Displaying publications 1 - 20 of 230 in total

Abstract:
Sort:
  1. Ramakreshnan L, Aghamohammadi N
    Curr Environ Health Rep, 2024 Mar;11(1):4-17.
    PMID: 38172471 DOI: 10.1007/s40572-023-00427-2
    PURPOSE OF REVIEW: Unprecedented urbanization in Asia affects the net radiation and energy flux of urban areas in the form of urban heat islands (UHI). The application of nature-based solutions (NbS) via urban green and blue infrastructures is a promising approach to mitigate UHI via urban boundary condition modifications, which affect the energy balance. This narrative review discusses the application of green and blue infrastructures in the Asian context by highlighting its progress, challenges, and recommendations. This review is descriptive in nature and includes perspectives on the discussed topics.

    RECENT FINDINGS: Studies on the application of green and blue infrastructures in UHI mitigation are still scant in Asia. Their cooling performance is greatly influenced by their types, size, geometry, surface roughness, spread (threshold distance), temporal scales, topography, pollution levels, prevailing climate, and assessment techniques. Distinct urban characteristics, climatic conditions, environmental risks, lack of awareness and expertise, lack of policy and government incentives, and limited scientific studies are the major challenges in their implementation of UHI mitigation in Asia. Although green and blue infrastructures are associated with urban cooling, more in-depth experimental work and multidisciplinary research collaboration are paramount to exploring its implementation potential in Asia and other countries that share similar urban and environmental characteristics.

    Matched MeSH terms: Cities
  2. Venkatraman G, Giribabu N, Mohan PS, Muttiah B, Govindarajan VK, Alagiri M, et al.
    Chemosphere, 2024 Mar;351:141227.
    PMID: 38253087 DOI: 10.1016/j.chemosphere.2024.141227
    Polycyclic Aromatic Hydrocarbons (PAHs) profoundly impact public and environmental health. Gaining a comprehensive understanding of their intricate functions, exposure pathways, and potential health implications is imperative to implement remedial strategies and legislation effectively. This review seeks to explore PAH mobility, direct exposure pathways, and cutting-edge bioremediation technologies essential for combating the pervasive contamination of environments by PAHs, thereby expanding our foundational knowledge. PAHs, characterised by their toxicity and possession of two or more aromatic rings, exhibit diverse configurations. Their lipophilicity and remarkable persistence contribute to their widespread prevalence as hazardous environmental contaminants and byproducts. Primary sources of PAHs include contaminated food, water, and soil, which enter the human body through inhalation, ingestion, and dermal exposure. While short-term consequences encompass eye irritation, nausea, and vomiting, long-term exposure poses risks of kidney and liver damage, difficulty breathing, and asthma-like symptoms. Notably, cities with elevated PAH levels may witness exacerbation of bronchial asthma and chronic obstructive pulmonary disease (COPD). Bioremediation techniques utilising microorganisms emerge as a promising avenue to mitigate PAH-related health risks by facilitating the breakdown of these compounds in polluted environments. Furthermore, this review delves into the global concern of antimicrobial resistance associated with PAHs, highlighting its implications. The environmental effects and applications of genetically altered microbes in addressing this challenge warrant further exploration, emphasising the dynamic nature of ongoing research in this field.
    Matched MeSH terms: Cities
  3. Duan X, Gu H, Lam SS, Sonne C, Lu W, Li H, et al.
    Chemosphere, 2024 Feb;349:140821.
    PMID: 38042424 DOI: 10.1016/j.chemosphere.2023.140821
    The rapid growth of population and economy has led to an increase in urban air pollutants, greenhouse gases, energy shortages, environmental degradation, and species extinction, all of which affect ecosystems, biodiversity, and human health. Atmospheric pollution sources are divided into direct and indirect pollutants. Through analysis of the sources of pollutants, the self-functioning of different plants can be utilized to purify the air quality more effectively. Here, we explore the absorption of greenhouse gases and particulate matter in cities as well as the reduction of urban temperatures by plants based on international scientific literature on plant air pollution mitigation, according to the adsorption, dust retention, and transpiration functions of plants. At the same time, it can also reduce the occurrence of extreme weather. It is necessary to select suitable tree species for planting according to different plant functions and environmental needs. In the context of tight urban land use, the combination of vertical greening and urban architecture, through the rational use of plants, has comprehensively addressed urban air pollution. In the future, in urban construction, attention should be paid to the use of heavy plants and the protection and development of green spaces. Our review provides necessary references for future urban planning and research.
