Displaying publications 1 - 20 of 188 in total

Abstract:
Sort:
  1. Mohd Chachuli SA, Hamidon MN, Mamat MS, Ertugrul M, Abdullah NH
    Sensors (Basel), 2018 Aug 01;18(8).
    PMID: 30071579 DOI: 10.3390/s18082483
    High demand of semiconductor gas sensor works at low operating temperature to as low as 100 °C has led to the fabrication of gas sensor based on TiO₂ nanoparticles. A sensing film of gas sensor was prepared by mixing the sensing material, TiO₂ (P25) and glass powder, and B₂O₃ with organic binder. The sensing film was annealed at temperature of 500 °C in 30 min. The morphological and structural properties of the sensing film were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The gas sensor was exposed to hydrogen with concentration of 100⁻1000 ppm and was tested at different operating temperatures which are 100 °C, 200 °C, and 300 °C to find the optimum operating temperature for producing the highest sensitivity. The gas sensor exhibited p-type conductivity based on decreased current when exposed to hydrogen. The gas sensor showed capability in sensing low concentration of hydrogen to as low as 100 ppm at 100 °C.
    Matched MeSH terms: Cold Temperature
  2. Reddy LJ, Kumar PS, Pandrangi SL, Chikati R, Srinivasulu C, John A, et al.
    Appl Biochem Biotechnol, 2023 Apr;195(4):2743-2766.
    PMID: 36422804 DOI: 10.1007/s12010-022-04215-w
    The majority of the Earth's ecosystem is frigid and frozen, which permits a vast range of microbial life forms to thrive by triggering physiological responses that allow them to survive in cold and frozen settings. The apparent biotechnology value of these cold-adapted enzymes has been targeted. Enzymes' market size was around USD 6.3 billion in 2017 and will witness growth at around 6.8% CAGR up to 2024 owing to shifting consumer preferences towards packaged and processed foods due to the rising awareness pertaining to food safety and security reported by Global Market Insights (Report ID-GMI 743). Various firms are looking for innovative psychrophilic enzymes in order to construct more effective biochemical pathways with shorter reaction times, use less energy, and are ecologically acceptable. D-Galactosidase catalyzes the hydrolysis of the glycosidic oxygen link between the terminal non-reducing D-galactoside unit and the glycoside molecule. At refrigerated temperature, the stable structure of psychrophile enzymes adjusts for the reduced kinetic energy. It may be beneficial in a wide variety of activities such as pasteurization of food, conversion of biomass, biological role of biomolecules, ambient biosensors, and phytoremediation. Recently, psychrophile enzymes are also used in claning the contact lens. β-D-Galactosidases have been identified and extracted from yeasts, fungi, bacteria, and plants. Conventional (hydrolyzing activity) and nonconventional (non-hydrolytic activity) applications are available for these enzymes due to its transgalactosylation activity which produce high value-added oligosaccharides. This review content will offer new perspectives on cold-active β-galactosidases, their source, structure, stability, and application.
    Matched MeSH terms: Cold Temperature
  3. Khazani NA, Noor NZ, Yean Yean C, Hasan H, Suraiya S, Mohamad S
    J Trop Med, 2017;2017:7210849.
    PMID: 28386286 DOI: 10.1155/2017/7210849
    Klebsiella pneumoniae and Haemophilus influenzae are two common pathogens associated with respiratory tract infections. The identification of these pathogens using conventional molecular diagnostic tests requires trained personnel, cold-chain transportation, and storage-dependance, which does not render them user-friendly. The aim of this study was to develop a thermostabilized, cold-chain-free, one-step multiplex PCR for simultaneous detection of K. pneumoniae and H. influenzae. The multiplex PCR assay was designed to amplify the php gene of K. pneumoniae (202 bp) and p6 gene of H. influenzae (582 bp). In addition, the specific primer to amplify glm gene of Helicobacter pylori (105 bp) was included as an internal amplification control. Subsequently, the designed primers and all PCR reagents were thermostabilized by lyophilization. The stability of the thermostabilized PCR was evaluated using the Q(10) method. The sensitivity and specificity of performances for thermostabilized PCR were evaluated using 127 clinical isolates and were found to be 100% sensitive and specific. The thermostabilized PCR mix was found to be stable for 30 days and the Q10 accelerated stability was found to be 3.02 months. A cold-chain-free, PCR assay for easy, rapid, and simultaneous detection of K. pneumoniae and H. influenzae was successfully developed in this study.
