Displaying publications 1 - 20 of 89 in total

Abstract:
Sort:
  1. Zorofchian Moghadamtousi S, Karimian H, Rouhollahi E, Paydar M, Fadaeinasab M, Abdul Kadir H
    J Ethnopharmacol, 2014 Oct 28;156:277-89.
    PMID: 25195082 DOI: 10.1016/j.jep.2014.08.011
    ETHNOPHARMACOLOGICAL RELEVANCE: Annona muricata known as "the cancer killer" has been widely used in the traditional medicine for the treatment of cancer and tumors. The purpose of this study is to investigate the anticancer properties of ethyl acetate extract of Annona muricata leaves (EEAM) on HT-29 and HCT-116 colon cancer cells and the underlying mechanisms.
    MATERIALS AND METHODS: The effect of EEAM on the cell proliferation of HT-29 and HCT-116 cells was analyzed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay. High content screening system (HCS) was applied to investigate the cell membrane permeability, mitochondrial membrane potential (MMP), nuclear condensation and cytochrome c translocation from mitochondria to cytosol. Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release and activation of caspase-3/7, -8 and -9 were measured while treatment. Flow cytometric analysis was used to determine the cell cycle distribution and phosphatidylserine externalization. The protein expression of Bax and Bcl-2 was determined using immunofluorescence analysis. In addition, the potential of EEAM to suppress the migration and invasion of colon cancer cells was also examined.
    RESULTS: EEAM exerted significant cytotoxic effects on HCT-116 and HT-29 cells as determined by MTT and LDH assays. After 24 h treatment, EEAM exhibited the IC₅₀ value of 11.43 ± 1.87 µg/ml and 8.98 ± 1.24 µg/ml against HT-29 and HCT-116 cells, respectively. Flow cytometric analysis demonstrated the cell cycle arrest at G1 phase and phosphatidylserine externalization confirming the induction of apoptosis. EEAM treatment caused excessive accumulation of ROS followed by disruption of MMP, cytochrome c leakage and activation of the initiator and executioner caspases in both colon cancer cells. Immunofluorescence analysis depicted the up-regulation of Bax and down-regulation of Bcl-2 proteins while treated with EEAM. Furthermore, EEAM conspicuously blocked the migration and invasion of HT-29 and HCT-116 cells.
    CONCLUSIONS: These findings provide a scientific basis for the use of A. muricata leaves in the treatment of cancer, although further in vivo studies are still required.
    Matched MeSH terms: Caspases/metabolism
  2. Liew SY, Looi CY, Paydar M, Cheah FK, Leong KH, Wong WF, et al.
    PLoS One, 2014;9(2):e87286.
    PMID: 24551054 DOI: 10.1371/journal.pone.0087286
    In this study, a new apoptotic monoterpenoid indole alkaloid, subditine (1), and four known compounds were isolated from the bark of Nauclea subdita. Complete (1)H- and (13)C- NMR data of the new compound were reported. The structures of isolated compounds were elucidated with various spectroscopic methods such as 1D- and 2D- NMR, IR, UV and LCMS. All five compounds were screened for cytotoxic activities on LNCaP and PC-3 human prostate cancer cell-lines. Among the five compounds, the new alkaloid, subditine (1), demonstrated the most potent cell growth inhibition activity and selective against LNCaP with an IC50 of 12.24±0.19 µM and PC-3 with an IC50 of 13.97±0.32 µM, compared to RWPE human normal epithelial cell line (IC50 = 30.48±0.08 µM). Subditine (1) treatment induced apoptosis in LNCaP and PC-3 as evidenced by increased cell permeability, disruption of cytoskeletal structures and increased nuclear fragmentation. In addition, subditine (1) enhanced intracellular reactive oxygen species (ROS) production, as reflected by increased expression of glutathione reductase (GR) to scavenge damaging free radicals in both prostate cancer cell-lines. Excessive ROS could lead to disruption of mitochondrial membrane potential (MMP), release of cytochrome c and subsequent caspase 9, 3/7 activation. Further Western blot analyses showed subditine (1) induced down-regulation of Bcl-2 and Bcl-xl expression, whereas p53 was up-regulated in LNCaP (p53-wild-type), but not in PC-3 (p53-null). Overall, our data demonstrated that the new compound subditine (1) exerts anti-proliferative effect on LNCaP and PC-3 human prostate cancer cells through induction of apoptosis.