    Matched MeSH terms: Cities
  4. Thapa S, Zaki SA
    J Therm Biol, 2024 Feb;120:103809.
    PMID: 38364574 DOI: 10.1016/j.jtherbio.2024.103809
    The sub-Himalayan region extends over 2500 km, extending over several countries. Though the effects of climate change is widely anticipated in the diverse but fragile ecosystem of the Himalayas, very less research has been conducted on the indoor environment of the buildings in these regions. In this study, a pre-validated model of 3-storey concrete residential building was used to study the indoor performance and thermal comfort in the face of climate change in the 8 (eight) different hill towns (hill stations) located from west to the east. Rise in ambient and indoor conditions were evident as a part of climate change with colder locations being affected the most. The thermal comfort assessment using both the climate chamber based PMV model and adaptive models revealed the decrease in cold related discomfort and increase in hot related discomfort. On an overall, the indoor conditions improved in these cold locations. The indoor and outdoor thermal condition and thermal comfort plummeted significantly with latitude and elevation. The heating demand in the future climate reduced by about 50-70 % in warmer locations, while the cooling demand increased by as much as 1000-2000 % in cold locations, respectively. Additionally, it was seen that the thermal environment and comfort both declined more rapidly with elevation in the locations lying in the western Himalayas as compared to those in the eastern Himalayas.
    Matched MeSH terms: Cities
  5. Yang L, Meng H, Wang J, Wu Y, Zhao Z
    PLoS One, 2024;19(4):e0299729.
    PMID: 38578727 DOI: 10.1371/journal.pone.0299729
    Urban agglomerations are sophisticated territorial systems at the mature stage of city development that are concentrated areas of production and economic activity. Therefore, the study of vulnerability from the perspective of production-living-ecological space is crucial for the sustainable development of the Yellow River Basin and global urban agglomerations. The relationship between productivity, living conditions, and ecological spatial quality is fully considered in this research. By constructing a vulnerability evaluation index system based on the perspectives of production, ecology, and living space, and adopting the entropy value method, comprehensive vulnerability index model, and obstacle factor diagnostic model, the study comprehensively assesses the vulnerability of the urban agglomerations along the Yellow River from 2001 to 2020. The results reveal that the spatial differentiation characteristics of urban agglomeration vulnerability are significant. A clear three-level gradient distribution of high, medium, and low degrees is seen in the overall vulnerability; these correspond to the lower, middle, and upper reaches of the Yellow River Basin, respectively. The percentage of cities with higher and moderate levels of vulnerability did not vary from 2001 to 2020, while the percentage of cities with high levels of vulnerability did. The four dimensions of economic development, leisure and tourism, resource availability, and ecological pressure are the primary determinants of the urban agglomeration's vulnerability along the Yellow River. And the vulnerability factors of various urban agglomerations showed a significant evolutionary trend; the obstacle degree values have declined, and the importance of tourism and leisure functions has gradually increased. Based on the above conclusions, we propose several suggestions to enhance the quality of urban development along the Yellow River urban agglomeration. Including formulating a three-level development strategy, paying attention to ecological and environmental protection, developing domestic and foreign trade, and properly planning and managing the tourism industry.
    Matched MeSH terms: Cities
  6. Wu J, Liew CY
    Environ Sci Pollut Res Int, 2023 Nov;30(51):110499-110514.
