Displaying publications 1 - 20 of 189 in total

Abstract:
Sort:
  1. Sharif Nia H, Chan YH, Froelicher ES, Pahlevan Sharif S, Yaghoobzadeh A, Jafari A, et al.
    Health Promot Perspect, 2019;9(2):123-130.
    PMID: 31249799 DOI: 10.15171/hpp.2019.17
    Background: Meteorological parameters and seasonal changes can play an important role in the occurrence of acute coronary syndrome (ACS). However, there is almost no evidence on a national level to suggest the associations between these variables and ACS in Iran. We aim to identify the meteorological parameters and seasonal changes in relationship to ACS. Methods: This retrospective cross-sectional study was conducted between 03/19/2015 to 03/18/2016 and used documents and records of patients with ACS in Mazandaran ProvinceHeart Center, Iran. The following definitive diagnostic criteria for ACS were used: (1) existence of cardiac enzymes (CK or CK-MB) above the normal range; (2) Greater than 1 mm ST-segment elevation or depression; (3) abnormal Q waves; and (4) manifestation of troponin enzyme in the blood. Data were collected daily, such as temperature (Celsius) changes, wind speed and its direction, rainfall, daily evaporation rate; number of sunny days, and relative humidity were provided by the Meteorological Organization of Iran. Results: A sample of 2,054 patients with ACS were recruited. The results indicated the highest ACS events from March to May. Generally, wind speed (18 PM) [IRR = 1.051 (95% CI: 1.019 to1.083), P=0.001], daily evaporation [IRR = 1.039 (95% CI: 1.003 to 1.077), P=0.032], daily maximum (P<0.001) and minimum (P=0.003) relative humidity was positively correlated withACS events. Also, negatively correlated variables were daily relative humidity (18 PM) [IRR =0.985 (95% CI: 0.978 to 0.992), P<0.001], and daily minimum temperature [IRR = 0.942 (95%CI: 0.927 to 0.958), P<0.001]. Conclusion: Climate changes were found to be significantly associated with ACS; especially from cold weather to hot weather in March, April and May. Further research is needed to fully understand the specific conditions and cold exposures.
    Matched MeSH terms: Cold Temperature
  2. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM
    J Food Sci, 2012 Nov;77(11):M624-30.
    PMID: 23106104 DOI: 10.1111/j.1750-3841.2012.02955.x
    The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75% Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms.
    Matched MeSH terms: Cold Temperature
  3. Nur Hidayah Roseli, Mohd Fadzil Mohd Akhir
    Sains Malaysiana, 2014;43:1389-1396.
    Oceanographic cruises in Pahang water in October 2003 and April 2004, monsoon transition months, produce data on water characteristics. The temperature in both months showed higher values in nearshore compared to the offshore stations. The nearshore salinity in both months is lower than offshore stations. Comparatively, there were smaller differences in temperature and salinity in October than in April, with very little variation between nearshore and offshore stations. T-S diagram showed significant differences between October and April water characteristics. According to the water characteristic observations, the temperature and salinity in October was lower than in April, while dissolved oxygen was higher than in April. The lower temperature and salinity taken during the sampling time in October suggested that during this time, the study area already received the influences of strong winds due to upcoming monsoon. The warmer and saltier water obtained in April showed that during this time, the study area was influenced by southwest monsoon. Winds related to rainfall were observed to have impact to the dynamics of water characteristics during both months.
    Matched MeSH terms: Cold Temperature
  4. Kamarudin NH, Rahman RN, Ali MS, Leow TC, Basri M, Salleh AB
    Mol Biotechnol, 2014 Aug;56(8):747-57.
