Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Goulding TC, Dayrat B
    Sci Rep, 2023 Sep 22;13(1):15793.
    PMID: 37737278 DOI: 10.1038/s41598-023-42057-6
    Knowledge of the biogeography of marine taxa has lagged significantly behind terrestrial ecosystems. A hotspot of marine biodiversity associated with coral reefs is known in the Coral Triangle of the Indo-West Pacific, but until now there was little data with which to evaluate broad patterns of species richness in the coastal fauna of ecosystems other than coral reefs. This data is critically needed for fauna with low functional redundancy like that of mangroves, that are vulnerable to habitat loss and rising sea levels. Here we show that the diversity of mangrove fauna is characterized by two distinct hotspots in the Indo-West Pacific, associated with two habitat types: fringe mangroves in the Coral Triangle, and riverine mangroves in the Strait of Malacca, between the west coast of Peninsular Malaysia and Sumatra. This finding, based on a family of slugs of which the systematics has been completely revised, illustrates an unexpected biogeographic pattern that emerged only after this taxon was studied intensively. Most organisms that live in the mangrove forests of Southeast Asia remain poorly known both taxonomically and ecologically, and the hotspot of diversity of onchidiid slugs in the riverine mangroves of the Strait of Malacca indicates that further biodiversity studies are needed to support effective conservation of mangrove biodiversity.
    Matched MeSH terms: Coral Reefs
  2. Simpfendorfer CA, Heithaus MR, Heupel MR, MacNeil MA, Meekan M, Harvey E, et al.
    Science, 2023 Jun 16;380(6650):1155-1160.
    PMID: 37319199 DOI: 10.1126/science.ade4884
    A global survey of coral reefs reveals that overfishing is driving resident shark species toward extinction, causing diversity deficits in reef elasmobranch (shark and ray) assemblages. Our species-level analysis revealed global declines of 60 to 73% for five common resident reef shark species and that individual shark species were not detected at 34 to 47% of surveyed reefs. As reefs become more shark-depleted, rays begin to dominate assemblages. Shark-dominated assemblages persist in wealthy nations with strong governance and in highly protected areas, whereas poverty, weak governance, and a lack of shark management are associated with depauperate assemblages mainly composed of rays. Without action to address these diversity deficits, loss of ecological function and ecosystem services will increasingly affect human communities.
    Matched MeSH terms: Coral Reefs*
  3. Chan YKS, Affendi YA, Ang PO, Baria-Rodriguez MV, Chen CA, Chui APY, et al.
    Commun Biol, 2023 Jun 10;6(1):630.
    PMID: 37301948 DOI: 10.1038/s42003-023-05000-z
    Coral reefs in the Central Indo-Pacific region comprise some of the most diverse and yet threatened marine habitats. While reef monitoring has grown throughout the region in recent years, studies of coral reef benthic cover remain limited in spatial and temporal scales. Here, we analysed 24,365 reef surveys performed over 37 years at 1972 sites throughout East Asia by the Global Coral Reef Monitoring Network using Bayesian approaches. Our results show that overall coral cover at surveyed reefs has not declined as suggested in previous studies and compared to reef regions like the Caribbean. Concurrently, macroalgal cover has not increased, with no indications of phase shifts from coral to macroalgal dominance on reefs. Yet, models incorporating socio-economic and environmental variables reveal negative associations of coral cover with coastal urbanisation and sea surface temperature. The diversity of reef assemblages may have mitigated cover declines thus far, but climate change could threaten reef resilience. We recommend prioritisation of regionally coordinated, locally collaborative long-term studies for better contextualisation of monitoring data and analyses, which are essential for achieving reef conservation goals.
    Matched MeSH terms: Coral Reefs*
  4. Sherman CS, Simpfendorfer CA, Pacoureau N, Matsushiba JH, Yan HF, Walls RHL, et al.
    Nat Commun, 2023 Jan 17;14(1):15.