    Matched MeSH terms: Caspases/metabolism
  3. Makpol S, Abdul Rahim N, Hui CK, Ngah WZ
    Oxid Med Cell Longev, 2012;2012:785743.
    PMID: 22919441 DOI: 10.1155/2012/785743
    In this study, we determined the molecular mechanism of γ-tocotrienol (GTT) in preventing cellular aging by focusing on its anti-apoptotic effect in stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs). Results obtained showed that SIPS exhibited senescent-phenotypic characteristic, increased expression of senescence-associated β-galactosidase (SA β-gal) and promoted G(0)/G(1) cell cycle arrest accompanied by shortening of telomere length with decreased telomerase activity. Both SIPS and senescent HDFs shared similar apoptotic changes such as increased Annexin V-FITC positive cells, increased cytochrome c release and increased activation of caspase-9 and caspase-3 (P < 0.05). GTT treatment resulted in a significant reduction of Annexin V-FITC positive cells, inhibited cytochrome c release and decreased activation of caspase-9 and caspase-3 (P < 0.05). Gene expression analysis showed that GTT treatment down regulated BAX mRNA, up-regulated BCL2A1 mRNA and decreased the ratio of Bax/Bcl-2 protein expression (P < 0.05) in SIPS. These findings suggested that GTT inhibits apoptosis by modulating the upstream apoptosis cascade, causing the inhibition of cytochrome c release from the mitochondria with concomitant suppression of caspase-9 and caspase-3 activation. In conclusion, GTT delays cellular senescence of human diploid fibroblasts through the inhibition of intrinsic mitochondria-mediated pathway which involved the regulation of pro- and anti-apoptotic genes and proteins.
    Matched MeSH terms: Caspases/metabolism*
  4. Arbab IA, Abdul AB, Sukari MA, Abdullah R, Syam S, Kamalidehghan B, et al.
    J Ethnopharmacol, 2013 Jan 9;145(1):343-54.
    PMID: 23178663 DOI: 10.1016/j.jep.2012.11.020
    Clausena excavata Burm. f. has been used in folk medicines in eastern Thailand for the treatment of cancer.
    Matched MeSH terms: Caspases/metabolism
  5. Ng KB, Bustamam A, Sukari MA, Abdelwahab SI, Mohan S, Buckle MJ, et al.
    PMID: 23432947 DOI: 10.1186/1472-6882-13-41
    Boesenbergia rotunda (Roxb.) Schlecht (family zingiberaceae) is a rhizomatous herb that is distributed from north-eastern India to south-east Asia, especially in Indonesia, Thailand and Malaysia. Previous research has shown that the crude extract of this plant has cytotoxic properties. The current study examines the cytotoxic properties of boesenbergin A isolated from Boesenbergia rotunda.
    Matched MeSH terms: Caspases/metabolism
  6. Hossan MS, Break MKB, Bradshaw TD, Collins HM, Wiart C, Khoo TJ, et al.
    Molecules, 2021 Apr 09;26(8).
    PMID: 33918814 DOI: 10.3390/molecules26082166
    Cardamonin is a polyphenolic natural product that has been shown to possess cytotoxic activity against a variety of cancer cell lines. We previously reported the semi-synthesis of a novel Cu (II)-cardamonin complex (19) that demonstrated potent antitumour activity. In this study, we further investigated the bioactivity of 19 against MDA-MB-468 and PANC-1 cancer cells in an attempt to discover an effective treatment for triple-negative breast cancer (TNBC) and pancreatic cancer, respectively. Results revealed that 19 abolished the formation of MDA-MB-468 and PANC-1 colonies, exerted growth-inhibitory activity, and inhibited cancer cell migration. Further mechanistic studies showed that 19 induced DNA damage resulting in gap 2 (G2)/mitosis (M) phase arrest and microtubule network disruption. Moreover, 19 generated reactive oxygen species (ROS) that may contribute to induction of apoptosis, corroborated by activation of caspase-3/7, PARP cleavage, and downregulation of Mcl-1. Complex 19 also decreased the expression levels of p-Akt and p-4EBP1, which indicates that the compound exerts its activity, at least in part, via inhibition of Akt signalling. Furthermore, 19 decreased the expression of c-Myc in PANC-1 cells only, which suggests that it may exert its bioactivity via multiple mechanisms of action. These results demonstrate the potential of 19 as a therapeutic agent for TNBC and pancreatic cancer.
