for Ag nanoparticles (18% for Hematocrit and 5.8 × 1,000,000/µL) was more than MWNT-Arg (20% for Hematocrit and 6 × 1000000/µL). In addition, MWNT-Arg and Ag nanoparticles had a direct influence on the White Blood Cell (WBC) drop. Regarding both nanostructures, although the number of WBC increased in initial concentration, it decreased significantly at the concentration of 100 µg mL(-1) . It is worth mentioning that the toxicity of Ag nanoparticle on WBC was higher than that of MWNT-Arg. Because of potent antimicrobial activity and relative hemocompatibility, MWNT-Arg could be considered as a new candidate for biomedical applications in the future especially for hemodialysis membranes.
    Matched MeSH terms: Nanotubes, Carbon/chemistry
  2. Zanirun Z, Bahrin EK, Lai-Yee P, Hassan MA, Abd-Aziz S
    Appl Biochem Biotechnol, 2014 Jan;172(1):423-35.
    PMID: 24085387 DOI: 10.1007/s12010-013-0530-6
    The effect of cultivation condition of two locally isolated ascomycetes strains namely Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 were compared in submerged and solid state fermentation. Physical evaluation on water absorption index, solubility index and chemical properties of lignin, hemicellulose and cellulose content as well as the cellulose structure on crystallinity and amorphous region of treated oil palm empty fruit bunch (OPEFB) (resulted in partial removal of lignin), sago pith residues (SPR) and oil palm decanter cake towards cellulases production were determined. Submerged fermentation shows significant cellulases production for both strains in all types of substrates. Crystallinity of cellulose and its chemical composition mainly holocellulose components was found to significantly affect the total cellulase synthesis in submerged fermentation as the higher crystallinity index, and holocellulose composition will increase cellulase production. Treated OPEFB apparently induced the total cellulases from T. asperellum UPM1 and A. fumigatus UPM2 with 0.66 U/mg FPase, 53.79 U/mg CMCase, 0.92 U/mg β-glucosidase and 0.67 U/mg FPase, 47.56 U/mg and 0.14 U/mg β-glucosidase, respectively. Physical properties of water absorption and solubility for OPEFB and SPR also had shown significant correlation on the cellulases production.
    Matched MeSH terms: Carbon/chemistry*
  3. Zakaria MR, Ariffin H, Abd-Aziz S, Hassan MA, Shirai Y
    Biomed Res Int, 2013;2013:237806.
    PMID: 24106698 DOI: 10.1155/2013/237806
    This study presents the effect of carbon to nitrogen ratio (C/N) (mol/mol) on the cell growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation by Comamonas sp. EB172 in 2 L fermenters using volatile fatty acids (VFA) as the carbon source. This VFA was supplemented with ammonium sulphate and yeast extract in the feeding solution to achieve C/N (mol/mol) 5, 15, 25, and 34.4, respectively. By extrapolating the C/N and the source of nitrogen, the properties of the polymers can be regulated. The number average molecular weight (M n ) of P(3HB-co-3HV) copolymer reached the highest at 838 × 10(3) Da with polydispersity index (PDI) value of 1.8, when the culture broth was supplemented with yeast extract (C/N 34.4). Tensile strength and Young's modulus of the copolymer containing 6-8 mol% 3HV were in the ranges of 13-14.4 MPa and 0.26-0.34 GPa, respectively, comparable to those of polyethylene (PE). Thus, Comamonas sp. EB172 has shown promising bacterial isolates producing polyhydroxyalkanoates from renewable carbon materials.
    Matched MeSH terms: Carbon/chemistry*
  4. Zainol MM, Amin NA, Asmadi M
    Bioresour Technol, 2015 Aug;190:44-50.
    PMID: 25919936 DOI: 10.1016/j.biortech.2015.04.067
    The aim of this work was to study the potential of biofuel and biomass processing industry side-products as acid catalyst. The synthesis of carbon cryogel from lignin-furfural mixture, prepared via sol-gel polycondensation at 90°C for 0.5h, has been investigated for biodiesel production. The effect of lignin to furfural (L/F) ratios, lignin to water (L/W) ratios and acid concentration on carbon cryogel synthesis was studied. The carbon cryogels were characterized and tested for oleic acid conversion. The thermally stable amorphous spherical carbon cryogel has a large total surface area with high acidity. Experimental results revealed the optimum FAME yield and oleic acid conversion of 91.3wt.% and 98.1wt.%, respectively were attained at 65°C for 5h with 5wt.% catalyst loading and 20:1 methanol to oleic acid molar ratio. Therefore, carbon cryogel is highly potential for heterogeneous esterification of free fatty acid to biodiesel.
