Displaying publications 1 - 20 of 77 in total

Abstract:
Sort:
  1. Hani AF, Kumar D, Malik AS, Walter N, Razak R, Kiflie A
    Acad Radiol, 2015 Jan;22(1):93-104.
    PMID: 25481518 DOI: 10.1016/j.acra.2014.08.008
    Quantitative assessment of knee articular cartilage (AC) morphology using magnetic resonance (MR) imaging requires an accurate segmentation and 3D reconstruction. However, automatic AC segmentation and 3D reconstruction from hydrogen-based MR images alone is challenging because of inhomogeneous intensities, shape irregularity, and low contrast existing in the cartilage region. Thus, the objective of this research was to provide an insight into morphologic assessment of AC using multilevel data processing of multinuclear ((23)Na and (1)H) MR knee images.
    Matched MeSH terms: Cartilage, Articular/anatomy & histology*; Cartilage, Articular/metabolism*
  2. Sha'ban M, Ahmad Radzi MA
    Adv Exp Med Biol, 2020;1249:97-114.
    PMID: 32602093 DOI: 10.1007/978-981-15-3258-0_7
    Joint cartilage has been a significant focus on the field of tissue engineering and regenerative medicine (TERM) since its inception in the 1980s. Represented by only one cell type, cartilage has been a simple tissue that is thought to be straightforward to deal with. After three decades, engineering cartilage has proven to be anything but easy. With the demographic shift in the distribution of world population towards ageing, it is expected that there is a growing need for more effective options for joint restoration and repair. Despite the increasing understanding of the factors governing cartilage development, there is still a lot to do to bridge the gap from bench to bedside. Dedicated methods to regenerate reliable articular cartilage that would be equivalent to the original tissue are still lacking. The use of cells, scaffolds and signalling factors has always been central to the TERM. However, without denying the importance of cells and signalling factors, the question posed in this chapter is whether the answer would come from the methods to use or not to use scaffold for cartilage TERM. This paper presents some efforts in TERM area and proposes a solution that will transpire from the ongoing attempts to understand certain aspects of cartilage development, degeneration and regeneration. While an ideal formulation for cartilage regeneration has yet to be resolved, it is felt that scaffold is still needed for cartilage TERM for years to come.
    Matched MeSH terms: Cartilage, Articular/physiology*
  3. Saw KY, Anz A, Merican S, Tay YG, Ragavanaidu K, Jee CS, et al.
    Arthroscopy, 2011 Apr;27(4):493-506.
    PMID: 21334844 DOI: 10.1016/j.arthro.2010.11.054
    PURPOSE: The purpose of this study was to evaluate the quality of articular cartilage regeneration after arthroscopic subchondral drilling followed by postoperative intraarticular injections of autologous peripheral blood progenitor cells (PBPCs) in combination with hyaluronic acid (HA).
    METHODS: Five patients underwent second-look arthroscopy with chondral core biopsy. These 5 patients are part of a larger pilot study in which 180 patients with International Cartilage Repair Society grade III and IV lesions of the knee joint underwent arthroscopic subchondral drilling followed by postoperative intra-articular injections. Continuous passive motion was used on the operated knee 2 hours per day for 4 weeks. Partial weight bearing was observed for the first 6 to 8 weeks. Autologous PBPCs were harvested 1 week after surgery. One week after surgery, 8 mL of the harvested PBPCs in combination with 2 mL of HA was injected intra-articularly into the operated knee. The remaining PBPCs were divided into vials and cryopreserved. A total of 5 weekly intra-articular injections were given.
    RESULTS: Second-look arthroscopy confirmed articular cartilage regeneration, and histologic sections showed features of hyaline cartilage. Apart from the minimal discomfort of PBPC harvesting and localized pain associated with the intra-articular injections, there were no other notable adverse reactions.
    CONCLUSIONS: Articular hyaline cartilage regeneration is possible with arthroscopic subchondral drilling followed by postoperative intraarticular injections of autologous PBPCs in combination with HA.
    LEVEL OF EVIDENCE: Level IV, therapeutic case series.
    Matched MeSH terms: Cartilage, Articular/injuries; Cartilage, Articular/pathology; Cartilage, Articular/physiology*
  4. Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, et al.
    Arthroscopy, 2009 Dec;25(12):1391-400.
    PMID: 19962065 DOI: 10.1016/j.arthro.2009.07.011
    PURPOSE: The purpose of the study was to determine whether postoperative intra-articular injections of autologous marrow aspirate (MA) and hyaluronic acid (HA) after subchondral drilling resulted in better cartilage repair as assessed histologically by Gill scoring.
    METHODS: In a goat model we created a 4-mm full-thickness articular cartilage defect in the stifle joint (equivalent to 1.6 cm in the human knee) and conducted subchondral drilling. The animals were divided into 3 groups: group A (control), no injections; group B (HA), weekly injection of 1 mL of sodium hyaluronate for 3 weeks; and group C (HA + MA), similar to group B but with 2 mL of autologous MA in addition to HA. MA was obtained by bone marrow aspiration, centrifuged, and divided into aliquots for cryopreservation. Fifteen animals were equally divided between the groups and sacrificed 24 weeks after surgery, when the joint was harvested, examined macroscopically and histologically.