    PMID: 36650137 DOI: 10.1038/s41467-022-35091-x
    Sharks and rays are key functional components of coral reef ecosystems, yet many populations of a few species exhibit signs of depletion and local extinctions. The question is whether these declines forewarn of a global extinction crisis. We use IUCN Red List to quantify the status, trajectory, and threats to all coral reef sharks and rays worldwide. Here, we show that nearly two-thirds (59%) of the 134 coral-reef associated shark and ray species are threatened with extinction. Alongside marine mammals, sharks and rays are among the most threatened groups found on coral reefs. Overfishing is the main cause of elevated extinction risk, compounded by climate change and habitat degradation. Risk is greatest for species that are larger-bodied (less resilient and higher trophic level), widely distributed across several national jurisdictions (subject to a patchwork of management), and in nations with greater fishing pressure and weaker governance. Population declines have occurred over more than half a century, with greatest declines prior to 2005. Immediate action through local protections, combined with broad-scale fisheries management and Marine Protected Areas, is required to avoid extinctions and the loss of critical ecosystem function condemning reefs to a loss of shark and ray biodiversity and ecosystem services, limiting livelihoods and food security.
    Matched MeSH terms: Coral Reefs*
  5. Kanisan DP, Quek ZBR, Oh RM, Afiq-Rosli L, Lee JN, Huang D, et al.
    Microb Ecol, 2023 Jan;85(1):37-48.
    PMID: 35043221 DOI: 10.1007/s00248-022-01958-1
    Coral-associated bacteria play critical roles in the regulation of coral health and function. Environmental perturbations that alter the bacterial community structure can render the coral holobiont more susceptible and less resilient to disease. Understanding the natural variation of the coral microbiome across space and host species provides a baseline that can be used to distinguish shifts in community structure. Using a 16S rRNA gene metabarcoding approach, this study examines bacterial community structure across three scleractinian coral hosts. Our results show that corals of three regions-eastern and western Peninsular Malaysia and Singapore-host distinct bacterial communities; despite these differences, we were able to identify a core microbiome shared across all three species. This core microbiome was also present in samples previously collected in Thailand, suggesting that these core microbes play an important role in promoting and maintaining host health. For example, several have been identified as dimethylsulfoniopropionate (DMSP) metabolizers that have roles in sulfur cycling and the suppression of bacterial pathogens. Pachyseris speciosa has the most variable microbiome, followed by Porites lutea, with the composition of the Diploastrea heliopora microbiome the least variable throughout all locations. Microbial taxa associated with each region or site are likely shaped by local environmental conditions. Taken together, host identity is a major driver of differences in microbial community structure, while environmental heterogeneity shapes communities at finer scales.
    Matched MeSH terms: Coral Reefs
  6. Goldsworthy NC, Srinivasan M, Smallhorn-West P, Cheah LC, Munday PL, Jones GP
    J Fish Biol, 2022 Oct;101(4):996-1007.
    PMID: 35818109 DOI: 10.1111/jfb.15161
    Body size influences many life-history traits, with small-bodied animals tending to have short life spans, high mortality and greater reproductive effort early in life. In this study, the authors investigated the life-history traits and reproductive strategies of three small-bodied coral reef gobies of the genus Trimma: Trimma benjamini, Trimma capostriatum and Trimma yanoi. The authors found all Trimma species studied attained a small body size of <25 mm, had a short life span of <140 days and experienced high estimated daily mortality of 3.0%-6.7%. Furthermore, the pelagic larval phase accounted for 25.3%-28.5% of the maximum life span, and maturation occurred between 74.1 and 82.1 days at 15.2-15.8 mm, leaving only 35%-43% of the total life span as a reproductively viable adult. All mature individuals had gonad structures consistent with bidirectional sex change, with bisexual gonads including both ovarian and testicular portions separated by a thin wall of connective tissue. In the female and male phases, only ovaries or testes were mature, whereas gonadal tissue of the non-active sex remained. One T. benjamini individual and one T. yanoi individual had ovarian and testicular tissue active simultaneously. The results of this study highlight the life-history challenges small CRFs face on their path to reproduction and reproductive strategies that could be beneficial in fishes with high and unpredictable mortality and short reproductive life spans.