    Matched MeSH terms: Caspases/metabolism
  7. Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A
    Front Cell Neurosci, 2020;14:598453.
    PMID: 33551748 DOI: 10.3389/fncel.2020.598453
    Lipopolysacharide (LPS) pre-conditioning (PC), has been shown to exert protective effects against cytotoxic effects. Therefore, we hypothesized, the tolerance produced by LPS PC will be resulted by the alterations and modifications in gene and protein expression. With reference to the results of MTT assays, AO/PI staining, and Annexin V-FITC analyses of LPS concentration (0.7815-50 μg/mL) and time-dependent (12-72 h) experiments, the pre-exposure to 3 μg/mL LPS for 12 h protected the differentiated PC12 cells against 0.75 mg/mL LPS apoptotic concentration. LPS-treated cells secreted more inflammatory cytokines like IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-17, IFN-γ, and TNF-α than LPS-PC cells. The production of inflammatory mediators ROS and NO was also higher in the LPS-induced cells compared to LPS-PC cells. Conversely, anti-inflammatory cytokines (like IL-10, IL-13, CNTF, and IL-1Ra) were upregulated in the LPS-PC cells but not in the LPS-induced cells. Meanwhile, the LPS initiated caspase-8 which in turn activates effector caspase 3/7. When the activities of caspases in the LPS-induced cells were inhibited using z-VADfmk and z-DEVDfmk, the expressions of c-MYC and Hsp70 were increased, but p53 was reduced. The potential molecules associated with protective and destructive effect was measured by RT2 Profiler PCR array to elucidate the signaling pathways and suggested inhibition NF-κB/caspase-3 signaling pathway regulates the cytoprotective genes and proto-oncogenes. In conclusion, this study provides a basis for future research to better understand the molecular mechanism underlying LPS pre-conditioning /TLR4 pre-activation and its functional role in offering cytoprotective response in neuronal environment.
    Matched MeSH terms: Caspases
  8. Seifaddinipour M, Farghadani R, Namvar F, Bin Mohamad J, Muhamad NA
    Molecules, 2020 Apr 13;25(8).
    PMID: 32295069 DOI: 10.3390/molecules25081776
    Pistacia (Pistacia vera) hulls (PV) is a health product that has been determined to contain bioactive phytochemicals which have fundamental importance for biomedical use. In this study, PV ethyl acetate extraction (PV-EA) fractions were evaluated with the use of an MTT assay to find the most cytotoxic fraction, which was found to be F13b1/PV-EA. After that, HPTLC was used for identify the most active compounds. The antioxidant activity was analyzed with DPPH and ABTS tests. Apoptosis induction in MCF-7 cells by F13b1/PV-EA was validated via flow cytometry analysis and a distinctive nuclear staining method. The representation of genes like Caspase 3, Caspase 8, Bax, Bcl-2, CAT and SOD was assessed via a reverse transcription (RT_PCR) method. Inhabitation of Tubo breast cancer cell development was examined in the BALB-neuT mouse with histopathology observations. The most abundant active components available in our extract were gallic acid and the flavonoid quercetin. The F13b1/PV-EA has antiradical activity evidence by its inhibition of ABTS and DPPH free radicals. F13b1/PV-EA displayed against MCF-7 a suppressive effect with an IC50 value of 15.2 ± 1.35 µg/mL. Also, the expression of CAT, SOD, Caspase 3, Caspase 8 and Bax increased and the expression of Bcl-2 decreased. F13b1/PV-EA dose-dependently inhibited tumor development in cancer-induced mice. Thus, this finding introduces F13b1/PV-EA as an effectual apoptosis and antitumor active agent against breast cancer.
    Matched MeSH terms: Caspases/genetics; Caspases/metabolism
  9. Yeo EH, Goh WL, Chow SC
    Toxicol. Mech. Methods, 2018 Mar;28(3):157-166.