    PMID: 24771007 DOI: 10.1007/s12033-014-9753-1
    Terminal moieties of most proteins are long known to be disordered and flexible. To unravel the functional role of these regions on the structural stability and biochemical properties of AT2 lipase, four C-terminal end residues, (Ile-Thr-Arg-Lys) which formed a flexible, short tail-like random-coil segment were targeted for mutation. Swapping of the tail-like region had resulted in an improved crystallizability and anti-aggregation property along with a slight shift of the thermostability profile. The lipolytic activity of mutant (M386) retained by 43 % compared to its wild-type with 18 % of the remaining activity at 45 °C. In silico analysis conducted at 25 and 45 °C was found to be in accordance to the experimental findings in which the RMSD values of M386 were more stable throughout the total trajectory in comparison to its wild-type. Terminal moieties were also observed to exhibit large movement and flexibility as denoted by high RMSF values at both dynamics. Variation in organic solvent stability property was detected in M386 where the lipolytic activity was stimulated in the presence of 25 % (v/v) of DMSO, isopropanol, and diethyl ether. This may be worth due to changes in the surface charge residues at the mutation point which probably involve in protein-solvent interaction.
    Matched MeSH terms: Cold Temperature
  5. Bharudin I, Abu Bakar MF, Hashim NHF, Mat Isa MN, Alias H, Firdaus-Raih M, et al.
    Mar Environ Res, 2018 Jun;137:169-176.
    PMID: 29598997 DOI: 10.1016/j.marenvres.2018.03.007
    Glaciozyma antarctica PI12, is a psychrophilic yeast isolated from Antarctic sea. In this work, Expressed Sequence Tags (EST) from cells exposed to three different temperatures; 15 °C, 0 °C and -12 °C were generated to identify genes associated with cold adaptation. A total of 5376 clones from each library were randomly picked and sequenced. Comparative analyses from the resulting ESTs in each condition identified several groups of genes required for cold adaptation. Additionally, 319 unique transcripts that encoded uncharacterised functions were identified in the -12 °C library and are currently unique to G. antarctica. Gene expression analysis using RT-qPCR revealed two of the unknown genes to be up-regulated at -12 °C compared to 0 °C and 15 °C. These findings further contribute to the collective knowledge into G. antarctica cold adaptation and as a resource for understanding the ecological and physiological tolerance of psychrophilic microbes in general.
    Matched MeSH terms: Cold Temperature
  6. Shariffuddin, I.I., Hasan, M.S., Chong, T.H., Kwan, M.K., Chan, Y.K.
    JUMMEC, 2016;19(1):1-6.
    MyJurnal
    Background:
    Prevention of hypothermia in patients undergoing major posterior approach spinal surgery can be difficult, as a
    large body surface is exposed to the cold environment of the operating theatre. We compared the efficacy of a
    new under-body forced-air warming blanket with that of a resistive heating blanket in preventing hypothermia.
    Methods:
    Sixty patients undergoing major posterior approach spinal surgery lasting for more than 2 hours were randomly
    assigned to warming with a full under-body forced-air warming blanket or three segments of resistive heating
    blankets, both set at 42°C. The ambient temperature was kept near 20°C. Nasopharyngeal, rectal and axillary
    temperatures were measured at regular intervals. Changes in core temperature (average of nasopharyngeal
    and rectal) over time were compared by the independent t-test.
    Results:
    The characteristics of the patients were comparable. The baseline core temperature was 36.36 ±0.38°C in the
    forced-air group and 36.27 ± 0.46°C in the resistive heating group. During the first hour, the core temperature
    decreased similarly from baseline in both groups. From 100 minutes after induction until the end of the surgery,
    core temperature rose in both groups. At the end of surgery, the core temperature was increased by 0.08
    ± 0.09°C from baseline in the forced-air group but decreased by 0.40 ±0.04°C from baseline in the resistive
    heating group. The difference in the change of the core temperature, at the end of the surgery, between the
    two groups is statistically significant (P
    Matched MeSH terms: Cold Temperature
  7. Bimakr, M., Rahman, R.A., Saleena Taip, F., Adzahan, N.M., Islam Sarker, Z., Ganjloo, A
    MyJurnal
    Ultrasound-assisted extraction (UAE) was applied for the extraction of bioactive valuable compounds from winter melon (Benincasa hispida) seeds. Effects of amplitude (25-75%), temperature (40-60°C) and sonication time (20-60 min) on crude extraction yield (CEY) and radical scavenging activities (RSA, % inhibition of DPPH˙ and ABTS˙+ free radicals) of extracts were determined using complete randomised design (CRD). The results showed that the CEY and RSA of extracts significantly affected by independent variables. The maximum value of CEY (97.14±0.36 mgg-1), scavenging of DPPH˙ radicals (32.12 ± 0.38%) and scavenging of ABTS˙+ radicals (40.52±0.73%) were obtained at the combined treatment conditions of 75%, 55°C and 40 min. The UAE results obtained were compared with those achieved by using conventional Soxhlet extraction (CSE) method. It was found UAE allowed extraction at lower temperature and the extracts obtained posses higher quality compare with CSE. UAE is a promising environment friendly technique for the extraction of bioactive compounds from winter melon (Benincasa hispida) seeds.
