Displaying publications 1 - 20 of 88 in total

Abstract:
Sort:
  1. Aalsalem MY, Khan WZ, Saad NM, Hossain MS, Atiquzzaman M, Khan MK
    PLoS One, 2016;11(7):e0158072.
    PMID: 27409082 DOI: 10.1371/journal.pone.0158072
    Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.
    Matched MeSH terms: Computer Communication Networks*
  2. Abdelaziz A, Fong AT, Gani A, Garba U, Khan S, Akhunzada A, et al.
    PLoS One, 2017;12(4):e0174715.
    PMID: 28384312 DOI: 10.1371/journal.pone.0174715
    Software Defined Networking (SDN) is an emerging promising paradigm for network management because of its centralized network intelligence. However, the centralized control architecture of the software-defined networks (SDNs) brings novel challenges of reliability, scalability, fault tolerance and interoperability. In this paper, we proposed a novel clustered distributed controller architecture in the real setting of SDNs. The distributed cluster implementation comprises of multiple popular SDN controllers. The proposed mechanism is evaluated using a real world network topology running on top of an emulated SDN environment. The result shows that the proposed distributed controller clustering mechanism is able to significantly reduce the average latency from 8.1% to 1.6%, the packet loss from 5.22% to 4.15%, compared to distributed controller without clustering running on HP Virtual Application Network (VAN) SDN and Open Network Operating System (ONOS) controllers respectively. Moreover, proposed method also shows reasonable CPU utilization results. Furthermore, the proposed mechanism makes possible to handle unexpected load fluctuations while maintaining a continuous network operation, even when there is a controller failure. The paper is a potential contribution stepping towards addressing the issues of reliability, scalability, fault tolerance, and inter-operability.
    Matched MeSH terms: Computer Communication Networks*
  3. Abidi SS, Yusoff Z
    PMID: 10724889
    The Malaysian Telemedicine initiative advocates a paradigm shift in healthcare delivery patterns by way of implementing a person-centred and wellness-focused healthcare system. This paper introduces the Malaysian Telemedicine vision, its functionality and associated operational conditions. In particular, we focus on the conceptualisation of one key Telemedicine component i.e. the Lifetime Health Plan (LHP) system--a distributed multimodule application for the periodic monitoring and generation of health-care advisories for all Malaysians. In line with the LHP project, we present an innovative healthcare delivery info-structure--LifePlan--that aims to provide life-long, pro-active, personalised, wellness-oriented healthcare services to assist individuals to manage and interpret their health needs. Functionally, LifePlan based healthcare services are delivered over the WWW, packaged as Personalised Lifetime Health Plans that allow individuals to both monitor their health status and to guide them in healthcare planning.
    Matched MeSH terms: Computer Communication Networks/trends
  4. Abidi SS, Goh A, Yusoff Z
    Stud Health Technol Inform, 1998;52 Pt 2:1282-6.
    PMID: 10384666
    The practice of medicine, with its wide range of environmental conditions and complex dependencies, has long been used as a test bed for various advanced technologies. Telemedicine, as conceptualised within the Multimedia Super Corridor (MSC) context, is seen as the application of several relatively mature technologiesartificial intelligence (AI), multimedia communication and information systems (IS) amongst othersso as to benefit a large cross-section of the Malaysian population. We will discuss in general terms the Malaysian vision on the comprehensive MSC telemedicine solution, its functionality and associated operational conditions. In particular, this paper focuses on the conceptualisation of one key telemedical component i.e. the Lifetime Health Plan (LHP) system, which is eventually intended to be a distributed multi-module application for the periodic monitoring and generation of health-care advisories for upwards of 20 million Malaysians.
    Matched MeSH terms: Computer Communication Networks
  5. Ag Z, Cheong SK
    Malays J Pathol, 1995 Dec;17(2):77-81.
    PMID: 8935130
    A system for computerising full blood picture reporting developed in-house using dBASE IV on IBM-compatible microcomputers in a local area network environment is described. The software package has a user-friendly interface which consists of a horizontal main menu bar with associated pull-down submenus. The package captures data directly from an automatic blood cell counter and provides options to modify or delete records, search for records, print interim, final or cumulative reports, record differential counts with an emulator, facilitate house-keeping activities which include backing-up databases and repairing corrupted indices. The implementation of this system has helped to improve the efficiency of reporting full blood picture in the haematology laboratory.
    Matched MeSH terms: Computer Communication Networks*
  6. Al Shinwan M, Abualigah L, Huy TD, Younes Shdefat A, Altalhi M, Kim C, et al.
    Sensors (Basel), 2022 Jan 04;22(1).