    PMID: 28849708 DOI: 10.1080/15376516.2017.1373882
    The leucine aminopeptidase inhibitor, benzyloxycarbonyl-leucine-chloromethylketone (z-L-CMK), was found to be toxic and readily induce cell death in Jurkat T cells. Dose-response studies show that lower concentration of z-L-CMK induced apoptosis in Jurkat T cells whereas higher concentration causes necrosis. In z-L-CMK-induced apoptosis, both the initiator caspases (-8 and -9) and effector caspases (-3 and -6) were processed to their respective subunits. However, the caspases remained intact in z-L-CMK-induced necrosis. The caspase inhibitor, z-VAD-FMK inhibited z-L-CMK-mediated apoptosis and caspase processing but has no effect on z-L-CMK-induced necrosis in Jurkat T cells. The high mobility group protein B1 (HMGB1) protein was found to be released into the culture medium by the necrotic cells and not the apoptotic cells. These results indicate that the necrotic cell death mediated by z-L-CMK at high concentrations is via classical necrosis rather than secondary necrosis. We also demonstrated that cell death mediated by z-L-CMK was associated with oxidative stress via the depletion of intracellular glutathione (GSH) and increase in reactive oxygen species (ROS), which was blocked by N-acetyl cysteine. Taken together, the results demonstrated that z-L-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. The toxic side effects in Jurkat T cells mediated by z-L-CMK are associated with oxidative stress via the depletion of GSH and accumulation of ROS.
    Matched MeSH terms: Caspases/metabolism; Caspases/chemistry
  10. Tai YC, Tan JA, Peh SC
    Virchows Arch., 2004 Nov;445(5):506-14.
    PMID: 15365830
    t(11;18)(q21;q21) Translocation and trisomy 3 are the most common chromosomal aberrations reported in low-grade mucosa-associated lymphoid tissue (MALT) lymphoma. The current study aims to investigate the frequency of these chromosomal aberrations in a series of 52 extranodal B-cell lymphomas. The tumours were categorised into three histological grades: grade 1 (low-grade lymphoma of MALT type), grade 2 [diffuse large B-cell lymphoma (DLBCL) with MALT component] and grade 3 (DLBCL without MALT component). Fluorescence in situ hybridisation analyses on paraffin tissue sections were performed using a locus-specific probe for the 18q21 region and a centromeric probe for chromosome 3. The 18q21 rearrangement was detected in 9 of 40 (23%) cases, including 7 of 23 (30%) grade-1 and 2 of 11 (18%) grade-3 tumours. Amplification of the 18q21 region was detected in 10 of 40 (25%) cases, and trisomy 3 was detected in 9 of 34 (26%) cases. Amplification of the 18q21 region may be an important alternative pathogenetic pathway in MALT lymphoma and was found almost exclusively in tumours without 18q21 rearrangement. Our study showed that tumours with 18q21 rearrangement and 18q21 amplification develop along two distinct pathways, and the latter was more likely to transform into high-grade tumours upon acquisition of additional genetic alterations, such as trisomy 3. Trisomy 3 was more frequently found in coexistence with 18q21 abnormalities, suggesting that it was more likely to be a secondary aberration.
    Matched MeSH terms: Caspases
  11. Asif M, Shafaei A, Jafari SF, Mohamed SB, Ezzat MO, Majid AS, et al.
    Toxicol Lett, 2016 Jun 3.
    PMID: 27268964 DOI: 10.1016/j.toxlet.2016.05.027
    Colorectal cancer (CRC) is one of the most common human malignant tumors worldwide. Arising from the transformation of epithelial cells in the colon and/or rectum into malignant cells, the foundation of CRC pathogenesis lies in the progressive accumulation of mutations in oncogenes and tumor-suppressor genes, such as APC and KRAS. Resistance to apoptosis is one of the key mechanisms in the development of CRC as it is for any other kind of cancer. Natural products have been shown to induce the expression of apoptosis regulators that are blocked in cancer cells. In the present study, a series of in vitro assays were employed to study the apoptosis inducing attributes of Isoledene rich sub-fraction (IR-SF) collected from the oleo-gum resin of M. ferrea. Data obtained, shows that IR-SF inhibited cell proliferation and induced typical apoptotic changes in the overall morphology of all the CRC cell lines tested. Fluorescent staining assays revealed characteristic nuclear condensation, and marked decrease in mitochondrial outer membrane potential in treated cells. In addition, an increment in the levels of ROS, caspase-8,-9 and -3 was observed. Proteomic analysis revealed that IR-SF up-regulated the expression of pro-apoptotic proteins, i.e., Bid, Bid and cytochrome c. Cytochrome c in turn activated caspases cascade resulting in the induction of apoptosis. Moreover, IR-SF significantly down-regulated Bcl-2, Bcl-w, survivin, xIAP and HSPs pro-proteins and induced DNA fragmentation and G0/G1-phase arrest in HCT 116 cells. Chemical characterization of IR-SF by GC-MS and HPLC methods identified Isoledene as one of the major compounds. Altogether, the results of the present study demonstrate that IR-SF may induce apoptosis in human colorectal carcinoma cells through activation of ROS-mediated apoptotic pathways.