    Matched MeSH terms: Carbon/chemistry*
  5. Zainol Abidin MN, Goh PS, Said N, Ismail AF, Othman MHD, Hasbullah H, et al.
    ACS Appl Mater Interfaces, 2020 Jul 22;12(29):33276-33287.
    PMID: 32589391 DOI: 10.1021/acsami.0c08947
    The development of wearable artificial kidney demands an efficient dialysate recovery, which relies upon the adsorption process. This study proposes a solution to solve the problem of competitive adsorption between the uremic toxins by employing two adsorptive components in a membrane separation process. Dual-layer hollow fiber (DLHF) membranes, which are composed of a polysulfone (PSf)/activated carbon (AC) inner layer and a PSf/poly(methyl methacrylate) (PMMA) outer layer, were prepared for co-adsorptive removal of creatinine and urea from aqueous solution. The DLHF membranes were characterized in terms of morphological, physicochemical, water transport, and creatinine adsorption properties. The membrane was then subjected to an ultrafiltration adsorption study for performance evaluation. The incorporation of AC in membrane, as confirmed by microscopic and surface analyses, has improved the pure water flux up to 25.2 L/(m2 h). A membrane with optimum AC loading (9 wt %) demonstrated the highest maximum creatinine adsorption capacity (86.2 mg/g) based on the Langmuir adsorption isotherm model. In the ultrafiltration adsorption experiment, the membrane removed creatinine and urea with a combined average percent removal of 29.3%. Moreover, the membrane exhibited creatinine and urea uptake recoveries of 98.8 and 81.2%, respectively. The combined action of PMMA and AC in the PSf DLHF membrane has made the adsorption of multiple uremic toxins possible during dialysate recovery.
    Matched MeSH terms: Carbon/chemistry*
  6. Yusoff N, Rameshkumar P, Mohamed Noor A, Huang NM
    Mikrochim Acta, 2018 04 03;185(4):246.
    PMID: 29616348 DOI: 10.1007/s00604-018-2782-x
    An amperometric sensor for L-Cys is described which consists of a glassy carbon electrode (GCE) that was modified with reduced graphene oxide placed in a Nafion film and decorated with palladium nanoparticles (PdNPs). The film was synthesized by a hydrothermal method. The PdNPs have an average diameter of about 10 nm and a spherical shape. The modified GCE gives a linear electro-oxidative response to L-Cys (typically at +0.6 V vs. SCE) within the 0.5 to 10 μM concentration range. Other figures of merit include a response time of less than 2 s, a 0.15 μM lower detection limit (at signal to noise ratio of 3), and an analytical sensitivity of 1.30 μA·μM-1·cm-2. The sensor displays selectivity over ascorbic acid, uric acid, dopamine, hydrogen peroxide, urea, and glucose. The modified GCE was applied to the determination of L-Cys in human urine samples and gave excellent recoveries. Graphical abstract Spherical palladium nanoparticles (PdNPs) on reduced graphene oxide-Nafion (rGO-Nf) films were synthesized using a hydrothermal method. This nanohybrid was used for modifying a glassy carbon electrode to develop a sensor electrode for detecting L-cysteine that has fast response (less than 2 s), low detection limit (0.15 μM), and good sensitivity (0.092 μA μM-1 cm-2).
    Matched MeSH terms: Carbon/chemistry
  7. Yunus U, Zulfiqar MA, Ajmal M, Bhatti MH, Chaudhry GE, Muhammad TST, et al.
    Biomed Mater, 2020 09 26;15(6):065004.