    PMID: 37792189 DOI: 10.1007/s11356-023-30139-x
    In recent years, academics have paid more attention to green finance, and public companies have reached a broad consensus on the concept of timely environmental, social, and governance (ESG) disclosure. Due to the close relationship between green finance and ESG, this presents an opportunity to determine whether green finance compels companies to actively disclose ESG. The sample for this study consists of China's non-financial A-share listed companies from 2010 to 2021, and the empirical findings demonstrate that green finance can positively influence the ESG performance of listed companies. Through an analysis of heterogeneity, this study reaches the following conclusions: state-owned enterprises, heavy pollution companies, and companies in low-carbon pilot cities perform better in terms of green finance's role in promoting ESG scoring. This study also introduces market concentration and social trust as the moderating variables, enriching the green finance research framework. Through the analysis of moderating variables, the 'black box' effect of green finance on ESG is disclosed, providing theoretical support for the government and companies to better comprehend the policy effect as well as a reference for reform and experimental promotion of green finance.
    Matched MeSH terms: Cities
  7. Ravindiran G, Hayder G, Kanagarathinam K, Alagumalai A, Sonne C
    Chemosphere, 2023 Oct;338:139518.
    PMID: 37454985 DOI: 10.1016/j.chemosphere.2023.139518
    Clean air is critical component for health and survival of human and wildlife, as atmospheric pollution is associated with a number of significant diseases including cancer. However, due to rapid industrialization and population growth, activities such as transportation, household, agricultural, and industrial processes contribute to air pollution. As a result, air pollution has become a significant problem in many cities, especially in emerging countries like India. To maintain ambient air quality, regular monitoring and forecasting of air pollution is necessary. For that purpose, machine learning has emerged as a promising technique for predicting the Air Quality Index (AQI) compared to conventional methods. Here we apply the AQI to the city of Visakhapatnam, Andhra Pradesh, India, focusing on 12 contaminants and 10 meteorological parameters from July 2017 to September 2022. For this purpose, we employed several machine learning models, including LightGBM, Random Forest, Catboost, Adaboost, and XGBoost. The results show that the Catboost model outperformed other models with an R2 correlation coefficient of 0.9998, a mean absolute error (MAE) of 0.60, a mean square error (MSE) of 0.58, and a root mean square error (RMSE) of 0.76. The Adaboost model had the least effective prediction with an R2 correlation coefficient of 0.9753. In summary, machine learning is a promising technique for predicting AQI with Catboost being the best-performing model for AQI prediction. Moreover, by leveraging historical data and machine learning algorithms enables accurate predictions of future urban air quality levels on a global scale.
    Matched MeSH terms: Cities
  8. Wang G, Wan Y, Ding CJ, Liu X, Jiang Y
    Environ Sci Pollut Res Int, 2023 Oct;30(47):103513-103533.
    PMID: 37704820 DOI: 10.1007/s11356-023-29490-w
    The construction of low-carbon cities is an essential component of sustainable urban development. However, there is a lack of a comprehensive low-carbon city design and evaluation system that incorporates "carbon sink accounting-remote sensing monitoring-numerical modelling-design and application" in an all-around linkage, multi-scale coupling, and localized effects. This paper utilizes the Citespace tool to evaluate low-carbon city design applications by analyzing literature in the Web of Science (WOS) core collection database. The results reveal that low-carbon cities undergo four stages: "measurement-implementation-regulation - management." The research themes are divided into three core clustering evolutionary pathways: "extension of carbon sink functions," "spatialisation of carbon sink systems," and "full-cycle, full-dimensional decarbonisation." Applications include "Utility studies of multi-scale carbon sink assessments," "Correlation analysis of carbon sink influencing factors," "Predictive characterisation of multiple planning scenarios," and "Spatial planning applications of urban sink enhancement." Future low-carbon city construction should incorporate intelligent algorithm technology in real-time to provide a strong design basis for multi-scale urban spatial design with the features of "high-precision accounting, full-cycle assessment and low-energy concept."
    Matched MeSH terms: Cities
  9. Keat-Chuan Ng C, Linus-Lojikip S, Mohamed K, Hss AS
    Int J Med Inform, 2023 Sep;177:105162.
    PMID: 37549500 DOI: 10.1016/j.ijmedinf.2023.105162
    BACKGROUND: Dengue is widespread globally, but it is more severe in hyperendemic regions where the virus, its vectors, and its human hosts naturally occur. The problem is particularly acute in cities, where outbreaks affect a large human population living in a wide array of socio-environmental conditions. Controlling outbreaks will rely largely on systematic data collection and analysis approaches to uncover nuances on a city-by-city basis due to the diversity of factors.