    Matched MeSH terms: Caspases
  12. Tan YS, Ooi KK, Ang KP, Akim AM, Cheah YK, Halim SN, et al.
    J Inorg Biochem, 2015 Sep;150:48-62.
    PMID: 26086852 DOI: 10.1016/j.jinorgbio.2015.06.009
    In the solid state each of three binuclear zinc dithiocarbamates bearing hydroxyethyl groups, {Zn[S2CN(R)CH2CH2OH]2}2 for R = iPr (1), CH2CH2OH (2), and Me (3), and an all alkyl species, [Zn(S2CNEt2)2]2 (4), features a centrosymmetric {ZnSCS}2 core with a step topology; both 1 and 3 were isolated as monohydrates. All compounds were broadly cytotoxic, specifically against human cancer cell lines compared with normal cells, with greater potency than cisplatin. Notably, some selectivity were indicated with 2 being the most potent against human ovarian carcinoma cells (cisA2780), and 4 being more cytotoxic toward multidrug resistant human breast carcinoma cells (MCF-7R), human colon adenocarcinoma cells (HT-29), and human lung adenocarcinoma epithelial cells (A549). Based on human apoptosis PCR-array analysis, caspase activities, DNA fragmentation, cell apoptotic assays, intracellular reactive oxygen species (ROS) measurements and human topoisomerase I inhibition, induction of apoptosis in HT-29 cells is demonstrated via both extrinsic and intrinsic pathways. Compounds 2-4 activate the p53 gene while 1 activates both p53 and p73. Cell cycle arrest at the S and G2/M phases correlates with inhibition of HT-29 cell growth. Cell invasion is also inhibited by 1-4 which is correlated with down-regulation of NF-κB.
    Matched MeSH terms: Caspases
  13. Nwaefulu ON, Al-Shar'i NA, Owolabi JO, Sagineedu SR, Woei LC, Wai LK, et al.
    J Mol Model, 2022 Oct 04;28(11):340.
    PMID: 36194315 DOI: 10.1007/s00894-022-05326-1
    Cancer is imposing a global health burden because of the steady increase in new cases. Moreover, current anticancer therapeutics are associated with many drawbacks, mainly the emergence of resistance and the severe adverse effects. Therefore, there is a continuous need for developing new anticancer agents with novel mechanisms of action and lower side effects. Natural products have been a rich source of anticancer medication. Cycleanine, a natural product, was reported to exert an antiproliferative effect on ovarian cancer cells by causing apoptosis through activation of caspases 3/7 and cleavage of poly (ADP-ribose) polymerase to form poly (ADP-ribose) polymerase-1 (PARP1). It is well-established that PARP1 is associated with carcinogenesis, and different PARP1 inhibitors are approved as anticancer drugs. In this study, the cytotoxic activity of cycleanine was computationally investigated to determine whether it is a PARP1 inhibitor or a caspase activator. Molecular docking and molecular dynamics (MD) simulations were utilized for this purpose. The results showed that cycleanine has a good binding affinity to PARP1; moreover, MD simulation showed that it forms a stable complex with the enzyme. Consequently, the results showed that cycleanine is a potential inhibitor of the PARP1 enzyme.
    Matched MeSH terms: Caspases
  14. Rouhollahi E, Zorofchian Moghadamtousi S, Paydar M, Fadaeinasab M, Zahedifard M, Hajrezaie M, et al.
    PMID: 25652758 DOI: 10.1186/s12906-015-0534-6
    BACKGROUND: Curcuma purpurascens BI. (Zingiberaceae) commonly known as 'Koneng Tinggang' and 'Temu Tis' is a Javanese medicinal plant which has been used for numerous ailments and diseases in rural Javanese communities. In the present study, the apoptogenic activity of dichloromethane extract of Curcuma purpurascens BI. rhizome (DECPR) was investigated against HT-29 human colon cancer cells.