    PMID: 32442994 DOI: 10.1088/1748-605X/ab95e1
    Gemcitabine (GEM) is used to treat various cancers such as breast, pancreatic, non-small lung, ovarian, bladder, and cervical cancers. GEM, however, has the problem of non-selectivity. Water-soluble, fluorescent, and mono-dispersed carbon dots (CDs) were fabricated by ultrasonication of sucrose. The CDs were further conjugated with GEM through amide linkage. The physical and morphological properties of these carbon dot-gemcitabine (CD-GEM) conjugates were determined using different analytical techniques. In vitro cytotoxicity and apoptosis studies of CD-GEM conjugates were evaluated by various bioactivity assays on human cell lines, MCF-7 (human breast adenocarcinoma), and HeLa (cervical cancer) cell lines. The results of kinetic studies have shown a maximum drug loading efficacy of 17.0 mg of GEM per 50.0 mg of CDs. The CDs were found biocompatible, and the CD-GEM conjugates exhibited excellent bioactivity and exerted potent cytotoxicity against tumor cells with an IC50 value of 19.50 μg ml-1 in HeLa cells, which is lower than the IC50 value of pure GEM (∼20.10 μg ml-1). In vitro studies on CD-GEM conjugates demonstrated the potential to replace the conventional administration of GEM. CD-GEM conjugates are more stable, have a higher aqueous solubility, and are more cytotoxic as compared to GEM alone. The CD-GEM conjugates show reduced side effects in the normal cells along with excellent cellular uptake. Hence, CD-GEM conjugates are more selective toward cancerous cell lines as compared to non-cancerous cells. Also, the CD-GEM conjugates successfully induced early and late apoptosis in cancer cell lines and might be effective and safe to use for in vivo applications.
    Matched MeSH terms: Carbon/chemistry
  8. Yeo RYZ, Chin BH, Hil Me MF, Chia JF, Pham HT, Othman AR, et al.
    ACS Biomater Sci Eng, 2023 Nov 13;9(11):6034-6044.
    PMID: 37846081 DOI: 10.1021/acsbiomaterials.3c00453
    Electrogenic microorganisms serve as important biocatalysts for microbial electrochemical sensors (MESes). The electrical signal produced is based on the rate of electron transfer between the microbes and electrodes, which represents the biotoxicity of water. However, existing MESes require complex and sophisticated fabrication methods. Here, several low-cost and rapid surface modification strategies (carbon powder-coated, flame-oxidized, and acid-bleached) have been demonstrated and studied for biosensing purposes. Surface-modified MESe bioanodes were successfully applied to detect multiple model pollutants including sodium acetate, ethanol, thinner, and palm oil mill effluent under three different testing sequences, namely, pollutant incremental, pollutant dumping, and water dilution tests. The carbon powder-coated bioanode showed the most responsive signal profile for all the three tests, which is in line with the average roughness values (Ra) when tested with atomic force microscopy. The carbon powder-coated electrode possessed a Ra value of 0.844, while flame-oxidized, acid-bleached, and control samples recorded 0.323, 0.336, and 0.264, respectively. The higher roughness was caused by the carbon coating and provided adhesive sites for microbial attachment and growth. The accuracy of MESe was also verified by correlating with chemical oxygen demand (COD) results. Similar to the sensitivity test, the carbon powder-coated bioanode obtained the highest R2 value of 0.9754 when correlated with COD results, indicating a high potential of replacing conventional water quality analysis methods. The reported work is of great significance to showcase facile surface modification techniques for MESes, which are cost-effective and sustainable while retaining the biocompatibility toward the microbial community with carbon-based coatings.
    Matched MeSH terms: Carbon/chemistry
  9. Yean CY, Kamarudin B, Ozkan DA, Yin LS, Lalitha P, Ismail A, et al.
    Anal Chem, 2008 Apr 15;80(8):2774-9.
    PMID: 18311943 DOI: 10.1021/ac702333x
    A general purpose enzyme-based amperometric electrochemical genosensor assay was developed wherein polymerase chain reaction (PCR) amplicons labeled with both biotin and fluorescein were detected with peroxidase-conjugated antifluorescein antibody on a screen-printed carbon electrode (SPCE). As a proof of principle, the response selectivity of the genosensor was evaluated using PCR amplicons derived from lolB gene of Vibrio cholerae. Factors affecting immobilization, hybridization, and nonspecific binding were optimized to maximize sensitivity and reduce assay time. On the basis of the background amperometry signals obtained from nonspecific organisms and positive signals obtained from known V. cholerae, a threshold point of 4.20 microA signal was determined as positive. Under the optimum conditions, the limit of detection (LOD) of the assay was 10 CFU/mL of V. cholerae. The overall precision of this assay was good, with the coefficient of variation (CV) being 3.7% using SPCE and intermittent pulse amperometry (IPA) as an electrochemical technique. The assay is sensitive, safe, and cost-effective when compared to conventional agarose gel electrophoresis, real-time PCR, and other enzyme-linked assays for the detection of PCR amplicons. Furthermore, the use of a hand-held portable reader makes it suitable for use in the field.
    Matched MeSH terms: Carbon/chemistry*
  10. Yap CY, Mohamed N
    Chemosphere, 2008 Oct;73(5):685-91.