    Matched MeSH terms: Cold Temperature
  8. Paul FM, Kleevens JW
    J Singapore Paediatr Soc, 1969 Apr;11(1):62-6.
    PMID: 5366340
    Matched MeSH terms: Cold Temperature/adverse effects
  9. Vishwakarma R, Rosmi MS, Takahashi K, Wakamatsu Y, Yaakob Y, Araby MI, et al.
    Sci Rep, 2017 03 02;7:43756.
    PMID: 28251997 DOI: 10.1038/srep43756
    Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene growth by chemical vapor deposition. A catalyst metal film of 500 nm thick was deposited onto an amorphous C (50 nm thick) coated SiO2/Si substrate. The sample was then annealed at 250 °C under vacuum condition. Raman spectra measured after the removal of the catalyst by chemical etching showed intense G and 2D peaks together with a small D and intense SiO2 related peaks, confirming the transfer free growth of multilayer graphene on SiO2/Si. The domain size of the graphene confirmed by optical microscope and atomic force microscope was about 5 μm in an average. Thus, this approach will open up a new route for transfer free graphene growth at low temperatures.
    Matched MeSH terms: Cold Temperature
  10. Alsaleh M, Zubair AO, Abdul-Rahim AS
    Environ Sci Pollut Res Int, 2021 Jun;28(23):29831-29844.
    PMID: 33575938 DOI: 10.1007/s11356-021-12769-1
    The objective of this research is to examine the impact of bioenergy usage on health outcomes, especially adult mortality in both developed and underdeveloped countries in the European Union, where the use of solid biomass is growing to generate bioheat, biocool, and biopower. Over the period studied, findings indicate that increased consumption of bioenergy has increased mortality rates in developed and underdeveloped EU28 countries during the period 1990-2018. This feedback proposes, using generalized least squares (GLS), that the resulting death rate from burning biomass-related cases is higher in the EU15 developed countries compared to EU13 underdeveloped countries. There is a need to lower burning biomass in the entire EU15 countries, more importantly its developed region, by critically evaluating the bioenergy production life cycle before it is available for final consumption. However, there is a continuous need to intensify stringent production procedures in the bioenergy industry in EU15 countries, more importantly the imported biomass crops for energy use. There is also a need to be consistent with the campaign on the usage of bioenergy products, i.e., bioheat, bioelectricity, and biofuels, particularly in the rural areas where the use of wood fuels for cooking, heating, and cooling are significant in EU15 developed countries in comparison to EU13 developing countries.
    Matched MeSH terms: Cold Temperature*
  11. Yaacob N, Mohamad Ali MS, Salleh AB, Rahman RNZRA, Leow ATC
    J Mol Graph Model, 2016 07;68:224-235.
