Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Kanakaraju D, Jasni MAA, Pace A, Ya MH
    Environ Sci Pollut Res Int, 2021 Dec;28(48):68834-68845.
    PMID: 34282548 DOI: 10.1007/s11356-021-15440-x
    The performance of Cu/TiO2/FA composite, a hybrid adsorbent-photocatalyst consisting of copper-doped titania particles supported on fly ash, was optimized, under visible light irradiation, for the removal of the model dye pollutant methyl orange (MO) by using a response surface methodology and Box-Behnken experimental design. Three independent variables were considered for the optimization study: catalyst/solvent dosage (0.5 - 2.0 g/L), irradiation time (30-120 min), and the initial concentration (5- 25 ppm) of the dye. A 99.91% rate of removal was achieved using 2 g/L dosage, 5 ppm initial concentration, and 100 min of irradiation time as the optimal operating conditions. The recorded trends support the hypothesis of a combined and synergic adsorption-photocatalytic degradation process which fully exploits the "capture and destroy" approach for pollutant removal.
    Matched MeSH terms: Coal Ash*
  2. Jhatial AA, Goh WI, Mastoi AK, Traore AF, Oad M
    Environ Sci Pollut Res Int, 2022 Jan;29(2):2985-3007.
    PMID: 34383212 DOI: 10.1007/s11356-021-15076-x
    Rapid urbanization and 'concretization' have increased the use of concrete as the preferred building material. However, the production of cement and other concrete-related activities, contribute significantly to both the carbon dioxide emissions and climate change. Agro-industrial wastes such as Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) have been utilized in concrete as supplementary cementitious materials, to reduce the cement content, in order to minimize the carbon footprint and the environmental pollution associated with the dumping of waste. Both POFA and ESP have been utilized in ternary binder foamed concrete; however, higher content of cement replacement tends to reduce the concrete's strength significantly. Therefore, this research was conducted to study the influence of ternary binder foamed concrete, incorporating 30% POFA and 5-15% ESP by weight of the total binder, when reinforced with polypropylene (PP) fibres. Based on the results, the ternary binder foamed concrete showed better strength than the control foamed concrete due to the pozzolanic reaction and the addition of PP fibres slightly improved the strength. Furthermore, ternary binder foamed concrete can reduce up to 33.79% of the total CO2 emissions. In terms of cost, all ternary binder foamed concrete mixes reduced the overall cost of the mix. The lowest cost per 1 MPa was achieved by ternary binder foamed concrete mix which incorporated 30% POFA, 5% ESP and 0.20% PP fibres. However, the optimum S5 ternary binder foamed concrete mix, which incorporated 30% POFA, 10% ESP and 0.20% PP fibres, exhibited a cost of $3.74 per 1 MPa strength, which was $1.1 lower than the control foamed concrete. PP reinforced ternary binder foamed concrete is an eco-efficient and cost-effective concrete that can be used in numerous civil engineering applications, mitigating the environmental and the emissions generated by agro-industrial waste.
    Matched MeSH terms: Coal Ash*
  3. Wong S, Mah AXY, Nordin AH, Nyakuma BB, Ngadi N, Mat R, et al.
    Environ Sci Pollut Res Int, 2020 Mar;27(8):7757-7784.
    PMID: 32020458 DOI: 10.1007/s11356-020-07933-y
    The rapidly increasing generation of municipal solid waste (MSW) threatens the environmental integrity and well-being of humans at a global level. Incineration is regarded as a technically sound technology for the management of MSW. However, the effective management of the municipal solid waste incineration (MSWI) ashes remains a challenge. This article presents the global dynamics of MSWI ashes research from 1994 to 2018 based on a bibliometric analysis of 1810 publications (research articles and conference proceedings) extracted from the Web of Science database, followed by a comprehensive summary on the research developments in the field. The results indicate the rapid growth of annual publications on MSWI ashes research, with China observed as the most productive country within the study period. Waste Management, Journal of Hazardous Materials, Chemosphere and Waste Management & Research, which accounted for 35.42% of documents on MSWI research, are the most prominent journals in the field. The most critical thematic areas on this topic are MSWI ashes characterisation, dioxin emissions from fly ash, valorisation of bottom ash and heavy metal removal. The evolution of MSWI ashes treatment technologies is also discussed, together with the challenges and future research directions. This is the first bibliometric analysis on global MSWI ashes research based on a sufficiently large dataset, which could provide new insights for researchers to initiate further research with leading institutions/authors and ultimately advance this research field.