    Matched MeSH terms: Cold Temperature
  4. Taufiq-Yap, Y. H., Ong, P. S., Zainal, Z.
    MyJurnal
    In this work, 10 mol% yttrium-doped ceria powders, Ce0.9Y0.1O1.95, were synthesised using a new mechanical technique, mechanochemical reaction, in which both impact action and shearing forces were applied for efficient fine grinding, subsequently leading to higher homogeneity of the resultant powders. Ce0.9Y0.1O1.95 prepared using this new technique was systematically compared with a sample of the same prepared using conventional solid-state methodology. X-ray diffraction analysis showed all prepared samples were single phase with a cubic fluorite structure. Generally, Y2O3-doped CeO2 electrolytes prepared by mechanochemical reactions were stable at a lower temperature (1100 °C) compared with a sample of the same synthesised using the conventional solid-state method. Characterisations using differential thermal analysis (DTA) and thermogravimetric analysis (TGA) showed no thermal changes and phase transitions, indicating all materials were thermally stable. The electrical properties of the samples investigated by AC impedance spectroscopy in the temperature range 200–800 ˚C are presented and discussed. Scanning electron microscopy (SEM) was used to study the morphology of the materials. Fine-grained powders with uniform grain-size distribution were obtained from the mechanochemical reaction.
    Matched MeSH terms: Cold Temperature
  5. Sadeghinezhad E, Kazi SN, Dahari M, Safaei MR, Sadri R, Badarudin A
    Crit Rev Food Sci Nutr, 2015;55(12):1724-43.
    PMID: 24731003 DOI: 10.1080/10408398.2012.752343
    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.
    Matched MeSH terms: Cold Temperature
  6. Kamarudin NH, Rahman RN, Ali MS, Leow TC, Basri M, Salleh AB
    Protein J, 2014 Jun;33(3):296-307.
    PMID: 24777627 DOI: 10.1007/s10930-014-9560-3
    The gene encoding a cold-adapted, organic solvent stable lipase from a local soil-isolate, mesophilic Staphylococcus epidermidis AT2 was expressed in a prokaryotic system. A two-step purification of AT2 lipase was achieved using butyl sepharose and DEAE sepharose column chromatography. The final recovery and purification fold were 47.09 % and 3.45, respectively. The molecular mass of the purified lipase was estimated to be 43 kDa. AT2 lipase was found to be optimally active at pH 8 and stable at pH 6-9. Interestingly, this enzyme demonstrated remarkable stability at cold temperature (<30 °C) and exhibited optimal activity at a temperature of 25 °C. A significant enhancement of the lipolytic activity was observed in the presence of Ca(2+), Tween 60 and Tween 80. Phenylmethylsulfonylfluoride, a well known serine inhibitor did not cause complete inhibition of the enzymatic activity. AT2 lipase exhibited excellent preferences towards long chain triglycerides and natural oils. The lipolytic activity was stimulated by dimethylsulfoxide and diethyl ether, while more than 50 % of its activity was retained in methanol, ethanol, acetone, toluene, and n-hexane. Taken together, AT2 lipase revealed highly attractive biochemical properties especially because of its stability at low temperature and in organic solvents.
    Matched MeSH terms: Cold Temperature
  7. Tan TJ, Wang D, Moraru CI
    J Dairy Sci, 2014;97(8):4759-71.