    OBJECTIVE: The main objective of this study is to consolidate and analyse the dengue case dataset amassed by the e-Dengue web-based information system, developed by the Ministry of Health Malaysia, to improve our epidemiological understanding.

    METHODS: We retrieved data from the e-Dengue system and integrated a total of 18,812 cases from 2012 to 2019 (8 years) with meteorological data, geoinformatics techniques, and socio-environmental observations to identify plausible factors that could have caused dengue outbreaks in Ipoh, a hyperendemic city in Malaysia.

    RESULTS: The rainfall trend characterised by a linearity of R2 > 0.99, termed the "wet-dry steps", may be the unifying factor for triggering dengue outbreaks, though it is still a hypothesis that needs further validation. Successful mapping of the dengue "reservoir" contact zones and spill-over diffusion revealed socio-environmental factors that may be controlled through preventive measures. Age is another factor to consider, as the platelet and white blood cell counts in the "below 5" age group are much greater than in other age groups.

    CONCLUSIONS: Our work demonstrates the novelty of the e-Dengue system, which can identify outbreak factors at high resolution when integrated with non-medical fields. Besides dengue, the techniques and insights laid out in this paper are valuable, at large, for advancing control strategies for other mosquito-borne diseases such as malaria, chikungunya, and zika in other hyperendemic cities elsewhere globally.

    Matched MeSH terms: Cities/epidemiology
  10. Tee M, Al Mamun A, Salameh AA
    Environ Sci Pollut Res Int, 2023 Sep;30(42):95475-95492.
    PMID: 37548792 DOI: 10.1007/s11356-023-29129-w
    This study examined (1) the effect of environmental concern, environmental knowledge, and health consciousness on attitude towards eBikes; (2) the effect of eBikes attributes of interest and infrastructure on perceived behavioural control; and finally, (3) the effect of attitude towards eBikes, subjective norms, and perceived behavioural control on eBikes commuting intention and its usage among Malaysian youth. This study adopted a cross-sectional design and convenience sampling, and collected quantitative data from 699 Malaysian youth through an online survey. Findings revealed that (1) environmental concern, environmental knowledge, and health consciousness had a positive and significant impact on attitude towards eBikes; (2) eBikes attributes of interest and infrastructure were positively and significantly related to perceived behavioural control; (3) attitude towards eBikes, subjective norms, and perceived behavioural control had a positive and significant effect on eBikes commuting intention; (4) eBikes commuting intention was positively and significantly related to the usage of eBikes; (5) eBikes commuting intention significantly mediated the relationship between attitude towards eBikes and perceived behavioural control on the usage of eBikes among Malaysian youth; and (6) eBikes commuting intention did not mediate the relationship between social norm and usage of eBikes. Although environmental knowledge and social norm are proven to have a positive and significant relationship, this analysis demonstrated a relatively low effect size. To promote environmental and sustainable development in cities through the mass adoption of eBikes among Malaysian youth, policymakers should highlight the benefits of using eBikes, introduce proper policies, and involve the development of improved and connected cycling paths in the city sustainable infrastructure plans.
    Matched MeSH terms: Cities
  11. Kurniawan TA, Othman MHD, Liang X, Goh HH, Gikas P, Kusworo TD, et al.
    J Environ Manage, 2023 Jul 15;338:117765.