    Matched MeSH terms: Coal Ash/analysis; Coal Ash/chemistry*
  4. Shahbaz M, Yusup S, Inayat A, Patrick DO, Pratama A, Ammar M
    Bioresour Technol, 2017 Oct;241:284-295.
    PMID: 28575792 DOI: 10.1016/j.biortech.2017.05.119
    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe2O3, MgO, Al2O3, and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup.
    Matched MeSH terms: Coal Ash*
  5. Kumar R, Shafiq N, Kumar A, Jhatial AA
    Environ Sci Pollut Res Int, 2021 Sep;28(35):49074-49088.
    PMID: 33928510 DOI: 10.1007/s11356-021-13918-2
    Research for alternative binders has become a necessity due to cement's embodied carbon, climate change, and depletion of natural resources. These binders could potentially reduce our reliance on cement as the sole binder for concrete while simultaneously enhancing the functional characteristics of concrete. Theoretically, the use of finer particles in the cement matrix densifies the pore structure of concrete and results in improved properties. To validate this hypothesis, current research was designed to investigate how the value-added benefits of nano-silica (NS) and metakaolin (MK) in fly ash (FA)-blended cement affect the mechanical and durability characteristics of concrete when used as ternary and quaternary blends. Additionally, the cost-benefit analysis and environmental impact assessment were conducted. It was observed that the synergy of MK and NS used in FA-blended cement had a greater impact on enhancing the functional characteristics of concrete, while 10% MK as ordinary Portland cement (OPC) replacement and 1% NS as an additive in FA-blended OPC concrete was the optimum combination which achieved 94-MPa compressive strength at the age of 91 days and showed more than 25% increment in the flexural and splitting tensile strengths compared to the control mix (MS00). The ultrasonic pulse velocity and dynamic modulus of elasticity were significantly improved, while a significant reduction in chloride migration of 50% was observed. In terms of environmental impact, MS100 (30% FA and 10% MK) exhibited the least embodied CO2 emissions of 319.89 kgCO2/m3, while the highest eco-strength efficiency of 0.268 MPa/kgCO2·m-3 with respect to 28-day compressive strength was exhibited by MS101. In terms of cost-benefit, MS00 was determined the cheapest, while the addition of MK and NS increased the cost. The lowest cost of producing 1 MPa was exhibited by MS01 with a merely 0.04-$/MPa/m3 reduction compared to MS00.
    Matched MeSH terms: Coal Ash*
  6. Kumar A, Bheel N, Ahmed I, Rizvi SH, Kumar R, Jhatial AA
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1210-1222.
    PMID: 34350574 DOI: 10.1007/s11356-021-15734-0
    The production of cement releases an enormous amount of CO2 into the environment. Besides, industrial wastes like silica fume and fly ash need effective utilization to reduce their impacts on the environment. This research aims to explore the influence of silica fume (SF) and fly ash (FA) individually and combine them as binary cementitious material (BCM) on the hardened properties and embodied carbon of roller compacted concrete (RCC). A total of ten mixes were prepared with 1:2:4 mix ratio at the different water-cement ratios to keep the zero slump of roller compacted concrete. However, the replacement proportions for SF were 5%-15%, and FA were 5%-15% by the weight of cement individually and combine in roller compacted concrete for determining the hardened properties and embodied carbon. In this regard, several numbers of concrete specimens (cubes and cylinders) were cast and cured for 7 and 28 days correspondingly. It was observed that the compressive strength of RCC is boosted by 33.6 MPa and 30.6 MPa while using 10% of cement replaced with SF and FA individually at 28 days, respectively. Similarly, the splitting tensile strength of RCC is enhanced by 3.5 MPa at 10% cement replaced with SF and FA on 28 days, respectively. The compressive and splitting tensile strength of RCC is increased by 34.2 MPa and 3.8 MPa at SF7.5FA7.5 as BCM after 28 days consistently. In addition, the water absorption of RCC decreased while using SF and FA as cementitious material individually and together at 28 days. Besides, the embodied carbon of RCC decreased with increasing the replacement level of SF and FA by the mass of cement individually and combined.
    Matched MeSH terms: Coal Ash*
  7. Bheel N, Aluko OG, Khoso AR
    Environ Sci Pollut Res Int, 2022 Apr;29(18):27399-27410.