    Matched MeSH terms: Coral Reefs*
  7. Zainal Abidin DH, Mohd Nor SA, Lavoué S, A Rahim M, Mohammed Akib NA
    Sci Rep, 2022 Sep 29;12(1):16346.
    PMID: 36175455 DOI: 10.1038/s41598-022-19954-3
    Biodiversity surveys are crucial for monitoring the status of threatened aquatic ecosystems, such as tropical estuaries and mangroves. Conventional monitoring methods are intrusive, time-consuming, substantially expensive, and often provide only rough estimates in complex habitats. An advanced monitoring approach, environmental DNA (eDNA) metabarcoding, is promising, although only few applications in tropical mangrove estuaries have been reported. In this study, we explore the advantages and limitations of an eDNA metabarcoding survey on the fish community of the Merbok Estuary (Peninsular Malaysia). COI and 12S eDNA metabarcoding assays collectively detected 178 species from 127 genera, 68 families, and 25 orders. Using this approach, significantly more species have been detected in the Merbok Estuary over the past decade (2010-2019) than in conventional surveys, including several species of conservation importance. However, we highlight three limitations: (1) in the absence of a comprehensive reference database the identities of several species are unresolved; (2) some of the previously documented specimen-based diversity was not captured by the current method, perhaps as a consequence of PCR primer specificity, and (3) the detection of non-resident species-stenohaline freshwater taxa (e.g., cyprinids, channids, osphronemids) and marine coral reef taxa (e.g., holocentrids, some syngnathids and sharks), not known to frequent estuaries, leading to the supposition that their DNA have drifted into the estuary through water movements. The community analysis revealed that fish diversity along the Merbok Estuary is not homogenous, with the upstream more diverse than further downstream. This could be due to the different landscapes or degree of anthropogenic influences along the estuary. In summary, we demonstrated the practicality of eDNA metabarcoding in assessing fish community and structure within a complex and rich tropical environment within a short sampling period. However, some limitations need to be considered and addressed to fully exploit the efficacy of this approach.
    Matched MeSH terms: Coral Reefs
  8. Chow SW, Keshavmurthy S, Reimer JD, de Voogd N, Huang H, Wang JT, et al.
    PeerJ, 2022;10:e13451.
    PMID: 35669953 DOI: 10.7717/peerj.13451
    The first occurrence of the cyanobacteriosponge Terpios hoshinota was reported from coral reefs in Guam in 1973, but was only formally described in 1993. Since then, the invasive behavior of this encrusting, coral-killing sponge has been observed in many coral reefs in the West Pacific. From 2015, its occurrence has expanded westward to the Indian Ocean. Although many studies have investigated the morphology, ecology, and symbiotic cyanobacteria of this sponge, little is known of its population genetics and demography. In this study, a mitochondrial cytochrome oxidase I (COI) fragment and nuclear ribosomal internal transcribed spacer 2 (ITS2) were sequenced to reveal the genetic variation of T. hoshinota collected from 11 marine ecoregions throughout the Indo-West Pacific. Both of the statistical parsimony networks based on the COI and nuclear ITS2 were dominated by a common haplotype. Pairwise F ST and Isolation-by-distance by Mantel test of ITS2 showed moderate gene flow existed among most populations in the marine ecoregions of West Pacific, Coral Triangle, and Eastern Indian Ocean, but with a restricted gene flow between these regions and Maldives in the Central Indian Ocean. Demographic analyses of most T. hoshinota populations were consistent with the mutation-drift equilibrium, except for the Sulawesi Sea and Maldives, which showed bottlenecks following recent expansion. Our results suggest that while long-range dispersal might explain the capability of T. hoshinota to spread in the IWP, stable population demography might account for the long-term persistence of T. hoshinota outbreaks on local reefs.
    Matched MeSH terms: Coral Reefs
  9. Santodomingo N, Perry C, Waheed Z, Syed Hussein MAB, Rosedy A, Johnson KG
    Mar Pollut Bull, 2021 Dec;173(Pt A):112998.