    RESULTS: Of the 15 animals, 2 from group A had died of non-surgery-related complications and 1 from group C was excluded because of a joint infection. In group A the repair constituted mainly scar tissue, whereas in group B there was less scar tissue, with small amounts of proteoglycan and type II collagen at the osteochondral junction. In contrast, repair cartilage from group C animals showed almost complete coverage of the defect with evidence of hyaline cartilage regeneration. Histology assessed by Gill scoring was significantly better in group C with 1-way analysis of variance yielding an F statistic of 10.611 with a P value of .004, which was highly significant.
    CONCLUSIONS: Postoperative intra-articular injections of autologous MA in combination with HA after subchondral drilling resulted in better cartilage repair as assessed histologically by Gill scoring in a goat model.
    CLINICAL RELEVANCE: After arthroscopic subchondral drilling, this novel technique may result in better articular cartilage regeneration.
    Matched MeSH terms: Cartilage, Articular/cytology; Cartilage, Articular/drug effects; Cartilage, Articular/physiology*
  5. Saw KY, Anz A, Jee CS, Ng RC, Mohtarrudin N, Ragavanaidu K
    Arthroscopy, 2015 Oct;31(10):1909-20.
    PMID: 26008951 DOI: 10.1016/j.arthro.2015.03.038
    PURPOSE: To histologically evaluate the quality of articular cartilage regeneration from the medial compartment after arthroscopic subchondral drilling followed by postoperative intra-articular injections of autologous peripheral blood stem cells (PBSCs) and hyaluronic acid with concomitant medial open-wedge high tibial osteotomy (HTO) in patients with varus deformity of the knee joint.
    METHODS: Eight patients with varus deformity of the knee joint underwent arthroscopic subchondral drilling of International Cartilage Repair Society (ICRS) grade 4 bone-on-bone lesions of the medial compartment with concomitant HTO. These patients were part of a larger pilot study in which 18 patients underwent the same procedure. PBSCs were harvested and cryopreserved preoperatively. At 1 week after surgery, 8 mL of PBSCs was mixed with 2 mL of hyaluronic acid and injected intra-articularly into the knee joint; this was repeated once a week for 5 consecutive weeks. Three additional intra-articular injections were administered weekly at intervals of 6, 12, and 18 months postoperatively. Informed consent was obtained at the time of hardware removal for opportunistic second-look arthroscopy and chondral biopsy. Biopsy specimens were stained with H&E, safranin O, and immunohistochemical staining for type I and II collagen. Specimens were graded using the 14 components of the ICRS Visual Assessment Scale II, and a total score was obtained.
    RESULTS: Second-look arthroscopy showed satisfactory healing of the regenerated cartilage. Histologic analysis showed significant amounts of proteoglycan and type II collagen. The total ICRS Visual Assessment Scale II histologic scores comparing the regenerated articular cartilage (mean, 1,274) with normal articular cartilage (mean, 1,340) indicated that the repair cartilage score approached 95% of the normal articular cartilage score. There were no infections, delayed unions, or nonunions.
    CONCLUSIONS: Chondrogenesis with stem cells in combination with medial open-wedge HTO for varus deformity correction of the knee joint regenerates cartilage that closely resembles the native articular cartilage.
    LEVEL OF EVIDENCE: Level IV, therapeutic case series.
    Matched MeSH terms: Cartilage, Articular/injuries; Cartilage, Articular/physiology*
  6. Chua KH, Lee TH, Nagandran K, Md Yahaya NH, Lee CT, Tjih ET, et al.
    PMID: 23339380 DOI: 10.1186/1472-6882-13-19
    Osteoarthritis (OA) is a degenerative joint disease that results in the destruction of cartilage. Edible Bird's Nest (EBN) extract contains important components, which can reduce the progression of osteoarthritis and helps in the regeneration of the cartilage. The present study aimed to investigate the effect of EBN extract on the catabolic and anabolic activities of the human articular chondrocytes (HACs) isolated from the knee joint of patients with OA.
    Matched MeSH terms: Cartilage, Articular/cytology; Cartilage, Articular/drug effects*; Cartilage, Articular/metabolism
  7. Gan HS, Tan TS, Wong LX, Tham WK, Sayuti KA, Abdul Karim AH, et al.
    Biomed Mater Eng, 2014;24(6):3145-57.
    PMID: 25227024 DOI: 10.3233/BME-141137
    In medical image segmentation, manual segmentation is considered both labor- and time-intensive while automated segmentation often fails to segment anatomically intricate structure accordingly. Interactive segmentation can tackle shortcomings reported by previous segmentation approaches through user intervention. To better reflect user intention, development of suitable editing functions is critical. In this paper, we propose an interactive knee cartilage extraction software that covers three important features: intuitiveness, speed, and convenience. The segmentation is performed using multi-label random walks algorithm. Our segmentation software is simple to use, intuitive to normal and osteoarthritic image segmentation and efficient using only two third of manual segmentation's time. Future works will extend this software to three dimensional segmentation and quantitative analysis.
    Matched MeSH terms: Cartilage, Articular/pathology*
  8. Hong-Seng G, Sayuti KA, Karim AH
    Biomed Mater Eng, 2017;28(2):75-85.
    PMID: 28372262 DOI: 10.3233/BME-171658
    BACKGROUND: Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images.