    PMID: 34982384 DOI: 10.1007/s11356-021-18455-6
    The quest for eco-sustainable binders like agro-wastes in concrete to reduce the carbon footprint caused by cement production has been ongoing among researchers recently. The application of agro-waste-based cementitious materials in binary concrete has been said to improve concrete performance lately. Coconut and groundnut shells are available in abundant quantities and disposed of as waste in many world regions. Therefore, the use of coconut shell ash (CSA) and groundnut shell ash (GSA) in a ternary blend provides synergistic benefits with Portland cement (PC) and may be sustainably utilized in concrete as ternary cementitious material (TCM). Therefore, this study presents concrete performance with CSA and GSA in a grade 30 ternary concrete. Two hundred ten numbers of standard concrete samples were cast for checking the fresh and mechanical properties of concrete at curing ages of 7, 28, and 90 days. After 28-day curing, the experimental results show an increment in compressive, tensile, and flexural strength by 11.62%, 8.39%, and 9.46% at 10% TCM cement replacement, respectively. The concrete density and permeability coefficient reduce as TCM's content increases. The modulus of elasticity after 90 days improved with the addition of TCM. The concrete's sustainability assessment indicated that the emitted carbon for concrete decreased by around 16% using 20% TCM in concrete. However, the workability of fresh concrete declines as TCM content increases.
    Matched MeSH terms: Coal Ash*
  8. Zakka WP, Lim NHAS, Khun MC, Samadi M, Aluko O, Odubela C
    Environ Sci Pollut Res Int, 2024 Apr;31(17):25129-25146.
    PMID: 38468004 DOI: 10.1007/s11356-024-32786-0
    Every structure might be exposed to fire at some point in its lifecycle. The ability of geopolymer composites to withstand the effects of fire damage early before it is put out is of great importance. This study examined the effects of fire on geopolymer composite samples made with high-calcium fly ash and alkaline solution synthesised from waste banana peduncle and silica fume. A ratio of 0.30, 0.35, and 0.4 was used in the study for the alkaline solution to fly ash. Also used were ratios of 0.5, 0.75, and 1 for silica oxide (silica fume) to potassium hydroxide ratio. The strength loss, residual compressive strength, percentage strength loss, relative residual compressive strength, ultrasonic pulse velocity, and microstructural properties of the thirteen mortar mixes were measured after exposure to temperatures of 200, 400, 600, and 800 °C for 1 h, respectively. The results reveal that geopolymer samples exposed to elevated temperatures showed great dimensional stability with no visible surface cracks. There was a colour transition from dark grey to whitish brown for the green geopolymer mortar and brown to whitish brown for the control sample. As the temperature rose, weight loss became more pronounced, with 800 °C producing the most significant weight reduction. The optimum mixes had a residual compressive strength of 25.02 MPa after being exposed to 200 °C, 18.72 MPa after being exposed to 400 °C, 14.04 MPa after being exposed to 600 °C, and 7.41 MPa after being exposed to 800 °C. The control had a residual compressive strength of 8.45 MPa after being exposed to 200 °C, 6.67 MPa after being exposed to 400 °C, 3.16 MPa after being exposed to 600 °C, and 2.23 MPa after being exposed to 800 °C. The relative residual compressive strength decreases for green geopolymer mortar are most significant at 600 and 800 °C, with an average decrease of 0.47 and 0.30, respectively. The microstructure of the samples revealed various phase changes and new product formations as the temperature increased.
    Matched MeSH terms: Coal Ash*
  9. Hermawan AA, Teh KL, Talei A, Chua LHC
    J Environ Manage, 2021 Nov 01;297:113298.