    METHODS: Acute toxicity study of DECPR was performed in Sprague-Dawley rats. Compounds of DECPR were analyzed by the gas chromatography-mass spectrometry-time of flight (GC-MS-TOF) analysis. Cytotoxic effect of DECPR on HT-29 cells was analyzed by MTT and lactate dehydrogenase (LDH) assays. Effects of DECPR on reactive oxygen species (ROS) formation and mitochondrial-initiated events were investigated using a high content screening system. The activities of the caspases were also measured using a fluorometric assay. The quantitative PCR analysis was carried out to examine the gene expression of Bax, Bcl-2 and Bcl-xl proteins.
    RESULTS: The in vivo acute toxicity study of DECPR on rats showed the safety of this extract at the highest dose of 5 g/kg. The GC-MS-TOF analysis of DECPR detected turmerone as the major compound in dichloromethane extract. IC50 value of DECPR towards HT-29 cells after 24 h treatment was found to be 7.79 ± 0.54 μg/mL. In addition, DECPR induced LDH release and ROS generation in HT-29 cells through a mechanism involving nuclear fragmentation and cytoskeletal rearrangement. The mitochondrial-initiated events, including collapse in mitochondrial membrane potential and cytochrome c leakage was also triggered by DECPR treatment. Initiator caspase-9 and executioner caspase-3 was dose-dependently activated by DECPR. The quantitative PCR analysis on the mRNA expression of Bcl-2 family of proteins showed a significant up-regulation of Bax associated with down-regulation in Bcl-2 and Bcl-xl mRNA expression.
    CONCLUSIONS: The findings presented in the current study showed that DECP suppressed the proliferation of HT-29 colon cancer cells and triggered the induction of apoptosis through mitochondrial-dependent pathway.
    Matched MeSH terms: Caspases/metabolism
  15. Aravind SR, Joseph MM, George SK, Dileep KV, Varghese S, Rose-James A, et al.
    Int J Biochem Cell Biol, 2015 Feb;59:153-66.
    PMID: 25541375 DOI: 10.1016/j.biocel.2014.11.019
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells, without causing significant toxicity in normal tissues. We previously reported that galactoxyloglucan (PST001) possesses significant antitumor and immunomodulatory properties. However, the exact mechanism in mediating this anticancer effect is unknown. This study, for the first time, indicated that PST001 sensitizes non-small cell lung cancer (A549) and nasopharyngeal (KB) cells to TRAIL-mediated apoptosis. In vitro studies suggested that PST001 induced apoptosis primarily via death receptors and predominantly activated caspases belonging to the extrinsic apoptotic cascade. Microarray profiling of PST001 treated A549 and KB cells showed the suppression of survivin (BIRC5) and anti-apoptotic Bcl-2, as well as increased cytochrome C. TaqMan low density array analysis of A549 cells also confirmed that the induction of apoptosis by the polysaccharide occurred through the TRAIL-DR4/DR5 pathways. This was finally confirmed by in silico analysis, which revealed that PST001 binds to TRAIL-DR4/DR5 complexes more strongly than TNF and Fas ligand-receptor complexes. In summary, our results suggest the potential of PST001 to be developed as an anticancer agent that not only preserves innate biological activity of TRAIL, but also sensitizes cancer cells to TRAIL-mediated apoptosis.
    Matched MeSH terms: Caspases/metabolism
  16. Hajrezaie M, Paydar M, Looi CY, Moghadamtousi SZ, Hassandarvish P, Salga MS, et al.
    Sci Rep, 2015 Mar 13;5:9097.