    OBJECTIVES: The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method.

    METHODS: Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories.

    RESULTS: A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15).

    CONCLUSION: The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.

    Matched MeSH terms: Cartilage, Articular/pathology
  9. Muhammad SA, Nordin N, Mehat MZ, Fakurazi S
    Cell Tissue Res, 2019 Feb;375(2):329-344.
    PMID: 30084022 DOI: 10.1007/s00441-018-2884-0
    Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
    Matched MeSH terms: Cartilage, Articular/cytology*; Cartilage, Articular/metabolism*
  10. Ab-Rahim S, Selvaratnam L, Kamarul T
    Cell Biol Int, 2008 Jul;32(7):841-7.
    PMID: 18479947 DOI: 10.1016/j.cellbi.2008.03.016
    Articular cartilage extracellular matrix (ECM) plays a crucial role in regulating chondrocyte functions via cell-matrix interaction, cytoskeletal organization and integrin-mediated signaling. Factors such as interleukins, basic fibroblast growth factor (bFGF), bone morphogenic proteins (BMPs) and insulin-like growth factor (IGF) have been shown to modulate the synthesis of extracellular matrix in vitro. However, the effects of TGF-beta1 and beta-estradiol in ECM regulation require further investigation, although there have been suggestions that these factors do play a positive role. To establish the role of these factors on chondrocytes derived from articular joints, a study was conducted to investigate the effects of TGF-beta1 and beta-estradiol on glycosaminoglycan secretion and type II collagen distribution (two major component of cartilage ECM in vivo). Thus, chondrocyte cultures initiated from rabbit articular cartilage were treated with 10ng/ml of TGF-beta1, 10nM of beta-estradiol or with a combination of both factors. Sulphated glycosaminoglycan (GAG) and type II collagen levels were then measured in both these culture systems. The results revealed that the synthesis of GAG and type II collagen was shown to be enhanced in the TGF-beta1 treated cultures. This increase was also noted when TGF-beta1 and beta-estradiol were both used as culture supplements. However, beta-estradiol alone did not appear to affect GAG or type II collagen deposition. There was also no difference between the amount of collagen type II and GAG being expressed when chondrocyte cultures were treated with TGF-beta1 when compared with cultures treated with combined factors. From this, we conclude that although TGF-beta1 appears to stimulate chondrocyte ECM synthesis, beta-estradiol fails to produce similar effects. The findings of this study confirm that contrary to previous claims, beta-estradiol has little or no effect on chondrocyte ECM synthesis. Furthermore, the use of TGF-beta1 may be useful in future studies looking into biological mechanisms by which ECM synthesis in chondrocyte cultures can be augmented, particularly for clinical application.
    Matched MeSH terms: Cartilage, Articular/cytology
  11. Chong PP, Panjavarnam P, Ahmad WNHW, Chan CK, Abbas AA, Merican AM, et al.
    Clin Biomech (Bristol, Avon), 2020 10;79:105178.
    PMID: 32988676 DOI: 10.1016/j.clinbiomech.2020.105178
    BACKGROUND: Cartilage damage, which can potentially lead to osteoarthritis, is a leading cause of morbidity in the elderly population. Chondrocytes are sensitive to mechanical stimuli and their matrix-protein synthesis may be altered when chondrocytes experience a variety of in vivo loadings. Therefore, a study was conducted to evaluate the biosynthesis of isolated osteoarthritic chondrocytes which subjected to compression with varying dynamic compressive strains and loading durations.

    METHODS: The proximal tibia was resected as a single osteochondral unit during total knee replacement from patients (N = 10). The osteoarthritic chondrocytes were isolated from the osteochondral units, and characterized using reverse transcriptase-polymerase chain reaction. The isolated osteoarthritic chondrocytes were cultured and embedded in agarose, and then subjected to 10% and 20% uniaxial dynamic compression up to 8-days using a bioreactor. The morphological features and changes in the osteoarthritic chondrocytes upon compression were evaluated using scanning electron microscopy. Safranin O was used to detect the presence of cartilage matrix proteoglycan expression while quantitative analysis was conducted by measuring type VI collagen using an immunohistochemistry and fluorescence intensity assay.

    FINDINGS: Gene expression analysis indicated that the isolated osteoarthritic chondrocytes expressed chondrocyte-specific markers, including BGN, CD90 and HSPG-2. Moreover, the compressed osteoarthritic chondrocytes showed a more intense and broader deposition of proteoglycan and type VI collagen than control. The expression of type VI collagen was directly proportional to the duration of compression in which 8-days compression was significantly higher than 4-days compression. The 20% compression showed significantly higher intensity compared to 10% compression in 4- and 8-days.

    INTERPRETATION: The biosynthetic activity of human chondrocytes from osteoarthritic joints can be enhanced using selected compression regimes.

    Matched MeSH terms: Cartilage, Articular/pathology
  12. Hamid AA, Idrus RB, Saim AB, Sathappan S, Chua KH
    Clinics (Sao Paulo), 2012;67(2):99-106.
    PMID: 22358233
    OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction.

    MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction.

    RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN) was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction.

    CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adipose-derived stem cells was most prominent after one week of chondrogenic induction.

    Matched MeSH terms: Cartilage, Articular/cytology*
  13. Moo EK, Osman NA, Pingguan-Murphy B
    Clinics (Sao Paulo), 2011;66(8):1431-6.
    PMID: 21915496
    INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture.

    METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days.

    RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17.

    CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.