    PMID: 24881794 DOI: 10.3168/jds.2014-7957
    The main challenge in microfiltration (MF) is membrane fouling, which leads to a significant decline in permeate flux and a change in membrane selectivity over time. This work aims to elucidate the mechanisms of membrane fouling in cold MF of skim milk by identifying and quantifying the proteins and minerals involved in external and internal membrane fouling. Microfiltration was conducted using a 1.4-μm ceramic membrane, at a temperature of 6±1°C, cross-flow velocity of 6m/s, and transmembrane pressure of 159kPa, for 90min. Internal and external foulants were extracted from a ceramic membrane both after a brief contact between the membrane and skim milk, to evaluate instantaneous adsorption of foulants, and after MF. Four foulant streams were collected: weakly attached external foulants, weakly attached internal foulants, strongly attached external foulants, and strongly attached internal foulants. Liquid chromatography coupled with tandem mass spectrometry analysis showed that all major milk proteins were present in all foulant streams. Proteins did appear to be the major cause of membrane fouling. Proteomics analysis of the foulants indicated elevated levels of serum proteins as compared with milk in the foulant fractions collected from the adsorption study. Caseins were preferentially introduced into the fouling layer during MF, when transmembrane pressure was applied, as confirmed both by proteomics and mineral analyses. The knowledge generated in this study advances the understanding of fouling mechanisms in cold MF of skim milk and can be used to identify solutions for minimizing membrane fouling and increasing the efficiency of milk MF.
    Matched MeSH terms: Cold Temperature*
  8. Bakar, M. S. A., Ahmad, S., Muchtar, A., Rahman, H. A .
    MyJurnal
    Solid oxide fuel cells (SOFC) are efficient and clean power generation devices. Lowtemperature
    SOFC (LTSOFC) has been developed since high-temperature SOFC (HTSOFC) is not
    feasible to be commercialized due to cost. Lowering the operation temperature reduces its substantial
    performance resulting from cathode polarization resistance and overpotential of cathode. The
    development of composite cathodes regarding mixed ionic-electronic conductor (MIEC) and ceriabased
    materials for LTSOFC minimizes the problems significantly and leads to an increase in
    electrocatalytic activity for the occurrence of oxygen reduction reaction (ORR). Lanthanum-based
    materials such as lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ) have been discovered
    recently, which offer great compatibility with ceria-based electrolyte to be applied as composite
    cathode materials for LTSOFC. Cell performance at lower operating temperature can be maintained
    and further improved by enhancing the ORR. This paper reviews recent development of various ceriabased
    composite cathodes especially related to the ceria-carbonate composite electrolytes for
    LTSOFC. The influence of the addition of metallic elements such as silver (Ag), platinum (Pt) and
    palladium (Pd) towards the electrochemical properties and performance of LSCF composite cathodes
    are also discussed.
    Matched MeSH terms: Cold Temperature
  9. Ahmed N, Siow KS, Wee MFMR, Patra A
    Sci Rep, 2023 Jan 30;13(1):1675.
    PMID: 36717647 DOI: 10.1038/s41598-023-28811-w
    Cold plasma (low pressure) technology has been effectively used to boost the germination and growth of various crops in recent decades. The durability of these plasma-treated seeds is essential because of the need to store and distribute the seeds at different locations. However, these ageing effects are often not ascertained and reported because germination and related tests are carried out within a short time after the plasma-treatment. This research aims to fill that knowledge gap by subjecting three different types of seeds (and precursors): Bambara groundnuts (water), chilli (oxygen), and papaya (oxygen) to cold plasma-treatment. Common mechanisms found for these diverse seed types and treatment conditions were the physical and chemical changes induced by the physical etching and the cold plasma on the seeds and subsequent oxidation, which promoted germination and growth. The high glass transition temperature of the lignin-cellulose prevented any physical restructuring of the surfaces while maintaining the chemical changes to continue to promote the seeds germination and growth. These changes were monitored over 60 days of ageing using water contact angle (WCA), water uptake, electrical conductivity, field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). The vacuum effect was also investigated to separate its effect from cold plasma (low pressure). This finding offers a framework for determining how long agricultural seeds that have received plasma treatment can be used. Additionally, there is a need to transfer this research from the lab to the field. Once the impact of plasma treatment on seeds has been estimated, it will be simple to do so.