    PMID: 27474867 DOI: 10.1016/j.jmgm.2016.07.003
    The utilization of cold active lipases in organic solvents proves an excellent approach for chiral synthesis and modification of fats and oil due to the inherent flexibility of lipases under low water conditions. In order to verify whether this lipase can function as a valuable synthetic catalyst, the mechanism concerning activation of the lid and interacting solvent residues in the presence of organic solvent must be well understood. A new alkaline cold-adapted lipase, AMS8, from Pseudomonas fluorescens was studied for its structural adaptation and flexibility prior to its exposure to non-polar, polar aprotic and protic solvents. Solvents such as ethanol, toluene, DMSO and 2-propanol showed to have good interactions with active sites. Asparagine (Asn) and tyrosine (Tyr) were key residues attracted to solvents because they could form hydrogen bonds. Unlike in other solvents, Phe-18, Tyr-236 and Tyr-318 were predicted to have aromatic-aromatic side-chain interactions with toluene. Non-polar solvent also was found to possess highest energy binding compared to polar solvents. Due to this circumstance, the interaction of toluene and AMS8 lipase was primarily based on hydrophobicity and molecular recognition. The molecular dynamic simulation showed that lid 2 (residues 148-167) was very flexible in toluene and Ca(2+). As a result, lid 2 moves away from the catalytic areas, leaving an opening for better substrate accessibility which promotes protein activation. Only a single lid (lid 2) showed the movement following interactions with toluene, although AMS8 lipase displayed double lids. The secondary conformation of AMS8 lipase that was affected by toluene observed a reduction of helical strands and increased coil structure. Overall, this work shows that cold active lipase, AMS8 exhibits distinguish interfacial activation and stability in the presence of polar and non-polar solvents.
    Matched MeSH terms: Cold Temperature*
  12. Kheimi M, K Salamah S, A Maddah H, Mustafa Al Bakri Abdullah M
    Chemosphere, 2023 Sep;335:139036.
    PMID: 37245592 DOI: 10.1016/j.chemosphere.2023.139036
    Considering the limitation of fossil fuel resources and their environmental effects, the use of renewable energies is increasing. In the current research, a combined cooling and power production (CCPP) system is investigated, the energy source of which is solar energy. Solar energy absorbs by solar flat plate collectors (SFPC). The system produces power with the help of an organic Rankine cycle (ORC). An ejector refrigeration cycle (ERC) system is considered to provide cooling capacity. The motive flow is supplied from the expander extraction in the ERC system. Various working fluids have been applied so far for the ORC-ERC cogeneration system. This research investigates the effect of using two working fluids R-11 and R-2545fa, and the zeotropic mixtures obtained by mixing these two fluids. A multiobjective optimization process is considered to select the appropriate working fluid. In the optimization design process, the goal is to minimize the total cost rate (TCR) and maximize the exergy efficiency of the system. The design variables are the quantity of SFPC, heat recovery vapor generator (HRVG) pressure, ejector motive flow pressure, evaporator pressure, condenser pressure, and entertainment ratio. Finally, it is observed that using zeotropic mixtures obtained from these two refrigerants has a better result than using pure refrigerants. Finally, it is observed that the best performance is achieved when R-11 and R245fa are mixed with a ratio of 80 to 20%, respectively and led to 8.5% improvement in exergy efficiency, while the increase in TCR is only 1.5%.
    Matched MeSH terms: Cold Temperature
  13. Khung YL, Ngalim SH, Scaccabarozi A, Narducci D
    Sci Rep, 2015 Jun 12;5:11299.
    PMID: 26067470 DOI: 10.1038/srep11299
    Using two different hydrosilylation methods, low temperature thermal and UV initiation, silicon (111) hydrogenated surfaces were functionalized in presence of an OH-terminated alkyne, a CF3-terminated alkyne and a mixed equimolar ratio of the two alkynes. XPS studies revealed that in the absence of premeditated surface radical through low temperature hydrosilylation, the surface grafting proceeded to form a Si-O-C linkage via nucleophilic reaction through the OH group of the alkyne. This led to a small increase in surface roughness as well as an increase in hydrophobicity and this effect was attributed to the surficial etching of silicon to form nanosize pores (~1-3 nm) by residual water/oxygen as a result of changes to surface polarity from the grafting. Furthermore in the radical-free thermal environment, a mix in equimolar of these two short alkynes can achieve a high contact angle of ~102°, comparable to long alkyl chains grafting reported in literature although surface roughness was relatively mild (rms = ~1 nm). On the other hand, UV initiation on silicon totally reversed the chemical linkages to predominantly Si-C without further compromising the surface roughness, highlighting the importance of surface radicals determining the reactivity of the silicon surface to the selected alkynes.