    PMID: 34280854 DOI: 10.1016/j.jenvman.2021.113298
    The discharge of high levels of heavy metals into the environment is of concern due to its toxicity to aquatic life and potential human health impacts. Biofiltration systems have been used in urban environments to address nutrient contamination, but there is also evidence that such systems can be effective in reducing heavy metals concentration in stormwater. However, the accumulation pattern of heavy metals and lifespan of such systems, which are important in engineering design, have not been thoroughly explored. This study investigated the accumulation patterns of lead (Pb), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe), which are common in urban runoff, in non-vegetated filtration columns using three different types of filter media, namely sand (S), and mixtures of sand with fly ash (sand-fly ash mix, SF), and with zeolite (sand-zeolite mix, SZ). The columns were assessed in terms of infiltration rate, the mass of heavy metals accumulation at different depths, and formation of crust layer (schmutzdecke) at the surface. The results show that most of the heavy metals accumulated at the top 5-10 cm of the filter media. However, Zn was found adsorbed to a depth of 15 cm in S and SZ columns, while Mn and Fe were present in column S throughout the entire 30 cm depth of the filter media. The presence especially of Zn, Mn, and Fe in the deeper portions of the filter media before the top 5 cm layer reached its maximum adsorption capacity, hints that transport to the deeper layers is not necessarily dependent on saturation of the upper layers for these heavy metals. SF accumulated heavy metals most at the top 5 cm of the filter media layer, and retained twice the mass of heavy metals in the crust layer, compared to S and SZ columns. SF also yielded the lowest value of infiltration rate of 31 mm/h. Considering both metals accumulation and clogging potential of the filter media, the periodic maintenance of these systems is suggested to be approximately between 1.5 and 3 years.
    Matched MeSH terms: Coal Ash
  10. Asnor Azrin Sabuti, Che Abd Rahim Mohamed, Zaharudin Ahmad
    MyJurnal
    Various environmental samples (seawater, TSS, sediment, rainwater and fly ash) from eight different stations near Kapar coastal area were analyzed. The 210 Po activity concentrations in liquid samples (seawater and rainwater) varied between 0.34 ± 0.03 mBq L-1 to 22.44 ± 0.53 mBq L-1 . Whereas the concentrations in particulate samples (TSS, sediment and fly ash) varied between 43.79 ± 2.31 Bqkg-1 to 364.48 ± 5.43 Bqkg-1 . Results also showed the radioactivity in Kapar coastal is higher than most of Malaysian coast, reaching a factor of seven. This condition is mainly due to the operation of a coal-fired power plant nearby. This study also clarify the variability of 210 Po in environment was strongly influenced from rainfall events especially during wet seasons.
    Matched MeSH terms: Coal Ash
  11. Abdulkareem OA, Abdullah MMAB, Hussin K, Ismail KN, Binhussain M
    Materials (Basel), 2013 Oct 09;6(10):4450-4461.
    PMID: 28788339 DOI: 10.3390/ma6104450
    This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates.
    Matched MeSH terms: Coal Ash
  12. Bheel N, Sohu S, Jhatial AA, Memon NA, Kumar A
    Environ Sci Pollut Res Int, 2022 Jan;29(4):5207-5223.
    PMID: 34420161 DOI: 10.1007/s11356-021-16034-3
    This experimental research was conducted to study the combined effect of agricultural by-product wastes on the properties of concrete. The coconut shell ash (CSA) was utilized to substitute cement content ranging from 0 to 20% by weight of total binder and sugarcane bagasse ash (SCBA) to substitute fine aggregates (FA) ranging from 0 to 40% by weight of total FA. In this regard, a total of 300 concrete specimens (cylinders and cubes) were prepared using 1:1.5:3 mix proportions with a 0.52 water-binder ratio. The study investigated the workability, density, permeability, and mechanical properties in terms of compressive and splitting tensile strengths. Additionally, the total embodied carbon for all mix proportions was calculated. It was observed that with an increase in CSA and SCBA contents, the workability, density, and permeability reduced significantly. Due to CSA and SCBA being pozzolanic materials, a gain in compressive and splitting tensile strengths was observed for certain concrete mixes, after which the strength decreased. The increase in embodied carbon of SCBA increased the total embodied carbon of concrete; however, it can be said that C15S40 which consists of 15% CSA and 40% SCBA is the optimum mix that achieved 28.75 MPa and 3.05 MPa compressive and tensile strength, respectively, a reduction of 4% total embodied carbon.
    Matched MeSH terms: Coal Ash
  13. Channa SH, Mangi SA, Bheel N, Soomro FA, Khahro SH
    Environ Sci Pollut Res Int, 2022 Jan;29(3):3555-3564.