    Matched MeSH terms: Cartilage, Articular/cytology; Cartilage, Articular/drug effects; Cartilage, Articular/metabolism*; Cartilage, Articular/chemistry
  14. Kamarudin TA, Othman F, Mohd Ramli ES, Md Isa N, Das S
    EXCLI J, 2012;11:226-36.
    PMID: 27366139
    Curcuma longa (turmeric) rhizomes contains curcumin, an active compound which possesses anti-inflammatory effects. Collagen-induced arthritis (CIA) is an accepted experimental animal model of rheumatoid arthritis. The present study aimed to observe the histological changes in the joints of experimental arthritic rats treated with curcumin. Twenty four male Sprague-Dawley (approximately 7 weeks-old) rats were randomly divided into four groups. Three groups were immunized with 150 µg collagen. All rats with established CIA, with arthritis scores exceeding 1, were orally treated with betamethasone (0.5 mg/ml/kg body weight), curcumin (110 mg/ml/kg body weight) or olive oil (1.0 ml/kg body weight) daily, for two weeks. One remaining group was kept as normal control. Treatment with 110 mg/ml/kg curcumin showed significant mean differences in the average white blood cell (WBC) count (p<0.05), cell infiltration, bone and cartilage erosion scores (p<0.05) compared to the olive oil treated group. Pannus formation scores showed that curcumin supplementation successfully suppressed the pannus formation process that occurred in the articular cartilage of the CIA joints. The mean difference for histological scores for the curcumin group was insignificant compared to the betamethasone treated group. It is concluded that supplementation of curcumin has protective effect on the histopathological and degenerative changes in the joints of CIA rats which was at par with betamethasone.
    Matched MeSH terms: Cartilage, Articular
  15. Kamarul T, Ab-Rahim S, Tumin M, Selvaratnam L, Ahmad TS
    Eur Cell Mater, 2011 Mar 15;21:259-71; discussion 270-1.
    PMID: 21409755
    The effects of Glucosamine Sulphate (GS) and Chondroitin Sulphate (CS) on the healing of damaged and repaired articular cartilage were investigated. This study was conducted using 18 New Zealand white rabbits as experimental models. Focal cartilage defects, surgically created in the medial femoral condyle, were either treated by means of autologous chondrocyte implantation (ACI) or left untreated as controls. Rabbits were then divided into groups which received either GS+/-CS or no pharmacotherapy. Three rabbits from each group were sacrificed at 12 and 24 weeks post-surgery. Knees dissected from rabbits were then evaluated using gross quantification of repair tissue, glycosaminoglycan (GAG) assays, immunoassays and histological assessments. It was observed that, in contrast to untreated sites, surfaces of the ACI-repaired sites appeared smooth and continuous with the surrounding native cartilage. Histological examination demonstrated a typical hyaline cartilage structure; with proteoglycans, type II collagen and GAGs being highly expressed in repair areas. The improved regeneration of these repair sites was also noted to be significant over time (6 months vs. 3 months) and in GS and GS+CS groups compared to the untreated (without pharmacotherapy) group. Combination of ACI and pharmacotherapy (with glucosamine sulphate alone/ or with chondroitin sulphate) may prove beneficial for healing of damaged cartilage, particularly in relation to focal cartilage defects.
    Matched MeSH terms: Cartilage, Articular/drug effects*; Cartilage, Articular/pathology; Cartilage, Articular/surgery*
  16. Munirah S, Kim SH, Ruszymah BH, Khang G
    Eur Cell Mater, 2008 Feb 21;15:41-52.
    PMID: 18288632