    PMID: 35009891 DOI: 10.3390/s22010349
    Reaching a flat network is the main target of future evolved packet core for the 5G mobile networks. The current 4th generation core network is centralized architecture, including Serving Gateway and Packet-data-network Gateway; both act as mobility and IP anchors. However, this architecture suffers from non-optimal routing and intolerable latency due to many control messages. To overcome these challenges, we propose a partially distributed architecture for 5th generation networks, such that the control plane and data plane are fully decoupled. The proposed architecture is based on including a node Multi-session Gateway to merge the mobility and IP anchor gateway functionality. This work presented a control entity with the full implementation of the control plane to achieve an optimal flat network architecture. The impact of the proposed evolved packet Core structure in attachment, data delivery, and mobility procedures is validated through simulation. Several experiments were carried out by using NS-3 simulation to validate the results of the proposed architecture. The Numerical analysis is evaluated in terms of total transmission delay, inter and intra handover delay, queuing delay, and total attachment time. Simulation results show that the proposed architecture performance-enhanced end-to-end latency over the legacy architecture.
    Matched MeSH terms: Computer Communication Networks*
  7. Al-Ani A, Anbar M, Laghari SA, Al-Ani AK
    PLoS One, 2020;15(5):e0232574.
    PMID: 32392261 DOI: 10.1371/journal.pone.0232574
    OpenFlow makes a network highly flexible and fast-evolving by separating control and data planes. The control plane thus becomes responsive to changes in topology and load balancing requirements. OpenFlow also offers a new approach to handle security threats accurately and responsively. Therefore, it is used as an innovative firewall that acts as a first-hop security to protect networks against malicious users. However, the firewall provided by OpenFlow suffers from Internet protocol version 6 (IPv6) fragmentation, which can be used to bypass the OpenFlow firewall. The OpenFlow firewall cannot identify the message payload unless the switch implements IPv6 fragment reassembly. This study tests the IPv6 fragmented packets that can evade the OpenFlow firewall, and proposes a new mechanism to guard against attacks carried out by malicious users to exploit IPv6 fragmentation loophole in OpenFlow networks. The proposed mechanism is evaluated in a simulated environment by using six scenarios, and results exhibit that the proposed mechanism effectively fixes the loophole and successfully prevents the abuse of IPv6 fragmentation in OpenFlow networks.
    Matched MeSH terms: Computer Communication Networks
  8. Al-Ani AK, Anbar M, Manickam S, Al-Ani A
    PLoS One, 2019;14(4):e0214518.
    PMID: 30939154 DOI: 10.1371/journal.pone.0214518
    An efficiently unlimited address space is provided by Internet Protocol version 6 (IPv6). It aims to accommodate thousands of hundreds of unique devices on a similar link. This can be achieved through the Duplicate Address Detection (DAD) process. It is considered one of the core IPv6 network's functions. It is implemented to make sure that IP addresses do not conflict with each other on the same link. However, IPv6 design's functions are exposed to security threats like the DAD process, which is vulnerable to Denial of Service (DoS) attack. Such a threat prevents the host from configuring its IP address by responding to each Neighbor Solicitation (NS) through fake Neighbor Advertisement (NA). Various mechanisms have been proposed to secure the IPv6 DAD procedure. The proposed mechanisms, however, suffer from complexity, high processing time, and the consumption of more resources. The experiments-based findings revealed that all the existing mechanisms had failed to secure the IPv6 DAD process. Therefore, DAD-match security technique is proposed in this study to efficiently secure the DAD process consuming less processing time. DAD-match is built based on SHA-3 to hide the exchange tentative IP among hosts throughout the process of DAD in an IPv6 link-local network. The obtained experimental results demonstrated that the DAD-match security technique achieved less processing time compared with the existing mechanisms as it can resist a range of different threats like collision and brute-force attacks. The findings concluded that the DAD-match technique effectively prevents the DoS attack during the DAD process. The DAD-match technique is implemented on a small area IPv6 network; hence, the author future work is to implement and test the DAD-match technique on a large area IPv6 network.
    Matched MeSH terms: Computer Communication Networks/instrumentation*
  9. Al-Gumaei YA, Noordin KA, Reza AW, Dimyati K
    PLoS One, 2015;10(8):e0135137.
    PMID: 26258522 DOI: 10.1371/journal.pone.0135137
    Spectrum scarcity is a major challenge in wireless communications systems requiring efficient usage and utilization. Cognitive radio network (CRN) is found as a promising technique to solve this problem of spectrum scarcity. It allows licensed and unlicensed users to share the same licensed spectrum band. Interference resulting from cognitive radios (CRs) has undesirable effects on quality of service (QoS) of both licensed and unlicensed systems where it causes degradation in received signal-to-noise ratio (SIR) of users. Power control is one of the most important techniques that can be used to mitigate interference and guarantee QoS in both systems. In this paper, we develop a new approach of a distributed power control for CRN based on utility and pricing. QoS of CR user is presented as a utility function via pricing and a distributed power control as a non-cooperative game in which users maximize their net utility (utility-price). We define the price as a real function of transmit power to increase pricing charge of the farthest CR users. We prove that the power control game proposed in this study has Nash Equilibrium as well as it is unique. The obtained results show that the proposed power control algorithm based on a new utility function has a significant reduction in transmit power consumption and high improvement in speed of convergence.