    PMID: 18718637 DOI: 10.1016/j.chemosphere.2008.07.014
    An electrogenerative flow-through reactor with an activated reticulated vitreous carbon cathode was developed. The influence of palladium-tin activation of the cathode towards gold deposition was studied by cyclic voltammetry. The reactor proved to be efficient in recovering more than 99% of gold within 4 h of operation. The performance of the reactor was evaluated with initial gold concentrations of 10, 100 and 500 mg L-1 and various electrolyte flow rates. Gold recovery was found to be strongly dependent on electrolyte flow rate and initial gold concentration in the cyanide solution under the experimental conditions used.
    Matched MeSH terms: Carbon/chemistry*
  11. Yaghoubi A, Mélinon P
    Sci Rep, 2013;3:1083.
    PMID: 23330064 DOI: 10.1038/srep01083
    In recent years, plasma-assisted synthesis has been extensively used in large scale production of functional nano- and micro-scale materials for numerous applications in optoelectronics, photonics, plasmonics, magnetism and drug delivery, however systematic formation of these minuscule structures has remained a challenge. Here we demonstrate a new method to closely manipulate mesostructures in terms of size, composition and morphology by controlling permeability at the boundaries of an impermeable plasma surrounded by a blanket of neutrals. In situ and rapid growth of thin films in the core region due to ion screening is among other benefits of our method. Similarly we can take advantage of exceptional properties of plasma to control the morphology of the as deposited nanostructures. Probing the plasma at boundaries by means of observing the nanostructures, further provides interesting insights into the behaviour of gas-insulated plasmas with possible implications on efficacy of viscous heating and non-magnetic confinement.
    Matched MeSH terms: Carbon/chemistry*
  12. Yaacob NS, Ahmad MF, Kawasaki N, Maniyam MN, Abdullah H, Hashim EF, et al.
    Molecules, 2021 Jan 27;26(3).
    PMID: 33513787 DOI: 10.3390/molecules26030653
    Soil extracts are useful nutrients to enhance the growth of microalgae. Therefore, the present study attempts for the use of virgin soils from Peninsular Malaysia as growth enhancer. Soils collected from Raja Musa Forest Reserve (RMFR) and Ayer Hitam Forest Reserve (AHFR) were treated using different extraction methods. The total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and dissolved organic carbon (DOC) concentrations in the autoclave methods were relatively higher than natural extraction with up to 132.0 mg N/L, 10.7 mg P/L, and 2629 mg C/L, respectively for RMFR. The results of TDN, TDP, and DOC suggested that the best extraction methods are autoclaved at 121 °C twice with increasing 87%, 84%, and 95%, respectively. Chlorella vulgaris TRG 4C dominated the growth at 121 °C twice extraction method in the RMRF and AHRF samples, with increasing 54.3% and 14%, respectively. The specific growth rate (µ) of both microalgae were relatively higher, 0.23 d-1 in the Ayer Hitam Soil. This extract served well as a microalgal growth promoter, reducing the cost and the needs for synthetic medium. Mass production of microalgae as aquatic feed will be attempted eventually. The high recovery rate of nutrients has a huge potential to serve as a growth promoter for microalgae.
    Matched MeSH terms: Carbon/chemistry
  13. Wong SK, Wong SP, Sim KS, Lim SH, Low YY, Kam TS
    J Nat Prod, 2019 07 26;82(7):1902-1907.
    PMID: 31241923 DOI: 10.1021/acs.jnatprod.9b00255
    Three new alkaloids were isolated from the bark extract of the Malayan Kopsia arborea, viz., arbophyllidine (1), an unusual pentacyclic, monoterpenoid indole characterized by an absence of oxygen atoms and incorporating a new carbon-nitrogen skeleton, and arbophyllinines A (2) and B (3), two pentacyclic corynanthean alkaloids incorporating a hydroxyethyl-substituted tetrahydrofuranone ring. The structures of the alkaloids were deduced based on analysis of the MS and NMR data and confirmed by X-ray diffraction analyses. The absolute configuration of arbophyllidine (1) was established based on experimental and calculated ECD data, while that of arbophyllinine A was based on X-ray diffraction analysis (Cu Kα). A reasonable biosynthetic route to arbophyllidine (1) from a pericine precursor is presented. Arbophyllidine (1) showed pronounced in vitro growth inhibitory activity against the HT-29 human cancer cell line with IC50 6.2 μM.
    Matched MeSH terms: Carbon/chemistry
  14. Wee SS, Ng YH, Ng SM
    Talanta, 2013 Nov 15;116:71-6.