    Matched MeSH terms: Cold Temperature
  14. Kee SY, Munusamy Y, Ong KS, Cornelis Metselaar HS, Chee SY, Lai KC
    Materials (Basel), 2017 Jul 28;10(8).
    PMID: 28773232 DOI: 10.3390/ma10080873
    The composite PCM was prepared by blending polymethyl methacrylate (PMMA) and myristic acid (MA) in different weight percentages. The MA and PMMA were selected as PCM and supporting material, respectively. As liquid MA may leak out during the phase transition, this study proposes the use of two coatings, namely a polyacrylic coating and a conformal coating to overcome the leakage problem. Both coatings were studied in terms of the leakage test, chemical compatibility, thermal stability, morphology, and reliability. No leakage was found in the PCMs with coatings compared to those without under the same proportions of MA/PMMA, thus justifying the use of coatings in the present study. The chemically compatibility was confirmed by FTIR spectra: the functional groups of PCMs were in accordance with those of coatings. DSC showed that the coatings did not significantly change the melting and freezing temperatures, however, they improved the thermal stability of composite PCMs as seen in TGA analysis. Furthermore, the composite PCMs demonstrated good thermal reliability after 1000 times thermal cycling. The latent heat of melting reduced by only 0.16% and 1.02% for the PCMs coated with conformal coating and polyacrylic coating, respectively. Therefore, the proposed coatings can be considered in preparing fatty acid/PMMA blends attributed to the good stability, compatibility and leakage prevention.
    Matched MeSH terms: Cold Temperature
  15. Parvizpour S, Razmara J, Shamsir MS, Illias RM, Abdul Murad AM
    J Biomol Struct Dyn, 2017 06;35(8):1685-1692.
    PMID: 27206405 DOI: 10.1080/07391102.2016.1191043
    Matched MeSH terms: Cold Temperature
  16. Chieng, Buong Woei, Nor Azowa Ibrahim, Wan Md Zin Wan Yunus, Mohd Zobir Hussein
    MyJurnal
    Poly(lactic acid) (PLA)-based nanocomposites filled with graphene nanoplatelets (xGnP) that contains epoxidized palm oil (EPO) as plasticizer were prepared by melt blending method. PLA was first plasticized by EPO to improve its flexibility and thereby overcome its problem of brittleness. Then, xGnP was incoporated into plasticized PLA to enhance its mechanical properties. Plasticized and nanofilled PLA nanocomposites (PLA/EPO/xGnP) showed improvement in the elongation at break by 3322% and 61% compared to pristine PLA and PLA/EPO, respectively. The use of EPO and xGnP increases the mobility of the polymeric chains, thereby improving the flexibility and plastic deformation of PLA. The nanocomposites also resulted in an increase of up to 26.5% in the tensile strength compared with PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO/xGnP nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. Plasticized PLA reinforced with xGnP showed that increasing the xGnP content triggers a substantial increase in thermal stability. Crystallinity of the nanocomposites as well as cold crystallization and melting temperature did not show any significant changes upon addition of xGnP. However, there was a significant decrease of glass transition temperature up to 0.3wt% of xGnP incorporation. The TEM micrograph of PLA/EPO/xGnP shows that the xGnP was uniformly dispersed in the PLA matrix and no obvious aggregation was observed.
    Matched MeSH terms: Cold Temperature
  17. Sukiato F, Wasserman RJ, Foo SC, Wilson RF, Cuthbert RN
    J Vector Ecol, 2019 12;44(2):264-270.