    Matched MeSH terms: Cold Temperature
  10. Nor Aishah Saidina Amin, Soon, Ee Peng
    MyJurnal
    Thermodynamic chemical equilibrium analysis using, total Gibbs energy minimization method, was carried out for methane oxidation to higher hydrocarbons. For a large methane conversion and a high selectivity to higher hydrocarbons, the system temperature and oxygen concentration played a vital role, whereas, the system pressure only slightly influenced the two variables. Numerical results showed that the conversion of methane increased with the concentration of oxygen and reaction temperature, but it decreased with pressure. Nevertheless, the presence of oxygen suppressed the formation of higher hydrocarbons which mostly consisted of aromatics, but enhanced the formation of hydrogen. As the system pressure increased, the aromatics, olefins and hydrogen yields diminished, but the paraffin yield improved. Carbon monoxide seemed to be the major oxygen-containing equilibrium product from methane oxidation, whilst almost no H2O, CH3OH and HCOH were detected although traces amount of carbon dioxide were formed at relatively lower temperature and higher pressure. The total Gibbs energy minimization method is useful to theoretically analyze the feasibility of methane conversion to higher hydrocarbons and syngas at the selected temperature and pressure.
    Matched MeSH terms: Cold Temperature
  11. Zahari Z, Lee CS, Ibrahim MA, Musa N, Mohd Yasin MA, Lee YY, et al.
    Nurs Res, 2017 Mar-Apr;66(2):134-144.
    PMID: 28252574 DOI: 10.1097/NNR.0000000000000204
    BACKGROUND: Methadone is a substrate of the P-glycoprotein efflux transporter, which is encoded by ABCB1 (MDR1), and thus, ABCB1 polymorphisms may influence the transport of methadone at the blood-brain barrier, affecting its adverse effects.

    OBJECTIVES: This study investigated the association between ABCB1 polymorphisms and cold pressor pain responses among opioid-dependent patients on methadone maintenance therapy (MMT).

    METHODS: Malay male opioid-dependent patients receiving MMT (n = 148) were recruited. Cold pressor pain responses (pain threshold, pain tolerance, and pain intensity) were measured at 0, 2, 4, 8, 12, and 24 hours post-methadone dose. DNA was extracted from whole blood and genotyped for ABCB1 polymorphisms including 1236C>T (rs1128503), 2677G>T/A (rs2032582), and 3435C>T (rs1045642) using the allelic discrimination real-time polymerase chain reaction. Repeated-measure analysis of variance between-group analysis was used to compare the three cold pressor pain responses and ABCB1 polymorphisms (1236C>T, 2677G>T/A, and 3435C>T) according to genotypes and allelic additive models, genotype dominant and recessive models, haplotypes, and diplotypes.

    RESULTS: Patients with 2677 GG or 2677G allele had the lowest pain threshold compared with 2677G>T/A genotypes or alleles (p = .007 and .002, respectively). Haplotype analysis showed a significant association between ABCB1 haplotypes and pain threshold (p = .02). Patients with 2677G allele had the lowest pain tolerance compared to those with 2677T and 2677A alleles (2677G < 2677T < 2677A allele carriers; p = .05). In terms of pain intensity scores, patients with 2677 GG or 2677G allele had the highest scores compared to other 2677G>T/A genotypes or alleles (p = .04 and .008, respectively). Haplotype analysis revealed a significant difference between patients with CGC haplotype and those without this haplotype (p = .02).