    PMID: 36965421 DOI: 10.1016/j.jenvman.2023.117765
    Digitalization and sustainability have been considered as critical elements in tackling a growing problem of solid waste in the framework of circular economy (CE). Although digitalization can enhance time-efficiency and/or cost-efficiency, their end-results do not always lead to sustainability. So far, the literatures still lack of a holistic view in understanding the development trends and key roles of digitalization in waste recycling industry to benefit stakeholders and to protect the environment. To bridge this knowledge gap, this work systematically investigates how leveraging digitalization in waste recycling industry could address these research questions: (1) What are the key problems of solid waste recycling? (2) How the trends of digitalization in waste management could benefit a CE? (3) How digitalization could strengthen waste recycling industry in a post-pandemic era? While digitalization boosts material flows in a CE, it is evident that utilizing digital solutions to strengthen waste recycling business could reinforce a resource-efficient, low-carbon, and a CE. In the Industry 4.0 era, digitalization can add 15% (about USD 15.7 trillion) to global economy by 2030. As digitalization grows, making the waste sector shift to a CE could save between 30% and 35% of municipalities' waste management budget. With digitalization, a cost reduction of 3.6% and a revenue increase of 4.1% are projected annually. This would contribute to USD 493 billion in an increasing revenue yearly in the next decade. As digitalization enables tasks to be completed shortly with less manpower, this could save USD 421 billion annually for the next decade. With respect to environmental impacts, digitalization in the waste sector could reduce global CO2 emissions by 15% by 2030 through technological solutions. Overall, this work suggests that digitalization in the waste sector contributes net-zero emission to a digital economy, while transitioning to a sustainable world as its social impacts.
    Matched MeSH terms: Cities
  12. Bagheri M, Ibrahim ZZ, Wolf ID, Akhir MF, Talaat WIAW, Oryani B
    Environ Sci Pollut Res Int, 2023 Jul;30(34):81839-81857.
    PMID: 35789462 DOI: 10.1007/s11356-022-21662-4
    The impact of global warming presents an increased risk to the world's shorelines. The Intergovernmental Panel on Climate Change (IPCC) reported that the twenty-first century experienced a severe global mean sea-level rise due to human-induced climate change. Therefore, coastal planners require reasonably accurate estimates of the rate of sea-level rise and the potential impacts, including extreme sea-level changes, floods, and shoreline erosion. Also, land loss as a result of disturbance of shoreline is of interest as it damages properties and infrastructure. Using a nonlinear autoregressive network with an exogenous input (NARX) model, this study attempted to simulate (1991 to 2012) and predict (2013-2020) sea-level change along Merang kechil to Kuala Marang in Terengganu state shoreline areas. The simulation results show a rising trend with a maximum rate of 28.73 mm/year and an average of about 8.81 mm/year. In comparison, the prediction results show a rising sea level with a maximum rate of 79.26 mm/year and an average of about 25.34 mm/year. The database generated from this study can be used to inform shoreline defense strategies adapting to sea-level rise, flood, and erosion. Scientists can forecast sea-level increases beyond 2020 using simulated sea-level data up to 2020 and apply it for future research. The data also helps decision-makers choose measures for vulnerable shoreline settlements to adapt to sea-level rise. Notably, the data will provide essential information for policy development and implementation to facilitate operational decision-making processes for coastal cities.
    Matched MeSH terms: Cities
  13. Guoyan S, Khaskheli A, Raza SA, Ali S
    Environ Sci Pollut Res Int, 2023 Jun;30(26):68143-68162.
    PMID: 37120502 DOI: 10.1007/s11356-023-27136-5
    According to the United Nations Agenda, the 2023 sustainable environment is necessary to secure this planet's future; public-private partnerships investment in energy is crucial to sustainable development. The research examines the quantile association between public-private partnership ventures in energy and environmental degradation in ten developing nations, and data is used from January 1998-December 2016. The advanced econometrics quantile-on-quantile regression approach is used to control the issues of heterogeneity and asymmetric relationship. According to the quantile-on-quantile approach, there is a strong positive association between public-private partnerships in energy and environmental degradation in Argentina, Brazil, Bangladesh, and India. But the negative relationship is observed on different quantiles of China, Malaysia, Mexico, Peru, Thailand, and the Philippines. The findings suggest that the world needs to act as a single community and divert its resources toward renewable energy sources to control climate change; also, to accomplish the UN 15-year road map of Agenda 2023 with 17-SDGs; out of these 17 sustainable goals, SDG-7 is related to affordable and clean energy, SDG-11 is about sustainable cities and communities, and SDG-13 focuses on climate action for sustainable development.
    Matched MeSH terms: Cities
  14. Wang C, Qi F, Liu P, Ibrahim H, Wang X
    Environ Sci Pollut Res Int, 2023 Jun;30(30):75454-75468.