    PMID: 34387820 DOI: 10.1007/s11356-021-15877-0
    Globally, concrete is widely implemented as a construction material and is progressively being utilized because of growth in urbanization. However, limited resources and gradual depravity of the environment are forcing the research community to obtain alternative materials from large amounts of agro-industrial wastes as a partial replacement for ordinary cement. Cement is a main binding resource in concrete production. To reduce environmental problems associated with waste, this study considered the recycling of agro-industrial wastes, such as sugarcane bagasse ash (SCBA), rice husk ash (RHA), and others, into cement, and to finally bring sustainable and environmental-friendly concrete. This study considered 5%, 10%, and 15% of SBCA and RHA individually to replace ordinary Portland cement (OPC) by weight method then combined both ashes as 10%, 20%, and 30% to replace OPC to produce sustainable concrete. It was experimentally declared that the strength performance of concrete was reduced while utilizing SCBA and RHA individually and combined as supplementary cementitious material (SCM) at 7, 28, 56, and 90 days, respectively. Moreover, the initial and final setting time is increased as the quantity of replacement level of OPC with SCBA and RHA separates and together as SCM in the mixture. Based on experimental findings, it was concluded that the use of 5% of SCBA and 5% of RHA as cement replacement material individually or combined in concrete could provide appropriate results for structural applications in concrete.
    Matched MeSH terms: Coal Ash
  14. Bheel N, Ali MOA, Tafsirojjaman, Khahro SH, Keerio MA
    Environ Sci Pollut Res Int, 2022 Jan;29(4):5224-5239.
    PMID: 34417691 DOI: 10.1007/s11356-021-15954-4
    In recent years, the research direction is shifted toward introducing new supplementary cementitious materials (SCM) in lieu of in place of Portland cement (PC) in concrete as its production emits a lot of toxic gases in the atmosphere which causes environmental pollution and greenhouse gases. SCM such as sugarcane bagasse ash (SCBA), metakaolin (MK), and millet husk ash (MHA) are available in abundant quantities and considered as waste products. The primary aim of this experimental study is to investigate the effect of SCBA, MK, and MHA on the fresh and mechanical properties of concrete mixed which contributes to sustainable development. A total of 228 concrete specimens were prepared with targeted strength of 25MPa at 0.52 water-cement ratio and cured at 28 days. It is found that the compressive strength and split tensile strength were enhanced by 17% and 14.28%, respectively, at SCBA4MK4MHA4 (88% PC, 4% SCBA, 4% MK, and 4% MHA) as ternary cementitious material (TCM) in concrete after 28 days. Moreover, the permeability and density of concrete are found to be reduced when SCBA, MK, and MHA are used separately and combined as TCM increases in concrete at 28 days, respectively. The results showed that the workability of the fresh concrete was decreased with the increase of the percentage of SCBA, MK, and MHA separately and together as TCM in concrete.
    Matched MeSH terms: Coal Ash
  15. Mehmannavaz T, Ismail M, Radin Sumadi S, Rafique Bhutta MA, Samadi M, Sajjadi SM
    ScientificWorldJournal, 2014;2014:461241.
    PMID: 24696646 DOI: 10.1155/2014/461241
    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.
    Matched MeSH terms: Coal Ash/chemistry*
  16. Amin YM, Khandaker MU, Shyen AK, Mahat RH, Nor RM, Bradley DA
    Appl Radiat Isot, 2013 Oct;80:109-16.
    PMID: 23891979 DOI: 10.1016/j.apradiso.2013.06.014
    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of (226)Ra, (232)Th and (40)K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Raeq) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 μSv and 220 μSv, respectively.
    Matched MeSH terms: Coal Ash
  17. Cheng-Yong H, Yun-Ming L, Abdullah MM, Hussin K
    Sci Rep, 2017 03 27;7:45355.
    PMID: 28345643 DOI: 10.1038/srep45355
    This paper presents a comparative study of the characteristic of unfoamed and foamed geopolymers after exposure to elevated temperatures (200-800 °C). Unfoamed geopolymers were produced with Class F fly ash and sodium hydroxide and liquid sodium silicate. Porous geopolymers were prepared by foaming with hydrogen peroxide. Unfoamed geopolymers possessed excellent strength of 44.2 MPa and degraded 34% to 15 MPa in foamed geopolymers. The strength of unfoamed geopolymers decreased to 5 MPa with increasing temperature up to 800 °C. Foamed geopolymers behaved differently whereby they deteriorated to 3 MPa at 400 °C and increased up to 11 MPa at 800 °C. Even so, the geopolymers could withstand high temperature without any disintegration and spalling up to 800 °C. The formation of crystalline phases at higher temperature was observed deteriorating the strength of unfoamed geopolymers but enhance the strength of foamed geopolymers. In comparison, foamed geopolymer had better thermal resistance than unfoamed geopolymers as pores provide rooms to counteract the internal damage.