    PMID: 24148375 DOI: 10.1016/j.talanta.2013.04.081
    Carbon dots have great potential to be utilised as an optical sensing probe due to its unique photoluminescence and less toxic properties. This work reports a simple and novel synthesis method of carbon dots via direct acid hydrolysis of bovine serum albumin protein in a one-pot approach. Optimisation of the important synthetic parameters has been performed which consists of temperature effect, acid to protein ratio and kinetics of reaction. Higher temperature has promoted better yield with shorter reaction time. The carbon dots obtained shows a strong emission at the wavelength of 400 nm with an optimum excitation of 305 nm. The potential of the carbon dots as optical sensing probe has been investigated on with different cations that are of environmental and health concern. The fluorescence of the carbon dots was significantly quenched particularly by lead (II) ions in a selective manner. Further analytical study has been performed to leverage the performance of the carbon dots for lead (II) ions sensing using the standard Stern-Volmer relationship. The sensing probe has a dynamic linear range up to 6.0 mM with a Stern-Volmer constant of 605.99 M(-1) and a limit of detection (LOD) of 5.05 μM. The probe performance was highly repeatable with a standard deviation below 3.0%. The probe suggested in this study demonstrates the potential of a more economical and greener approach that uses protein based carbon dots for sensing of heavy metal ions.
    Matched MeSH terms: Carbon/chemistry
  15. Watanabe A, Moroi K, Sato H, Tsutsuki K, Maie N, Melling L, et al.
    Chemosphere, 2012 Aug;88(10):1265-8.
    PMID: 22564456 DOI: 10.1016/j.chemosphere.2012.04.005
    Wetlands are an important source of DOM. However, the quantity and quality of wetlands' DOM from various climatic regions have not been studied comprehensively. The relationship between the concentrations of DOM (DOC), humic substances (HS) and non-humic substances (NHS) in wetland associated sloughs, streams and rivers, in cool temperate (Hokkaido, Japan), sub-tropical (Florida, USA), and tropical (Sarawak, Malaysia) regions was investigated. The DOC ranged from 1.0 to 15.6 mg CL(-1) in Hokkaido, 6.0-24.4 mg CL(-1) in Florida, and 18.9-75.3 mg CL(-1) in Sarawak, respectively. The relationship between DOC and HS concentrations for the whole sample set was regressed to a primary function with y-intercept of zero (P<0.005) and a slope value of 0.841. A similar correlation was observed between DOC and NHS concentrations, with a smaller slope value of 0.159. However, the correlation coefficient of the latter was much larger when the data was regressed to a logarithmic curve. These observations suggest the presence of a general tendency that the increased DOC in the river waters was mainly due to the increased supply of HS from wetland soils, whereas the rate of the increase in the NHS supply has an upper limit which may be controlled by primary productivity.
    Matched MeSH terms: Carbon/chemistry*
  16. Wang F, Gopinath SC, Lakshmipriya T
    Int J Nanomedicine, 2019;14:8469-8481.
    PMID: 31695375 DOI: 10.2147/IJN.S219976
    BACKGROUND: A pandemic influenza viral strain, influenza A/California/07/2009 (pdmH1N1), has been considered to be a potential issue that needs to be controlled to avoid the seasonal emergence of mutated strains.

    MATERIALS AND METHODS: In this study, aptamer-antibody complementation was implemented on a multiwalled carbon nanotube-gold conjugated sensing surface with a dielectrode to detect pandemic pdmH1N1. Preliminary biomolecular and dielectrode surface analyses were performed by molecular and microscopic methods. A stable anti-pdmH1N1 aptamer sequence interacted with hemagglutinin (HA) and was compared with the antibody interaction. Both aptamer and antibody attachments on the surface as the basic molecule attained the saturation at nanomolar levels.

    RESULTS: Aptamers were found to have higher affinity and electric response than antibodies against HA of pdmH1N1. Linear regression with aptamer-HA interaction displays sensitivity in the range of 10 fM, whereas antibody-HA interaction shows a 100-fold lower level (1 pM). When sandwich-based detection of aptamer-HA-antibody and antibody-HA-aptamer was performed, a higher response of current was observed in both cases. Moreover, the detection strategy with aptamer clearly discriminated the closely related HA of influenza B/Tokyo/53/99 and influenza A/Panama/2007/1999 (H3N2).

    CONCLUSION: The high performance of the abovementioned detection methods was supported by the apparent specificity and reproducibility by the demonstrated sensing system.