    Matched MeSH terms: Computer Communication Networks/instrumentation*; Computer Communication Networks/utilization
  10. Al-Haiqi A, Ismail M, Nordin R
    ScientificWorldJournal, 2014;2014:969628.
    PMID: 25295311 DOI: 10.1155/2014/969628
    Covert channels are not new in computing systems, and have been studied since their first definition four decades ago. New platforms invoke thorough investigations to assess their security. Now is the time for Android platform to analyze its security model, in particular the two key principles: process-isolation and the permissions system. Aside from all sorts of malware, one threat proved intractable by current protection solutions, that is, collusion attacks involving two applications communicating over covert channels. Still no universal solution can countermeasure this sort of attack unless the covert channels are known. This paper is an attempt to reveal a new covert channel, not only being specific to smartphones, but also exploiting an unusual resource as a vehicle to carry covert information: sensors data. Accelerometers generate signals that reflect user motions, and malware applications can apparently only read their data. However, if the vibration motor on the device is used properly, programmatically produced vibration patterns can encode stolen data and hence an application can cause discernible effects on acceleration data to be received and decoded by another application. Our evaluations confirmed a real threat where strings of tens of characters could be transmitted errorless if the throughput is reduced to around 2.5-5 bps. The proposed covert channel is very stealthy as no unusual permissions are required and there is no explicit communication between the colluding applications.
    Matched MeSH terms: Computer Communication Networks/trends*
  11. Al-Kharasani NM, Zulkarnain ZA, Subramaniam S, Hanapi ZM
    Sensors (Basel), 2018 Feb 15;18(2).
    PMID: 29462884 DOI: 10.3390/s18020597
    Routing in Vehicular Ad hoc Networks (VANET) is a bit complicated because of the nature of the high dynamic mobility. The efficiency of routing protocol is influenced by a number of factors such as network density, bandwidth constraints, traffic load, and mobility patterns resulting in frequency changes in network topology. Therefore, Quality of Service (QoS) is strongly needed to enhance the capability of the routing protocol and improve the overall network performance. In this paper, we introduce a statistical framework model to address the problem of optimizing routing configuration parameters in Vehicle-to-Vehicle (V2V) communication. Our framework solution is based on the utilization of the network resources to further reflect the current state of the network and to balance the trade-off between frequent changes in network topology and the QoS requirements. It consists of three stages: simulation network stage used to execute different urban scenarios, the function stage used as a competitive approach to aggregate the weighted cost of the factors in a single value, and optimization stage used to evaluate the communication cost and to obtain the optimal configuration based on the competitive cost. The simulation results show significant performance improvement in terms of the Packet Delivery Ratio (PDR), Normalized Routing Load (NRL), Packet loss (PL), and End-to-End Delay (E2ED).
    Matched MeSH terms: Computer Communication Networks
  12. Al-Medhwahi M, Hashim F, Ali BM, Sali A
    PLoS One, 2016;11(6):e0156880.
    PMID: 27257964 DOI: 10.1371/journal.pone.0156880
    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.
    Matched MeSH terms: Computer Communication Networks*
  13. Al-Mekhlafi ZG, Hanapi ZM, Othman M, Zukarnain ZA
    PLoS One, 2017;12(1):e0167423.
    PMID: 28056020 DOI: 10.1371/journal.pone.0167423
    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.
    Matched MeSH terms: Computer Communication Networks*
  14. Al-Mishmish H, Akhayyat A, Rahim HA, Hammood DA, Ahmad RB, Abbasi QH
    Sensors (Basel), 2018 Oct 28;18(11).
    PMID: 30373314 DOI: 10.3390/s18113661
    Wireless Body Area Networks (WBANs) are single-hop network systems, where sensors gather the body's vital signs and send them directly to master nodes (MNs). The sensors are distributed in or on the body. Therefore, body posture, clothing, muscle movement, body temperature, and climatic conditions generally influence the quality of the wireless link between sensors and the destination. Hence, in some cases, single hop transmission ('direct transmission') is not sufficient to deliver the signals to the destination. Therefore, we propose an emergency-based cooperative communication protocol for WBAN, named Critical Data-based Incremental Cooperative Communication (CD-ICC), based on the IEEE 802.15.6 CSMA standard but assuming a lognormal shadowing channel model. In this paper, a complete study of a system model is inspected in the terms of the channel path loss, the successful transmission probability, and the outage probability. Then a mathematical model is derived for the proposed protocol, end-to-end delay, duty cycle, and average power consumption. A new back-off time is proposed within CD-ICC, which ensures the best relays cooperate in a distributed manner. The design objective of the CD-ICC is to reduce the end-to-end delay, the duty cycle, and the average power transmission. The simulation and numerical results presented here show that, under general conditions, CD-ICC can enhance network performance compared to direct transmission mode (DTM) IEEE 802.15.6 CSMA and benchmarking. To this end, we have shown that the power saving when using CD-ICC is 37.5% with respect to DTM IEEE 802.15.6 CSMA and 10% with respect to MI-ICC.