    PMID: 37219774 DOI: 10.1007/s11356-023-27742-3
    Under the new development model, the digital economy has become a new engine to promote the green development of the economy and achieve the goal of "double carbon." Based on panel data from 30 Chinese provinces and cities from 2011 to 2021, the impact of the digital economy on carbon emissions was empirically studied by constructing a panel model and a mediation model. The results show that firstly, the effect of the digital economy on carbon emissions is a non-linear inverted "U" shaped relationship, and this conclusion still holds after a series of robustness tests; secondly, the results of the benchmark regression show that economic agglomeration is an essential mechanism through which the digital economy affects carbon emissions and that the digital economy can indirectly suppress carbon emissions through economic agglomeration. Finally, the results of the heterogeneity analysis show that the impact of the digital economy on carbon emissions varies according to the level of regional development, and its effect on carbon emissions is mainly in the eastern region, while its impact on the central and western regions is weaker, indicating that the impact effect is primarily in developed regions. Therefore, the government should accelerate the construction of new digital infrastructure and implement the development strategy of the digital economy according to local conditions to promote a more significant carbon emission reduction effect of the digital economy.
    Matched MeSH terms: Cities*
  15. Ng SI, Lim XJ, Hsu HC, Chou CC
    Health Promot Int, 2023 Jun 01;38(3).
    PMID: 35437585 DOI: 10.1093/heapro/daac040
    The purpose of this study was to examine the association between age-friendliness of a city, loneliness and depression moderated by internet use among older people during the coronavirus disease 2019 (COVID-19) pandemic. The survey was from 'The 2020 Survey of Needs Assessment for a Safe Community and Age-Friendly City' in Xinyi District, Taipei, which was conducted by face-to-face interviews with community-based older adults who were aged 65 and above from one district of Taipei City from May to June 2020 (n = 335). Partial least square structural equation modeling and the SPSS PROCESS macro were used for data analysis. Two domains of an age-friendly city (housing and community support and health services) were found to be associated with reduced loneliness, while one (respect and social inclusion) was associated with decreased depression. The age-friendliness of cities mitigates depression through moderator (internet use) and mediation (loneliness) mechanisms. Although some age-friendly domains of the city reduced loneliness and depression directly, the age-friendliness-loneliness-depression mechanism held true only for older adults who used the internet and not for nonusers. Maintaining the age-friendliness of an environment is beneficial to mental health, and internet use is a necessary condition to gain optimum benefits from age-friendly initiatives. Policy suggestions are discussed.
    Matched MeSH terms: Cities
  16. Yu H, Zahidi I, Liang D
    Environ Res, 2023 May 15;225:115634.
    PMID: 36889570 DOI: 10.1016/j.envres.2023.115634
    Dexing City is an important mining city in China, abounding in copper ore, lead ore, zinc ore, and other metal resources, and there are two large open-pit mines in its territory, Dexing Copper Mine and Yinshan Mine. The two open-pit mines have been expanding their mining production scale since 2005, with frequent mining activities; and the expansion of the pits and the discharge of solid waste will undoubtedly increase the land use and cause the destruction of vegetation. Therefore, we plan to visualize the change in vegetation cover in Dexing City from 2005 to 2020 and the expansion of the two open-pit mines by calculating changes of the Fractional Vegetation Cover (FVC) in the mining area using remote sensing technology. In this study, we calculated the FVC of Dexing City in 2005, 2010, 2015 and 2020 using data from NASA Landsat Database via ENVI image analysis software, plotted the FVC reclassified maps via ArcGIS, and conducted field investigations in the mining areas of Dexing City. In this way, we can visualize the spatial and temporal changes of vegetation cover in Dexing City from 2005 to 2020, and appreciate the situation of mining expansion and its solid waste discharge in Dexing City. The results of this study showed that the vegetation cover of Dexing City remained stable from 2005 to 2020, as the expansion of mining scale and mine pits was accompanied by active environmental management and land reclamation, setting a positive example for other mining cities.
    Matched MeSH terms: Cities
  17. Yu H, Zahidi I, Liang D
    Environ Res, 2023 May 15;225:115613.