    DISCUSSION: To the best of our knowledge, this study provides the first evidence that ABCB1 polymorphisms are associated with cold pressor pain responses among Malay male patients with opioid dependence on MMT. The results may provide an initial prediction on heightened pain sensitivity or hyperalgesia for individuals who are carriers of the ABCB1 polymorphisms.
    Matched MeSH terms: Cold Temperature*
  12. Perumal R, Bhattathiry EP
    Med J Malaya, 1970 Mar;24(3):208-11.
    PMID: 4246803
    Matched MeSH terms: Cold Temperature
  13. Maiangwa J, Ali MS, Salleh AB, Rahman RN, Shariff FM, Leow TC
    Extremophiles, 2015 Mar;19(2):235-47.
    PMID: 25472009 DOI: 10.1007/s00792-014-0710-5
    Psychrophilic microorganisms are cold-adapted with distinct properties from other thermal classes thriving in cold conditions in large areas of the earth's cold environment. Maintenance of functional membranes, evolving cold-adapted enzymes and synthesizing a range of structural features are basic adaptive strategies of psychrophiles. Among the cold-evolved enzymes are the cold-active lipases, a group of microbial lipases with inherent stability-activity-flexibility property that have engaged the interest of researchers over the years. Current knowledge regarding these cold-evolved enzymes in psychrophilic bacteria proves a display of high catalytic efficiency with low thermal stability, which is a differentiating feature with that of their mesophilic and thermophilic counterparts. Improvement strategies of their adaptive structural features have significantly benefited the enzyme industry. Based on their homogeneity and purity, molecular characterizations of these enzymes have been successful and their properties make them unique biocatalysts for various industrial and biotechnological applications. Although, strong association of lipopolysaccharides from Antarctic microorganisms with lipid hydrolases pose a challenge in their purification, heterologous expression of the cold-adapted lipases with affinity tags simplifies purification with higher yield. The review discusses these cold-evolved lipases from bacteria and their peculiar properties, in addition to their potential biotechnological and industrial applications.
    Matched MeSH terms: Cold Temperature*
  14. Hawley WA, Reiter P, Copeland RS, Pumpuni CB, Craig GB
    Science, 1987 May 29;236(4805):1114-6.
    PMID: 3576225
    North American strains of Aedes albopictus, an Asian mosquito recently introduced into the Western Hemisphere, exhibit photoperiodic sensitivity and cold-hardiness characteristics similar to strains originating from temperate zone Asia. Trade statistics for used tire imports, the most likely mode of introduction, also indicate a north Asian origin. Aedes albopictus, an important vector of dengue and a potential vector of many other arboviral diseases, may therefore have the capability of infesting much of temperate North America.
    Matched MeSH terms: Cold Temperature
  15. Naicker AS, Roohi SA, Lee CS, Chan WH, Tay LS, Din XJ, et al.
    Med J Malaysia, 2006 Feb;61 Suppl A:10-3.
    PMID: 17042221
    Poor glycaemic control and the duration of diabetes mellitus are known to accelerate development and progression of neuropathy. Diabetic co-morbidities: hypertension and hyperlipidaemia, have been postulated to associate with development of neuropathy. A diabetic foot with low temperature and frequent exposure to low temperature environment has recently been hypothesized to be at higher risk to develop early neuropathy. This cross-sectional study is undertaken to identify risk factors for diabetic neuropathy and the association between foot temperature and development of diabetic neuropathy by using simple clinical examination in the outpatient setting. From April 18, to April 30, 2005, universal sampling method was used to select 134 diabetic patients (type 1 or type 2 for >1 year) with peripheral neuropathy. Excluded are those with chronic alcoholism, drug-induced neuropathy, dietary history of vitamin B deficiency and family history of porphyria and hereditary sensorimotor neuropathy. The patient's duration of diabetes, glycaemic control status and the presence of co-morbids: hypertension and hyperlipidemia, were recorded. The temperature of the foot was measured by using thermo buddy. Of 134 patients representing Malaysian ethnic distribution with an equal number of males and females, 20.1% were in the age group of 61 to 65 years and, 85.1% and 67.9% belonged to lower socioeconomic and educational groups respectively. Associations between diabetic neuropathy and glycaemic control (p = 0.018) and duration of diabetes (p < 0.05) were significant. However, hypertension, hyperlipidaemia and low foot temperature were not significantly associated with development of diabetic neuropathy. Poor glycaemic control is significantly associated with diabetic neuropathy. Foot temperature alteration is merely an effect of autonomic neuropathy with a cold foot is attributed to co-existing peripheral arterial disease.