    Matched MeSH terms: Computer Communication Networks*
  15. Al-Nahari A, Mohamad MM
    PLoS One, 2016;11(6):e0156670.
    PMID: 27258013 DOI: 10.1371/journal.pone.0156670
    Decreasing the route rediscovery time process in reactive routing protocols is challenging in mobile ad hoc networks. Links between nodes are continuously established and broken because of the characteristics of the network. Finding multiple routes to increase the reliability is also important but requires a fast update, especially in high traffic load and high mobility where paths can be broken as well. The sender node keeps re-establishing path discovery to find new paths, which makes for long time delay. In this paper we propose an improved multipath routing protocol, called Receiver-based ad hoc on demand multipath routing protocol (RB-AOMDV), which takes advantage of the reliability of the state of the art ad hoc on demand multipath distance vector (AOMDV) protocol with less re-established discovery time. The receiver node assumes the role of discovering paths when finding data packets that have not been received after a period of time. Simulation results show the delay and delivery ratio performances are improved compared with AOMDV.
    Matched MeSH terms: Computer Communication Networks*
  16. Al-Rawi HA, Yau KL, Mohamad H, Ramli N, Hashim W
    ScientificWorldJournal, 2014;2014:960584.
    PMID: 25140350 DOI: 10.1155/2014/960584
    Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate) through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs' network performance without significantly jeopardizing PUs' network performance, specifically SUs' interference to PUs.
    Matched MeSH terms: Computer Communication Networks*
  17. Alizadeh M, Zamani M, Baharun S, Abdul Manaf A, Sakurai K, Anada H, et al.
    PLoS One, 2015;10(11):e0142716.
    PMID: 26580963 DOI: 10.1371/journal.pone.0142716
    Proxy Mobile IPv6 is a network-based localized mobility management protocol that supports mobility without mobile nodes' participation in mobility signaling. The details of user authentication procedure are not specified in this standard, hence, many authentication schemes have been proposed for this standard. In 2013, Chuang et al., proposed an authentication method for PMIPv6, called SPAM. However, Chuang et al.'s Scheme protects the network against some security attacks, but it is still vulnerable to impersonation and password guessing attacks. In addition, we discuss other security drawbacks such as lack of revocation procedure in case of loss or stolen device, and anonymity issues of the Chuang et al.'s scheme. We further propose an enhanced authentication method to mitigate the security issues of SPAM method and evaluate our scheme using BAN logic.
    Matched MeSH terms: Computer Communication Networks*
  18. Anisi MH, Abdullah AH, Razak SA, Ngadi MA
    Sensors (Basel), 2012 03 27;12(4):3964-96.
    PMID: 23443040 DOI: 10.3390/s120403964
    Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals.
    Matched MeSH terms: Computer Communication Networks*
  19. Ayatollahitafti V, Ngadi MA, Mohamad Sharif JB, Abdullahi M
    PLoS One, 2016;11(1):e0146464.
    PMID: 26771586 DOI: 10.1371/journal.pone.0146464
    Body Area Networks (BANs) consist of various sensors which gather patient's vital signs and deliver them to doctors. One of the most significant challenges faced, is the design of an energy-efficient next hop selection algorithm to satisfy Quality of Service (QoS) requirements for different healthcare applications. In this paper, a novel efficient next hop selection algorithm is proposed in multi-hop BANs. This algorithm uses the minimum hop count and a link cost function jointly in each node to choose the best next hop node. The link cost function includes the residual energy, free buffer size, and the link reliability of the neighboring nodes, which is used to balance the energy consumption and to satisfy QoS requirements in terms of end to end delay and reliability. Extensive simulation experiments were performed to evaluate the efficiency of the proposed algorithm using the NS-2 simulator. Simulation results show that our proposed algorithm provides significant improvement in terms of energy consumption, number of packets forwarded, end to end delay and packet delivery ratio compared to the existing routing protocol.
    Matched MeSH terms: Computer Communication Networks
  20. Bangash JI, Abdullah AH, Anisi MH, Khan AW
    Sensors (Basel), 2014;14(1):1322-57.
    PMID: 24419163 DOI: 10.3390/s140101322
    Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses.
    Matched MeSH terms: Computer Communication Networks*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links