    Our preliminary results indicated that fibrin and poly(lactic-co-glycolic acid) (PLGA) hybrid scaffold promoted early chondrogenesis of articular cartilage constructs in vitro. The aim of this study was to evaluate in vivo cartilaginous tissue formation by chondrocyte-seeded fibrin/PLGA hybrid scaffolds. PLGA scaffolds were soaked carefully, in chondrocyte-fibrin suspension, and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes were used as a control. Resulting constructs were implanted subcutaneously, at the dorsum of nude mice, for 4 weeks. Macroscopic observation, histological evaluation, gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 4 weeks post-implantation. Cartilaginous tissue formation in fibrin/PLGA hybrid construct was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs was confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrices. Chondrogenic properties were further demonstrated by the expression of gene encoded cartilage-specific markers, collagen type II and aggrecan core protein. The sGAG production in fibrin/PLGA hybrid constructs was higher than in the PLGA group. In conclusion, fibrin/PLGA hybrid scaffold promotes cartilaginous tissue formation in vivo and may serve as a potential cell delivery vehicle and a structural basis for articular cartilage tissue-engineering.
    Matched MeSH terms: Cartilage, Articular/cytology; Cartilage, Articular/metabolism*
  17. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH
    Exp Gerontol, 2012 Jun;47(6):458-64.
    PMID: 22759409 DOI: 10.1016/j.exger.2012.03.018
    In recent years, the use of bone marrow mesenchymal stem cell (BMSC) implantation has provided an alternative treatment for osteoarthritis. The objective of this study is to determine whether or not an intra-articular injection of a single dose of autologous chondrogenic induced BMSC could retard the progressive destruction of cartilage in a surgically induced osteoarthritis in sheep. Sheep BMSCs were isolated and divided into two groups. One group was cultured in chondrogenic media containing (Ham's F12:DMEM, 1:1) FD+1% FBS+5 ng/ml TGFβ3+50 ng/ml IGF-1 (CM), and the other group was cultured in the basal media, FD+10% FBS (BM). The procedure for surgically induced osteoarthritis was performed on the donor sheep 6 weeks prior to intra-articular injection into the knee joint of a single dose of BMSC from either group, suspended in 5 ml FD at density of 2 million cells/ml. The control groups were injected with basal media, without cells. Six weeks after injection, gross evidence of retardation of cartilage destruction was seen in the osteoarthritic knee joints treated with CM as well as BM. No significant ICRS (International Cartilage Repair Society) scoring was detected between the two groups with cells. However macroscopically, meniscus repair was observed in the knee joint treated with CM. Severe osteoarthritis and meniscal injury was observed in the control group. Interestingly, histologically the CM group demonstrated good cartilage histoarchitecture, thickness and quality, comparable to normal knee joint cartilage. As a conclusion, intra-articular injection of a single dose of BMSC either chondrogenically induced or not, could retard the progression of osteoarthritis (OA) in a sheep model, but the induced cells indicated better results especially in meniscus regeneration.
    Study site: Universiti Kebangsaan Malaysia, Kuala Lumpur
    Matched MeSH terms: Cartilage, Articular/pathology
  18. Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar H, Amaramalar SN, et al.
    Exp Gerontol, 2018 04;104:43-51.
    PMID: 29421350 DOI: 10.1016/j.exger.2018.01.020
    BACKGROUND: Hyaline articular cartilage, which protects the bones of diarthrodial joints from forces associated with load bearing, frictions, and impacts has very limited capacities for self-repair. Over the years, the trend of treatments has shifted to regenerations and researchers have been on the quest for a lasting regeneration. We evaluated the treatment of osteoarthritis by chondrogenically induced ADSCs and BMSCs for a long time functional recovery.

    METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of ACL and medial meniscus. Stem cells from sheep were induced to chondrogenic lineage. Test sheep received 5 mls single doses of 2 × 107 autologous PKH26-labelled ADSCs or BMSCs, while controls received basal medium. Functional recovery of the knees was evaluated via electromyography.

    RESULTS: Induced ADSCs had 625, 255, 393, 908, 409, 157 and 1062 folds increases of collagen I, collagen II, aggrecan, SOX9, cartilage oligomeric protein, chondroadherin and fibromodullin compare to uninduced cells, while BMSCs had 702, 657, 321, 276, 337, 233 and 1163 respectively; p = .001. Immunocytochemistry was positive for these chondrogenic markers. 12 months post-treatment, controls scored 4 in most regions using ICRS, while the treated had 8; P = .001. Regenerated cartilages were positive to PKH26 and demonstrated the presence of condensing cartilages on haematoxylin and eosin; and Safranin O. OA degenerations caused significant amplitude shift from right to left hind limb. After treatments, controls persisted with significant decreases; while treated samples regained balance.

    CONCLUSIONS: Both ADSCs and BMSCs had increased chondrogenic gene expressions using TGF-β3 and BMP-6. The treated knees had improved cartilage scores; PKH26 can provide elongated tracking, while EMG results revealed improved joint recoveries. These could be suitable therapies for osteoarthritis.