    Study site: Pusat Perubatan Primer Bandar Tasik Selatan, Kuala Lumpur, Malaysia
    Matched MeSH terms: Cold Temperature/adverse effects
  16. Lee ZS, Chin SY, Cheng CK
    Heliyon, 2019 Jun;5(6):e01792.
    PMID: 31245637 DOI: 10.1016/j.heliyon.2019.e01792
    This study evaluates the effects of subcritical hydrothermal treatment on palm oil mill effluent (POME) and its concomitant formations of solid hydrochar, liquid product and gaseous product. The reactions were carried out at temperatures ranged 493 K-533 K for 2 h. The highest reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were 58.8% and 62.5%, respectively, at 533 K. In addition, the removal of total suspended solids (TSS) achieved up to 99%, with the pH of POME reaching 6 from the initial pH 4. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis showed that the fresh POME contained n-Hexadecanoic acid as the dominant component, which gradually reduced in the liquid product in the reaction with increased temperature, in addition to the attenuation of carboxyl compounds and elevation of phenolic components. The gaseous products contained CO2, CO, H2, and C3 - C6 hydrocarbons. Traces of CH4 were only found at 533 K. CO2 is the dominant species, where the highest of 3.99 vol% per 500 mL working volume of POME recorded at 533 K. The solid hydrochars showed negligible morphological changes across the reaction temperature. The O/C atomic ratio of the hydrochar range from 0.157 to 0.379, while the H/C atomic ratio was in the range from 0.930 to 1.506. With the increase of treatment temperature, the higher heating value (HHV) of the hydrochar improved from 24.624 to 27.513 MJ kg-1. The characteristics of hydrochar make it a fuel source with immense potential. POME decomposed into water-soluble compounds, followed by deoxygenation (dehydration and decarboxylation) in producing hydrochar with lower oxygen content and higher aromatic compounds in the liquid product. Little gaseous hydrocarbons were produced due to subcritical hydrothermal gasification at low temperature.
    Matched MeSH terms: Cold Temperature
  17. Azraf Azman, Mohd Rizal Mamat@Ibrahim, Anwar Abdul Rahman, Megat Harun Al Rashid Megat Ahmad, Abdul Aziz Mohamed, Muhammad Rawi Mohd Zin, et al.
    MyJurnal
    The temperature profile of a cryogenic system for cooling of beryllium filter of a small-angle neutron scattering (SANS) instrument of TRIGA MARK II PUSPATI research reactor was investigated using computational fluid dynamics (CFD) modeling and simulation. The efficient cooling of beryllium filter is important for obtaining higher cold neutron transmission for the SANS instrument. This paper presents the transient CFD results of temperature distributions via the thermal link to the beryllium and simulation of heat
    flux. The temperature simulation data are also compared with the experimental results for the cooling time and distribution to the beryllium.