    PMID: 34624630 DOI: 10.1016/j.marpolbul.2021.112998
    Marine litter is recognized as an increasing component of marine ecosystem pollution. In this baseline study, we document the magnitude, types, sources, and potential impacts of litter on six coral reefs in East Sabah. We applied a simplified classification of litter to extract abundance data from video transects. The average density was 10.7 items per 100 m2. Plastics represent 91% and the remaining 9% were metal, glass, and wood. Most (~70%) plastics are single-use items derived from dumping. Discarded fishing gear accounts for ~25%. Litter pollution increases closer to urban developments, with Sakar reef having higher densities (51 items per 100 m2), and higher Clean Coast Index (CCI = 10.2, dirty) and higher Plastic Abundance Index (PAI = 4.68) scores. This method could and should be readily integrated into ongoing monitoring programs to support assessments of the extent and magnitude of marine litter pollution on reefs worldwide.
    Matched MeSH terms: Coral Reefs*
  10. Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR
    PLoS Biol, 2021 Nov;19(11):e3001435.
    PMID: 34727097 DOI: 10.1371/journal.pbio.3001435
    Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
    Matched MeSH terms: Coral Reefs
  11. Ohara T, Hoeksema BW, Wee HB, Reimer JD
    Mar Environ Res, 2021 Aug;170:105445.
    PMID: 34392055 DOI: 10.1016/j.marenvres.2021.105445
    Offshore Onna Village, Okinawa Island, Japan, there is a large and densely covered coral assemblage of free-living mushroom corals (Scleractinia: Fungiidae) on a reef slope at depths from 20 m to 32 m, covering an area of approximately 350 × 40 m2. From previous research, it is known that migration distances of mushroom corals may depend on coral shapes, coral sizes, substrate, and bottom inclination. However, until now there have been no published examples of regular Fungiidae movement and behavior from typhoon-exposed coastlines, such as those in the western Pacific Ocean. Our surveys across three years offshore Onna Village show that mushroom corals always move in down-slope direction from shallow to deeper reef zones. The results indicated that mushroom corals migrated faster in autumn than in other seasons, and that oval-elongate fungiids, and particularly those with a smooth underside, migrated more quickly than species with other shapes. Surprisingly, we observed a negative relationship between the presence of typhoons and migration rates. We also observed active migration by fungiid individuals to escape situations in which they were threatened to become overgrown by Acropora corals, or when they needed to escape from burial underneath coral debris.
    Matched MeSH terms: Coral Reefs
  12. Rahman I, Al-Bar AA, Richard FS, Müller M, Mujahid A
    Can J Microbiol, 2021 Jul;67(7):548-552.
    PMID: 33417515 DOI: 10.1139/cjm-2020-0287
    Vibrio coralliilyticus, a prominent pathogenic bacteria, is known to cause tissue damage in the coral Pocillopora damicornis and is attracted towards the coral via chemotaxis. However, the potential of V. coralliilyticus to infect most of the other coral hosts via chemotaxis is unknown. In this study, we used capillary assays to quantify the chemotactic response of V. coralliilyticus to the mucus of four tank-cultivated coral species (Cataphyllia jardine, Mussidae sp., Nemenzophyllia turbida, and Euphyllia ancora), and mucus from three wild coral species (Acropora sp., Porites sp., and Montipora sp.). The bacteria showed a positive chemotactic response to each coral mucus tested, with the highest response recorded to the mucus of Acropora sp. and the lowest response to the mucus of Montipora sp. A microfluidic chip was then used to assess the chemotactic preference of V. coralliilyticus to the mucus of the tank cultivated corals. Here too, the bacterium showed positive response, but with a slightly different ranking order. The strong chemotactic response of V. coralliilyticus towards the mucus tested could indicate a broader host range of V. coralliilyticus, and by extension, indicate a threat to weakened coral reefs worldwide.