    Matched MeSH terms: Nanotubes, Carbon/chemistry*
  17. Wan Ibrahim WA, Abd Ali LI, Sulaiman A, Sanagi MM, Aboul-Enein HY
    Crit Rev Anal Chem, 2014;44(3):233-54.
    PMID: 25391563 DOI: 10.1080/10408347.2013.855607
    The progress of novel sorbents and their function in preconcentration techniques for determination of trace elements is a topic of great importance. This review discusses numerous analytical approaches including the preparation and practice of unique modification of solid-phase materials. The performance and main features of ion-imprinting polymers, carbon nanotubes, biosorbents, and nanoparticles are described, covering the period 2007-2012. The perspective and future developments in the use of these materials are illustrated.
    Matched MeSH terms: Nanotubes, Carbon/chemistry
  18. Van Thuoc D, My DN, Loan TT, Sudesh K
    Int J Biol Macromol, 2019 Dec 01;141:885-892.
    PMID: 31513855 DOI: 10.1016/j.ijbiomac.2019.09.063
    A moderately halophilic bacterium isolated from fermenting shrimp paste, Salinivibrio sp. M318 was found capable of using fish sauce and mixtures of waste fish oil and glycerol as nitrogen and carbon sources, respectively, for poly(3-hydroxybutyrate) (PHB) production. A cell dry weight (CDW) of up to 10 g/L and PHB content of 51.7 wt% were obtained after 48 h of cultivation in flask experiment. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] was synthesized when 1,4-butanediol, γ-butyrolactone, or sodium 4-hydroxybutyrate was added as precursors to the culture medium. The biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was achieved by supplying precursors such as sodium valerate, sodium propionate, and sodium heptanoate. Salinivibrio sp. M318 was able to accumulate the above mentioned PHAs during the growth phase. High CDW of 69.1 g/L and PHB content of 51.5 wt% were obtained by strain Salinivibrio sp. M318 after 78 h of cultivation in fed-batch culture. The results demonstrate Salinivibrio sp. M318 to be a promising wild-type bacterium for the production of PHA from aquaculture residues.
    Matched MeSH terms: Carbon/chemistry*
  19. Uppachai P, Srijaranai S, Poosittisak S, Md Isa I, Mukdasai S
    Molecules, 2020 May 29;25(11).
    PMID: 32485804 DOI: 10.3390/molecules25112528
    A new supramolecular electrochemical sensor for highly sensitive detection of dopamine (DA) was fabricated based on supramolecular assemblies of mixed two surfactants, tetra-butylammonium bromide (TBABr) and sodium dodecyl sulphate (SDS), on the electrodeposition of gold nanoparticles on graphene oxide modified on glassy carbon electrode (AuNPs/GO/GCE). Self-assembled mixed surfactants (TBABr/SDS) were added into the solution to increase the sensitivity for the detection of DA. All electrodes were characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The supramolecular electrochemical sensor (TBABr/SDS⋅⋅⋅AuNPs/GO/GCE) showed excellent electrocatalytic activity toward the oxidation of DA. Under the optimum conditions, the concentration of DA was obtained in the range from 0.02 µM to 1.00 µM, with a detection limit of 0.01 µM (3s/b). The results displayed that TBABr/SDS⋅⋅⋅AuNPs/GO/GCE exhibited excellent performance, good sensitivity, and reproducibility. In addition, the proposed supramolecular electrochemical sensor was successfully applied to determine DA in human serum samples with satisfactory recoveries (97.26% to 104.21%).
    Matched MeSH terms: Carbon/chemistry
  20. Ujang Z, Au YL, Nagaoka H
    Water Sci Technol, 2002;46(9):109-15.
    PMID: 12448459
    This paper describes an investigation on the effect of microbial removal using IMF for high quality drinking water production. The comparison of IMF and IMF-PAC configuration was carried out in the study to highlight the importance of PAC in the system. The specific objective of this study was to study the effect of PAC adsorption in the IMF-PAC system particularly in removing microbial substances from contaminated raw water. A bench scale IMF-PAC configuration using a flat sheet microfiltration membrane was set up for experimental purposes. Experimentally, the result has shown high removal of microbial substances with the IMF-PAC system compared to IMF. The result of E. coli removal achieved was below the detectable level due to the microbial size, which is bigger than membrane pore size. The addition of PAC has shown a direct effect on total microbial removal. The adsorption of microbial onto PAC surfaces reduced the amount of smaller microbial present in permeate samples. As a conclusion, the configuration of IMF is a promising separation process in removing microbial substances, especially when the system is combined with PAC.
    Matched MeSH terms: Carbon/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links