    Matched MeSH terms: Cartilage, Articular/pathology; Cartilage, Articular/physiopathology*; Cartilage, Articular/surgery
  19. Abdel-Rahman RF, Abd-Elsalam RM, Amer MS, El-Desoky AM, Mohamed SO
    Food Funct, 2020 Sep 23;11(9):7960-7972.
    PMID: 32839804 DOI: 10.1039/d0fo01297a
    Osteoarthritis (OA) is a joint disease characterized by degeneration of cartilage, intra-articular inflammation, remodeling of subchondral bone and joint pain. The present study was designed to assess the therapeutic effects and the possible underlying mechanism of action of Manjarix, a herbal combination composed of ginger and turmeric powder extracts, on chemically induced osteoarthritis in rats. An OA model was generated by intra-articular injection of 50 μL (40 mg mL-1) of monosodium iodoacetate (MIA) into the right knee joint of rats. After one week of osteoarthritis induction, a comparison of the anti-inflammatory efficacy of indomethacin at an oral dose of 2 mg kg-1 daily for 4 successive weeks versus five decremental dose levels of Manjarix (1000, 500, 250, 125, and 62.5 mg kg-1) was performed. Serum inflammatory cytokines, interleukin 6, interleukin 8, and tumor necrosis factor alpha; C-telopeptide of type II collagen (CTX-II) and hyaluronic acid (HA) were measured, along with weekly assessment of the knee joint swelling. Pain-like behavior was assessed and knee radiographic and histological examination were performed to understand the extent of pain due to cartilage degradation. Manjarix significantly reduced the knee joint swelling, decreased the serum levels of IL6, TNF-α, CTX-II and HA, and reduced the pathological injury in joints, with no evidence of osteo-reactivity in the radiographic examination. Manjarix also significantly prevented MIA-induced pain behavior. These results demonstrate that Manjarix exhibits chondroprotective effects and can inhibit the OA pain induced by MIA, and thus it can be used as a potential therapeutic product for OA.
    Matched MeSH terms: Cartilage, Articular
  20. Bokhari RA, Tantowi NACA, Lau SF, Mohamed S
    Inflammopharmacology, 2018 Aug;26(4):939-949.
    PMID: 29380171 DOI: 10.1007/s10787-017-0432-2
    The effect of Orthosiphon stamineus aqueous (OSA) extract against osteoarthritis (OA) was investigated in explant cartilage culture and in postmenopausal OA rat model. Female rats were bilaterally ovariectomized (OVX). Osteoarthritis was induced after surgical recovery, by intra-articular injection of monosodium iodoacetate (MIA) into the right knee. Rats were grouped (n = 8) into: healthy sham control; non-treated OA; OA + diclofenac (positive control 5 mg/kg); and two doses OSA (150-300 mg/kg). After 4 weeks' treatment, rats were evaluated for OA-related parameters and biomarkers. The OSA reduced proteoglycan and ROS release from the cartilage explants under inflammatory (IL-1b) conditions. In the OA-induced rats' cartilages, the OSA downregulated the mRNA expressions for IL-1β, IL-6, IL-10, TNF-α, NF-κβ, NOS2, PTGS2, PTGER2, ACAN, COL2A1, MMP1, MMP13, ADAMTS4, ADAMTS5 and TIMP1, mostly dose-dependently. The OSA reduced the OA rats' serum levels for PGE2, CTX-II, TNF-α, MMP1, MMP13, PIINP, OPG, RANKL, OC and BALP, but not dose-dependently. The OSA contained polyphenols and flavonoids (tetramethoxyflavone). The OSA alleviated articular cartilage degradation, inflammation, collagenase/aggrecanase activities, to improve joint and subchondral bone structure. O. stamineus mitigated osteoarthritis by downregulating inflammation, peptidases and aggrecanases, at a dose equivalent to about 30 mg/kg for humans.
    Matched MeSH terms: Cartilage, Articular/drug effects; Cartilage, Articular/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links