    Matched MeSH terms: Coral Reefs
  13. A'ziz ANA, Minhat FI, Pan HJ, Shaari H, Saelan WNW, Azmi N, et al.
    Sci Rep, 2021 Apr 26;11(1):8890.
    PMID: 33903697 DOI: 10.1038/s41598-021-88404-3
    Pulau Tioman is a famous tourist island off Peninsular Malaysia with beautiful coral reefs. This study aims to assess the health of the coral reefs surrounding Pulau Tioman based on the application of the Foraminifera in Reef Assessment and Monitoring Index (FI). Ten sampling sites around Pulau Tioman were studied with a total of 30 samples. Eight orders, 41 families, 80 genera, and 161 species of benthic foraminifera were identified. The agglutinated type of foraminifera constituted 2-8% of the total assemblages. Calcareous hyaline and porcelaneous groups represented 79% and 19% of the total assemblages, respectively. Symbiont-bearing taxa were the most common foraminifera. The results indicate that most of the sampling sites are conducive for coral reef growth with good recoverability from future stress to the ecosystem. However, several areas with higher coastal development and tourism have reduced water and sediment quality. Therefore, the limit on the number of visitors and tourists should be revised to enable coral growth and health. The FI values in this study showed a positive correlation with good water qualities and a negative correlation with organic matter enrichment. The FI is a good measure to assess the health of a coral reef and can be applied to other reef ecosystems around Malaysia.
    Matched MeSH terms: Coral Reefs
  14. Qiu S, Chen B, Du J, Loh KH, Liao J, Liu X, et al.
    Biodivers Data J, 2021;9:e63945.
    PMID: 33732033 DOI: 10.3897/BDJ.9.e63945
    Background: The Xisha Islands are composed of the Yongle Islands and the Xuande Islands in Hainan Province, China. It has one of the highest species diversity in the world and is also a typical oceanic distribution area of coral reefs globally. The ichthyofauna of the Xisha Islands were recorded by underwater visual census in May 2019 and July 2020. The survey data were combined with previous records of species into the checklist of the Xisha Islands presented herein. A total of 691 species, belonging to 24 orders and 97 families, was recorded. The major families were Labridae, Pomacentridae, Serranidae, Chaetodontidae, Hexanchidae, Lutjanidae, Scaridae, Gobiidae, Scorpaenidae and Carangidae. In this study, the Coral Fish iversity Index (CFDI) of six families (Chaetodontidae, Pomacanthidae, Pomacentridae, Labridae, Scaridae and Acanthuridae) was 229, indicating 756 coral fishes. In terms of the IUCN Red List, one species is Critically Endangered (Glyphis gangeticus), six species are Endangered (Stegostoma fasciatum, Aetomylaeus maculatus, Aetomylaeus vespertilio, Epinephelus akaara, Cheilinusundulatus sp. and Xiphias gladius), 16 species are Vulnerable, and 13 species are Near Threatened in the Xisha Archipelago, so conservation should be strengthened in this area in the future.

    New information: One species is a new record for China (Dischistodus pseudochrysopoecilus) and 23 species are newly found in the Xisha Islands.

    Matched MeSH terms: Coral Reefs
  15. Ng SY, Phan CS, Ishii T, Kamada T, Hamada T, Vairappan CS
    Molecules, 2020 Nov 18;25(22).
    PMID: 33217924 DOI: 10.3390/molecules25225386
    Members of the marine soft coral genus Xenia are rich in a diversity of diterpenes. A total of 199 terpenes consisting of 14 sesquiterpenes, 180 diterpenes, and 5 steroids have been reported to date. Xenicane diterpenes were reported to be the most common chemical skeleton biosynthesized by members of this genus. Most of the literature reported the chemical diversity of Xenia collected from the coral reefs in the South China Sea and the coastal waters of Taiwan. Although there was a brief review on the terpenoids of Xenia in 2015, the present review is a comprehensive overview of the structural diversity of secondary metabolites isolated from soft coral genus Xenia and their potent biological activity as reported between 1977 to 2019.