    PMID: 25764970 DOI: 10.1038/srep09097
    The development of metal-based agents has had a tremendous role in the present progress in cancer chemotherapy. One well-known example of metal-based agents is Schiff based metal complexes, which hold great promise for cancer therapy. Based on the potential of Schiff based complexes for the induction of apoptosis, this study aimed to examine the cytotoxic and apoptotic activity of a CdCl2(C14H21N3O2) complex on HT-29 cells. The complex exerted a potent suppressive effect on HT-29 cells with an IC50 value of 2.57 ± 0.39 after 72 h of treatment. The collapse of the mitochondrial membrane potential and the elevated release of cytochrome c from the mitochondria to the cytosol indicate the involvement of the intrinsic pathway in the induction of apoptosis. The role of the mitochondria-dependent apoptotic pathway was further proved by the significant activation of the initiator caspase-9 and the executioner caspases-3 and -7. In addition, the activation of caspase-8, which is associated with the suppression of NF-κB translocation to the nucleus, also revealed the involvement of the extrinsic pathway in the induced apoptosis. The results suggest that the CdCl2(C14H21N3O2) complex is able to induce the apoptosis of colon cancer cells and is a potential candidate for future cancer studies.
    Matched MeSH terms: Caspases/metabolism
  17. Faraj FL, Zahedifard M, Paydar M, Looi CY, Abdul Majid N, Ali HM, et al.
    ScientificWorldJournal, 2014;2014:212096.
    PMID: 25548779 DOI: 10.1155/2014/212096
    Two new synthesized and characterized quinazoline Schiff bases 1 and 2 were investigated for anticancer activity against MCF-7 human breast cancer cell line. Compounds 1 and 2 demonstrated a remarkable antiproliferative effect, with an IC50 value of 6.246×10(-6) mol/L and 5.910×10(-6) mol/L, respectively, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with 1 and 2 subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS formation. We also found activation of caspases-3/7, -8, and -9 in compounds 1 and 2. Moreover, inhibition of NF-κB translocation in MCF-7 cells treated by compound 1 significantly exhibited the association of extrinsic apoptosis pathway. Acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed significant activity towards MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway and are potential candidate for further in vivo and clinical breast cancer studies.
    Matched MeSH terms: Caspases/metabolism
  18. Rahman HS, Rasedee A, Abdul AB, Zeenathul NA, Othman HH, Yeap SK, et al.
    Int J Nanomedicine, 2014;9:527-38.
    PMID: 24549090 DOI: 10.2147/IJN.S54346
    This investigation evaluated the antileukemia properties of a zerumbone (ZER)-loaded nanostructured lipid carrier (NLC) prepared by hot high-pressure homogenization techniques in an acute human lymphoblastic leukemia (Jurkat) cell line in vitro. The apoptogenic effect of the ZER-NLC on Jurkat cells was determined by fluorescent and electron microscopy, Annexin V-fluorescein isothiocyanate, Tdt-mediated dUTP nick-end labeling assay, cell cycle analysis, and caspase activity. An MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay showed that ZER-NLC did not have adverse effects on normal human peripheral blood mononuclear cells. ZER-NLC arrested the Jurkat cells at G2/M phase with inactivation of cyclin B1 protein. The study also showed that the antiproliferative effect of ZER-NLC on Jurkat cells is through the intrinsic apoptotic pathway via activation of caspase-3 and caspase-9, release of cytochrome c from the mitochondria into the cytosol, and subsequent cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP). These findings show that the ZER-NLC is a potentially useful treatment for acute lymphoblastic leukemia in humans.
    Matched MeSH terms: Caspases/metabolism
  19. Asmaa MJ, Al-Jamal HA, Ang CY, Asan JM, Seeni A, Johan MF
    Asian Pac J Cancer Prev, 2014;15(1):475-81.
    PMID: 24528077
    BACKGROUND: Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia.

    MATERIALS AND METHODS: Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting.

    RESULTS: P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells.

    CONCLUSIONS: These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

    Matched MeSH terms: Caspases/metabolism
  20. Looi CY, Moharram B, Paydar M, Wong YL, Leong KH, Mohamad K, et al.
    PMID: 23837445 DOI: 10.1186/1472-6882-13-166
    Centratherum anthelminticum (L.) Kuntze (scientific synonyms: Vernonia anthelmintica; black cumin) is one of the ingredients of an Ayurvedic preparation, called "Kayakalp", commonly applied to treat skin disorders in India and Southeast Asia. Despite its well known anti-inflammatory property on skin diseases, the anti-cancer effect of C. anthelminticum seeds on skin cancer is less documented. The present study aims to investigate the anti-cancer effect of Centratherum anthelminticum (L.) seeds chloroform fraction (CACF) on human melanoma cells and to elucidate the molecular mechanism involved.
    Matched MeSH terms: Caspases/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links