    Matched MeSH terms: Cold Temperature
  18. Najiy Rizal Suriani Rizal, Azuddin Mamat, Aidah Jumahat
    MyJurnal
    In recent years, injection moulding process is one of the most advanced and efficient manufacturing processes for mass production of plastic bottles. However, a good quality of parison is difficult to achieve due to uncontrollable humidity, pressure inlet and water inlet velocity. This paper investigates the effect of using multiple mould cavities to improve the process fill time and injection pressure in the production of PET plastic bottles using MoldFlow software. The modelling of parison was developed using CATIA with the consideration of every part of the parison. MoldFlow software was used to analyse the flow of 20 g parison with different cavity numbers (1, 8, 16, 24 cavity), as well as its corresponding runner size towards its fill time and injection pressure. Other important parameters that affect the production of parison, such as melting temperature, mould temperature, atmospheric temperature and cooling time, were remained constant. The fill time required to produce 24 moulds was improved by 60% compared to using 8 mould cavity only, and this enable the production of more plastic bottles in a day. Therefore, fill time and injection pressure are two important parameters to be considered in the injection moulding process, especially to reduce parison defect and increase its production rate.
    Matched MeSH terms: Cold Temperature
  19. Mustafa Hj. Abdullah, Ahmad Nazlim Yusoff
    The electrical resistivity of Mg0.6Zn0.4Fe2O4 ferrite was measured as a function of temperature in the range 300-630 K. Two anomalies are observed in the resistivity curves for measurements during heating up. These anomalies are identified as a magnetic anomaly at the Neel temperature, TN = 598 K, while the other one at TOt = 445 K is discussed as due to the contribution of conduction from the tetrahedral sites. The anomaly at Tot was reduced in the measurements during recooling, while the anomaly at TN was disappeared completely during recooling and second cycle. These effects are discussed as due to the increase of Fe2+ ions at the octahedral sites as a result of cation redistribution at higher temperatures. A relatively small anomaly at Tot still can be observed during the second run. This is possible if the Fe2+ ions have a preference to be relocated at the tetrahedral sites at lower temperatures.
    Kerintangan elektrik Mg0.6Zn0.4Fe2O4 ferit telah diukur sebagai fungsi suhu dalam julat 300 - 630 K. Dua anomali dapat dicerap pada lengkung kerintangan bagi pengukuran semasa pemanasan. Dua anomali tersebut dikenalpasti sebagai anomali magnet pada suhu Neel, TN = 598 K, manakala yang satu lagi pada Tot = 445 K dibincangkan sebagai berpunca daripada sumbangan kekonduksian pada tapak tetrahedron. Anomali pada Tot mengurang dalam pengukuran semasa penyejukan semula pada julat suhu yang sarna, manakala anomali pada TN terus lenyap dalam pengukuran semasa penyejukan semula dan juga semasa kitar kedua. Kesan ini dibincangkan sebagai disebabkan oleh peningkatan ion Fe2+ pada tapak oktahedron daripada proses taburan semula kation pada suhu tinggi. Anomali yang berkurang pada Tot masih boleh dicerap semasa pengukuran kitar kedua. Keadaan seperti ini adalah mungkin jika ion Fe2+ mempunyai kecenderongan untuk bertempat semula pada tapak tetrahedron apabila suhu menurun.
    Matched MeSH terms: Cold Temperature
  20. Zakri, A.H.
    ASM Science Journal, 2009;3(2):200-202.
    MyJurnal
    Recent studies by the United Nations University - Institute of Advanced Studies (UNU-IAS) demonstrate that bioprospecting is taking place in Antarctica and the Southern Ocean and that related commercial applications were being marketed. The bioprospectors’ interest in Antarctica stems from two reasons. First, the lack of knowledge surrounding Antarctic biota provides opportunities to discover novel organisms of potential use to biotechnology. Second, Antarctica’s environmental extremes, such as cold temperatures, extreme aridity and salinity present conditions in which biota have evolved unique characteristics for survival (UNU-IAS 2003). Thus bioprospecting opportunities include, inter alia, the discovery of novel bioactives in species found in cold and dry lithic habitat, novel pigments found in hyper-saline lakes and antifreezes in sea-lakes (Cheng & Cheng 1999).
    Matched MeSH terms: Cold Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links