    Matched MeSH terms: Coral Reefs
  16. Louis YD, Bhagooli R, Seveso D, Maggioni D, Galli P, Vai M, et al.
    Mol Ecol, 2020 11;29(22):4382-4394.
    PMID: 32967057 DOI: 10.1111/mec.15642
    Corals show spatial acclimatisation to local environment conditions. However, the various cellular mechanisms involved in local acclimatisation and variable bleaching patterns in corals remain to be thoroughly understood. In this study, the modulation of a protein implicated in cellular heat stress tolerance, the heat shock protein 70, was compared at both gene (hsp70) and protein (Hsp70) expression level in bleaching tolerant near-coast Acropora muricata colonies and bleaching susceptible reef colonies, in the lagoon of Belle Mare (Mauritius). The relative Hsp70 levels varied significantly between colonies from the two different locations, colonies having different health conditions and the year of collection. Before the bleaching event of 2016, near-coast colonies had higher basal levels of both Hsp70 gene and protein compared to reef colonies. During the bleaching event, the near-coast colonies did not bleach and had significantly higher relative levels of both Hsp70 gene and protein compared to bleached reef colonies. No significant genetic differentiation between the two studied coral populations was observed and all the colonies analysed were associated with Symbiodiniaceae of the genus Symbiodinium (Clade A) irrespective of location and sampling period. These findings provide further evidence of the involvement of Hsp70 in conferring bleaching tolerance to corals. Moreover, the consistent expression differences of Hsp70 gene and protein between the near-coast and reef coral populations in a natural setting indicate that the modulation of this Hsp is involved in local acclimatisation of corals to their environments.
    Matched MeSH terms: Coral Reefs
  17. Bachok Z, Safuan CDM, Roseli NH, Akhir MF
    Data Brief, 2020 Oct;32:106182.
    PMID: 32923531 DOI: 10.1016/j.dib.2020.106182
    This article provides raw datasets of the coral reefs status in Pulau Bidong, southern of South China Sea before and after being strike by the tropical storm Pabuk on January 2019. Data were collected using a rapid coral survey method called Coral Video Transect (CVT) technique. The data were collected along a 100 m transect line set up parallel to the shoreline and at a constant depth. In total, eight transects were surveyed during both periods (pre - August 2016, post - March 2019). Back in laboratory, the footage was then extracted into non-overlapping frames or still images prior to image analysis using Coral Point Count with Excel Extension (CPCe) software. The benthic coral reefs relative percentage cover was automatically generated after the image analysis and represented by five major categories; live coral (C), algae (ALG), other invertebrates (OT), dead coral (DC), and sand silt and rock (SR). Live coral cover was identified up to the genus level. This raw dataset was used in this article. The data provided in this article could be of significant use for future studies especially on coral recovery after the natural disturbances. It can provide a baseline assessment especially for coral reefs management as well as to comprehend changes in coral health status in the face of natural and anthropogenic disturbances. The data presented here support the information in the article Safuan et al. (2020).
    Matched MeSH terms: Coral Reefs
  18. MacNeil MA, Chapman DD, Heupel M, Simpfendorfer CA, Heithaus M, Meekan M, et al.
    Nature, 2020 07;583(7818):801-806.
    PMID: 32699418 DOI: 10.1038/s41586-020-2519-y
    Decades of overexploitation have devastated shark populations, leaving considerable doubt as to their ecological status1,2. Yet much of what is known about sharks has been inferred from catch records in industrial fisheries, whereas far less information is available about sharks that live in coastal habitats3. Here we address this knowledge gap using data from more than 15,000 standardized baited remote underwater video stations that were deployed on 371 reefs in 58 nations to estimate the conservation status of reef sharks globally. Our results reveal the profound impact that fishing has had on reef shark populations: we observed no sharks on almost 20% of the surveyed reefs. Reef sharks were almost completely absent from reefs in several nations, and shark depletion was strongly related to socio-economic conditions such as the size and proximity of the nearest market, poor governance and the density of the human population. However, opportunities for the conservation of reef sharks remain: shark sanctuaries, closed areas, catch limits and an absence of gillnets and longlines were associated with a substantially higher relative abundance of reef sharks. These results reveal several policy pathways for the restoration and management of reef shark populations, from direct top-down management of fishing to indirect improvement of governance conditions. Reef shark populations will only have a high chance of recovery by engaging key socio-economic aspects of tropical fisheries.