    PMID: 36870554 DOI: 10.1016/j.envres.2023.115613
    Dartford, a town in England, heavily relied on industrial production, particularly mining, which caused significant environmental pollution and geological damage. However, in recent years, several companies have collaborated under the guidance of the local authorities to reclaim the abandoned mine land in Dartford and develop it into homes, known as the Ebbsfleet Garden City project. This project is highly innovative as it not only focuses on environmental management but also provides potential economic benefits, employment opportunities, builds a sustainable and interconnected community, fosters urban development and brings people closer together. This paper presents a fascinating case that employs satellite imagery, statistical data, and Fractional Vegetation Cover (FVC) calculations to analyse the re-vegetation progress of Dartford and the development of the Ebbsfleet Garden City project. The findings indicate that Dartford has successfully reclaimed and re-vegetated the mine land, maintaining a high vegetation cover level while the Ebbsfleet Garden City project has advanced. This suggests that Dartford is committed to environmental management and sustainable development while pursuing construction projects.
    Matched MeSH terms: Cities
  18. Shahab A, Hui Z, Rad S, Xiao H, Siddique J, Huang LL, et al.
    Environ Geochem Health, 2023 Mar;45(3):585-606.
    PMID: 35347514 DOI: 10.1007/s10653-022-01255-3
    In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
    Matched MeSH terms: Cities
  19. Tao H, Hashim BM, Heddam S, Goliatt L, Tan ML, Sa'adi Z, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(11):30984-31034.
    PMID: 36441299 DOI: 10.1007/s11356-022-24153-8
    Urban areas are quickly established, and the overwhelming population pressure is triggering heat stress in the metropolitan cities. Climate change impact is the key aspect for maintaining the urban areas and building proper urban planning because spreading of the urban area destroyed the vegetated land and increased heat variation. Remote sensing-based on Landsat images are used for investigating the vegetation circumstances, thermal variation, urban expansion, and surface urban heat island or SUHI in the three megacities of Iraq like Baghdad, Erbil, and Basrah. Four satellite imageries are used aimed at land use and land cover (LULC) study from 1990 to 2020, which indicate the land transformation of those three major cities in Iraq. The average annually temperature is increased during  30 years like Baghdad (0.16 °C), Basrah (0.44 °C), and Erbil (0.32 °C). The built-up area is increased 147.1 km2 (Erbil), 217.86 km2 (Baghdad), and 294.43 km2 (Erbil), which indicated the SUHI affects the entire area of the three cities. The bare land is increased in Baghdad city, which indicated the local climatic condition and affected the livelihood. Basrah City is affected by anthropogenic activities and most areas of Basrah were converted into built-up land in the last 30 years. In Erbil, agricultural land (295.81 km2) is increased. The SUHI study results indicated the climate change effect in those three cities in Iraq. This study's results are more useful for planning, management, and sustainable development of urban areas.
    Matched MeSH terms: Cities
  20. Romali NS, Ardzu FAB, Suzany MN
    Water Sci Technol, 2023 Mar;87(6):1515-1528.
    PMID: 37001162 DOI: 10.2166/wst.2023.060
    Urbanization is one of the leading causes of urban flooding as rapid development produces more impervious areas in cities. The application of green roofs is regarded as an effective technology to minimize the adverse effects of urban development. The stormwater management capacities of green roofs have been extensively acknowledged, and they can retain rainfall and detain runoff. Nevertheless, Malaysia has experienced few green roof applications, and only limited literature is available concerning such topics. Additionally, the incorporation of waste and recycled material in green roof designs must be considered to ensure such projects benefit the environment as well as the economy. Therefore, the construction of a green roof utilizing recycled waste materials was attempted. An extensive green roof was constructed using beach morning glory and creeping ox-eye plants as vegetation layers, along with coconut waste, i.e., coconut fiber and coconut shell, as the medium for the filter and drainage layer, respectively. According to the results, the use of recycled coconut waste materials in the green roof operations reduced the peak flow by as much as 86%, while the use of commercial materials led to a reduction of 67%.
    Matched MeSH terms: Cities
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links