    Matched MeSH terms: Coal Ash
  18. Shah SN, Tan TH, Tey OW, Leong GW, Chin YS, Yuen CW, et al.
    Sci Prog, 2022;105(2):368504221091186.
    PMID: 35379044 DOI: 10.1177/00368504221091186
    Lightweight cementitious composite (LCC) produced by incorporating lightweight silica aerogel was explored in this study. Silica aerogel was incorporated as 60% replacement of fine aggregate (sand/crushed glass) in producing the LCC. The effect of aerogel on the drying shrinkage and alkali-silica expansion of LCC was evaluated and compared with those of lightweight expanded perlite aggregate. At the density of 1600  ±  100 kg/m3, the aerogel/ expanded perlite LCC had attained compressive strength of about 17/24 MPa and 22/26 MPa in mixtures with sand and crushed glass as a fine aggregate, respectively. The inclusion of aerogel and expanded perlite increased the drying shrinkage. The drying shrinkage of aerogel LCC was up to about 3 times of the control mixtures. Although the presence of aerogel and expanded perlite could reduce the alkali-silica expansion when partially replacing crushed glass, the aerogel-glass LCC still recorded expansion exceeding the maximum limit of 0.10% at 14 days. However, when 15% cement was replaced with fly ash and granulated blast furnace slag, the alkali-silica expansion was reduced to 0.03% and 0.10%, respectively. Microstructural observations also revealed that the aerogel with fly ash can help in reducing the alkali-silica expansion in mixes containing the reactive crushed glass aggregate.
    Matched MeSH terms: Coal Ash
  19. Ranjbar N, Mehrali M, Behnia A, Javadi Pordsari A, Mehrali M, Alengaram UJ, et al.
    PLoS One, 2016;11(1):e0147546.
    PMID: 26807825 DOI: 10.1371/journal.pone.0147546
    As a cementitious material, geopolymers show a high quasi-brittle behavior and a relatively low fracture energy. To overcome such a weakness, incorporation of fibers to a brittle matrix is a well-known technique to enhance the flexural properties. This study comprehensively evaluates the short and long term impacts of different volume percentages of polypropylene fiber (PPF) reinforcement on fly ash based geopolymer composites. Different characteristics of the composite were compared at fresh state by flow measurement and hardened state by variation of shrinkage over time to assess the response of composites under flexural and compressive load conditions. The fiber-matrix interface, fiber surface and toughening mechanisms were assessed using field emission scan electron microscopy (FESEM) and atomic force microscopy (AFM). The results show that incorporation of PPF up to 3 wt % into the geopolymer paste reduces the shrinkage and enhances the energy absorption of the composites. While, it might reduce the ultimate flexural and compressive strength of the material depending on fiber content.
    Matched MeSH terms: Coal Ash
  20. Ahmad A, Ghufran R, Al-Hosni TK
    J Environ Health Sci Eng, 2019 Dec;17(2):1195-1203.
    PMID: 32030185 DOI: 10.1007/s40201-019-00434-2
    To investigate the interaction of zinc oxide nanoparticles (ZnO NPs) with fly ash soil (FAS) for the reduction of metals from FAS by Parthenium hysterophorus were studied. The average accumulation of metals by P. hysterophorus stem were Fe 79.6%; Zn 88.5%; Cu 67.5%; Pb 93.6%; Ni 43.5% and Hg 39.4% at 5.5 g ZnO NP. The concentration of ZnO NP at 1.5 g did not affect the metals accumulation, however at 5.5 g ZnO NP showed highest metal reduction was 96.7% and at 10.5-15.5 g ZnO NP of 19.8%. The metal reduction rate was R
    max
    for Fe 16.4; Zn 21.1; Pb 41.9; Hg 19.1 was higher than Ni 6.4 and Cu 11.3 from the FAS at 5.5 g ZnO NP whereas, the reduction rate of Pb showed highest. With doses of 5.5 g ZnO NP the biomass increased upto 78%; the metal reduced upto 98.7% with the share of 100% ZnO NP from FAS. Further investigation with phytotoxicity the plant reactive oxygen species (ROS) production were affected due was mainly due to the recovery of metals from FAS (R2 = 0.99).
    Matched MeSH terms: Coal Ash
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links