    Matched MeSH terms: Coral Reefs*
  19. Mathew M, Makhankova A, Menier D, Sautter B, Betzler C, Pierson B
    Sci Rep, 2020 04 28;10(1):7141.
    PMID: 32346046 DOI: 10.1038/s41598-020-64119-9
    During the Miocene, extensive carbonate deposition thrived over wide latitudinal ranges in Southeast Asia despite perturbations of the global climate and thermohaline circulation that affected the Asian continent. Nevertheless, the mechanisms of its emergence, adaptability in siliciclastic-dominated margins and demise, especially in southern South China Sea (SCS), are largely speculative and remains enigmatic along with a scarcity of constraints on paleoclimatic and palaeoceanographic conditions. Here we show, through newly acquired high-resolution geophysical data and accurate stratigraphic records based on strontium isotopic dating, the evolution of these platforms from ~15.5-9.5 Ma is initially tied to tectonics and eustasy, and ultimately, after ~9.5 Ma, to changes in the global climate patterns and consequent palaeoceanographic conditions. Our results demonstrate at least two paleodeltas that provided favourable substratum of elevated sand bars, which conditioning the emergence of the buildups that inadvertently mirrored the underlying strata. We show unprecedented evidences for ocean current fluctuations linked to the intensification of the Asian summer monsoon winds resulting in the formation of drifts and moats, which extirpated the platforms through sediment removal and starvation. This work highlights the imperative role of palaeoceanography in creating favourable niches for reefal development that can be applicable to carbonate platforms elsewhere.
    Matched MeSH terms: Coral Reefs*
  20. Krawczyk H, Zinke J, Browne N, Struck U, McIlwain J, O'Leary M, et al.
    Sci Rep, 2020 02 28;10(1):3678.
    PMID: 32111903 DOI: 10.1038/s41598-020-60525-1
    Extreme climate events, such as the El Niños in 1997/1998 and 2015/16, have led to considerable forest loss in the Southeast Asian region following unprecedented drought and wildfires. In Borneo, the effects of extreme climate events have been exacerbated by rapid urbanization, accelerated deforestation and soil erosion since the 1980s. However, studies quantifying the impact of interannual and long-term (>3 decades) climatic and anthropogenic change affecting Borneo's coastal and coral reef environments are lacking. Here, we used coral cores collected in Miri-Sibuti Coral Reefs National Park, Sarawak (Malaysia) to reconstruct the spatio-temporal dynamics of sea surface temperature and oxygen isotopic composition of seawater from 1982 to 2016, based on paired oxygen isotope and Sr/Ca measurements. The results revealed rising sea surface temperatures of 0.26 ± 0.04 °C per decade since 1982. Reconstructed δ18Osw displayed positive excursion during major El Niño events of 1983, 1997/98 and 2015/16, indicating drought conditions with less river runoff, rainfall and higher ocean salinities. La Niñas were generally associated with lower δ18Osw. We observed a long-term shift from more saline conditions between 1982 and 1995 towards less saline conditions after 1995, which are in agreement with the regional freshening trend, punctuated by saline excursion during El Niños. The decadal shifts were found to be driven by the Pacific Decadal Oscillation (PDO). This study provides the first long-term data on El Niño Southern Oscillation (ENSO)-driven synchrony of climate impacts on both terrestrial and marine ecosystems in northern Borneo. Our results suggest that coral records from northern Borneo are invaluable archives to detect regional ENSO and PDO impacts, and their interaction with the Asian-Australian monsoon, on the hydrological balance in the southern South China Sea beyond the past three decades.
    Matched MeSH terms: Coral Reefs*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links