    PMID: 31729799 DOI: 10.1111/jvec.12358
    Urbanization has caused an increase in favorable habitats for Aedes aegypti (Diptera: Culicidae), given their ability to reproduce in small and often non-degradable artificial water-containers. While much work has been done on Ae. aegypti biology and ecology in urban landscapes, the role of shading on immature stages as an independent factor from temperature, and any possible interactions between these factors, remains unexamined. We assessed how temperature and shading affected egg hatch-rate, larval/pupal mortality, and larval development to adult stage under different factorial temperature (28; 31; 34; 37; 40° C) and shade (0%, 3,100 lux; 40%, 1,860 lux; 75%, 775 lux; 100%, 0 lux) regimes. Hatch-rate was significantly lower at 37° C (57 %), and no eggs hatched at 40° C. There was no significant effect caused by shading on hatchability. Larval and pupal mortality at 37° C was significantly higher (35%) compared to lower temperature groups, while the effects of shading were emergent at low temperatures. Developmental times from hatching to adult emergence were significantly reduced with increasing temperatures and with greater light exposures. The eco-physiological response of Ae. aegypti larvae to temperature and light regimes suggest a photosensitivity previously unstudied in this species.
    Matched MeSH terms: Cold Temperature
  18. Madihah Ahmad, Bohari M. Yamin, Azwan Mat Lazim
    MyJurnal
    α-Mangostin was extracted from the pericarp of the Malaysian local Garcinia mangostana linn., The structure was characterised by Infrared red, UV-Visible and Nuclear Magnetic Resonance spectroscopic data. The fluorescence peak at 500nm in ethanol was not observed in PNIPAM microgel solution. The increase of colloidal size of the gel in the presence of α-mangostin was studied by Dynamic Light Scattering and Transmission Electron Microscope. The size of the particle also increases with increasing temperature up to 45⁰C after which it began to shrink. The TEM micrograph at 45°C showed a uniformly structured pattern of the gel occurs in the range of the lowest solution critical temperature.
    Matched MeSH terms: Cold Temperature
  19. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Raja Abd Rahman RNZ, Mohamad Ali MS
    Molecules, 2017 Aug 12;22(8).
    PMID: 28805665 DOI: 10.3390/molecules22081312
    The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208, which is located next to the nucleophilic Ser-207 has a focal function in influencing substrate accessibility and flexibility of the catalytic pocket. Based on molecular dynamic simulations, it was found that Leu-208 strongly facilitates the lid 2 opening via its side-chain. The KM and Kcat/KM of L208A mutant were substrate dependent as it preferred a smaller-chain ester (pNP-caprylate) as compared to medium (pNP-laurate) or long-chain (pNP-palmitate) esters. In esterification of ethyl hexanoate, L208A promotes a higher ester conversion rate at 20 °C but not at 30 °C, as a 27% decline was observed. Interestingly, the wild-type (WT) lipase's conversion rate was found to increase with a higher temperature. WT lipase AMS8 esterification was higher in toluene as compared to L208A. Hence, the results showed that Leu-208 of AMS8 lipase plays an important role in steering a broad range of substrates into its active site region by regulating the flexibility of this region. Leu-208 is therefore predicted to be crucial for its role in interfacial activation and catalysis in toluene.
    Matched MeSH terms: Cold Temperature
  20. Rosdi MRH, Ahmad Razali MA, Ku Ishak KM, Ariffin A
    ACS Omega, 2020 Jun 23;5(24):14473-14480.
    PMID: 32596585 DOI: 10.1021/acsomega.0c01114
    Pour point depressant (PPD) emulsion has been gaining attention in crude oil transportation owing to its potential to solve solidification issues that arise in cold climate environments. An emulsion system provides a wide range of temperature application that combines good shelf life and tunable thermal properties to tackle this problem. These features can be achieved by incorporating an antifreeze agent into the emulsion. One of the most commonly used antifreeze agents is ethylene glycol (EG). Hence, this study focuses on the thermal properties and droplet size growth of PPD emulsions that were aged in variable concentrations of EG solution. EG50 exhibited the lowest freezing temperature of -44 °C, while EG25 demonstrated the lowest vitrification temperature of -68.7 °C. The particle size of the emulsions underwent a significant reduction from 332.3 to 228.9 nm upon the stepwise EG concentration increment to EG50. However, when the concentration was increased to EG75, a slight increase in the emulsion particle size was observed with a recorded value of 237.8 nm. Thus, it is concluded that EG50 represents the optimum concentration for delivering the best freezing protection and producing a smaller droplet particle size.
    Matched MeSH terms: Cold Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links