Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Faizal AM, Elias MH, Jin NM, Abu MA, Syafruddin SE, Zainuddin AA, et al.
    Front Endocrinol (Lausanne), 2024;15:1274376.
    PMID: 38524634 DOI: 10.3389/fendo.2024.1274376
    The leading indicator for successful outcomes in in-vitro fertilization (IVF) is the quality of gametes in oocytes and sperm. Thus, advanced research aims to highlight the parameter in assessing these qualities - DNA fragmentation in sperm and oocyte development capacity (ODC) via evaluation of microenvironments involving its maturation process. Regarding oocytes, most evidence reveals the role of cumulus cells as non-invasive methods in assessing their development competency, mainly via gene expression evaluation. Our review aims to consolidate the evidence of GDF-9 derivatives, the HAS2, GREM1, and PTGS2 gene expression in cumulus cells used as ODC markers in relevant publications and tailored to current IVF outcomes. In addition to that, we also added the bioinformatic analysis in our review to strengthen the evidence aiming for a better understanding of the pathways and cluster of the genes of interest - HAS2, GREM1, and PTGS2 in cumulus cell level. Otherwise, the current non-invasive method can be used in exploring various causes of infertility that may affect these gene expressions at the cumulus cell level. Nevertheless, this method can also be used in assessing the ODC in various cohorts of women or as an improvement of markers following targeted tools or procedures by evaluating the advancement of these gene expressions following the targeted intervention.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  2. Nesaretnam K, Meganathan P
    Ann N Y Acad Sci, 2011 Jul;1229:18-22.
    PMID: 21793834 DOI: 10.1111/j.1749-6632.2011.06088.x
    Inflammation is an organism's response to environmental assaults. It can be classified as acute inflammation that leads to therapeutic recovery or chronic inflammation, which may lead to the development of cancer and other ailments. Genetic changes that occur within cancer cells themselves are responsible for many aspects of cancer development but are dependent on ancillary processes for tumor promotion and progression. Inflammation has long been associated with the development of cancer. The distinct characteristics of cancer cells to proliferate, metastasize, evade apoptotic signals, and develop chemoresistance have been linked to the inflammatory response. Due to the involvement of multiple genes and various pathways, current drugs that target single genes have not been effective in providing a therapeutic cure. On the other hand, natural products target multiple genes and therefore have better success compared to drugs. Tocotrienols, the potent isoforms of vitamin E, are such a natural product. This review will discuss the relationship between cancer and inflammation with particular focus on the roles played by NF-κB, STAT3, and COX-2.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  3. Chin KY
    Drug Des Devel Ther, 2016;10:3029-3042.
    PMID: 27703331
    Osteoarthritis is a degenerative disease of the joint affecting aging populations worldwide. It has an underlying inflammatory cause, which contributes to the loss of chondrocytes, leading to diminished cartilage layer at the affected joints. Compounds with anti-inflammatory properties are potential treatment agents for osteoarthritis. Curcumin derived from Curcuma species is an anti-inflammatory compound as such. This review aims to summarize the antiosteoarthritic effects of curcumin derived from clinical and preclinical studies. Many clinical trials have been conducted to determine the effectiveness of curcumin in osteoarthritic patients. Extracts of Curcuma species, curcuminoids and enhanced curcumin, were used in these studies. Patients with osteoarthritis showed improvement in pain, physical function, and quality of life after taking curcumin. They also reported reduced concomitant usage of analgesics and side effects during treatment. In vitro studies demonstrated that curcumin could prevent the apoptosis of chondrocytes, suppress the release of proteoglycans and metal metalloproteases and expression of cyclooxygenase, prostaglandin E-2, and inflammatory cytokines in chondrocytes. These were achieved by blocking the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) system in the chondrocytes, by preventing the activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, phosphorylation, and translocation of the p65 subunit of NF-κB complexes into the nucleus. In conclusion, curcumin is a potential candidate for the treatment of osteoarthritis. More well-planned randomized control trials and enhanced curcumin formulation are required to justify the use of curcumin in treating osteoarthritis.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  4. Abdelwahab SI, Mohan S, Abdulla MA, Sukari MA, Abdul AB, Taha MM, et al.
    J Ethnopharmacol, 2011 Sep 2;137(2):963-70.
    PMID: 21771650 DOI: 10.1016/j.jep.2011.07.010
    Boesenbergia rotunda (L) Mansf. has been used for the treatment of gastrointestinal disorders including peptic ulcer. In the current study we aimed to investiagte the anti-ulcer activities of methanolic extract of B. rotunda (MEBR) and its main active compound, pinostrobin on ethanol-induced ulcer in rats. The possible involevement of lipid peroxidation, nitric oxide, cyclooxygenases and free radical scavenging mechanisms also has been investigated.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  5. Lee YY, Saba E, Irfan M, Kim M, Chan JY, Jeon BS, et al.
    Phytomedicine, 2019 Feb 15;54:169-181.
    PMID: 30668366 DOI: 10.1016/j.phymed.2018.09.186
    BACKGROUND: Different processing conditions alter the ginseng bioactive compounds, promoting or reducing its anti-inflammatory effects. We compared black ginseng (BG) - that have been steamed 5 times - with red ginseng (RG).

    HYPOTHESIS/ PURPOSE: To compare the anti-inflammatory activities and the anti-nociceptive properties of RG and BG.

    METHODS: Nitric Oxide (NO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay, quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR), western blot, xylene-induced ear edema, carrageenan-induced paw edema RESULTS: The ginsenoside contents were confirmed using high-performance liquid chromatography (HPLC) and has been altered through increased processing. The highest concentration of these extracts inhibited NO production to near-basal levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 without exhibiting cytotoxicity. Pro-inflammatory cytokine expression at the mRNA level was investigated using qRT-PCR. Comparatively, BG exhibited better inhibition of pro-inflammatory mediators, iNOS and COX-2 and pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α. Protein expression was determined using western blot analysis and BG exhibited stronger inhibition. Xylene-induced ear edema model in mice and carrageenan-induced paw edema in rats were carried out and tested with the effects of ginseng as well as dexamethasone and indomethacin - commonly used drugs. BG is a more potent anti-inflammatory agent, possesses anti-nociceptive properties, and has a strong potency comparable to the NSAIDs.

    CONCLUSION: BG has more potent anti-inflammatory and anti-nociceptive effects due to the change in ginsenoside component with increased processing.

    Matched MeSH terms: Cyclooxygenase 2/metabolism
  6. Mariod AA, Salama SM
    ScientificWorldJournal, 2020;2020:6326452.
    PMID: 32549800 DOI: 10.1155/2020/6326452
    The current study has been conducted to evaluate the effect of different processing techniques on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity and the gastroprotective potential of Chenopodium quinoa red seeds in acute gastric injury induced by absolute ethanol in rats. Seven groups of female Sprague Dawley rats were assigned to normal and absolute ethanol (absolute EtOH) groups, given distilled water, reference control omeprazole (OMP, 20 mg/kg), pressure-cooked quinoa seeds (QP, 200 mg/kg), first stage-germinated quinoa seeds (QG, 200 mg/kg), Lactobacillus plantarum bacteria-fermented quinoa seeds (QB, 200 mg/kg), and Rhizopus oligosporus fungus-fermented quinoa seeds (QF, 200 mg/kg). One hour after treatment, all groups were given absolute ethanol, except for the normal control rats. All animals were sacrificed after an additional hour, and the stomach tissues were examined for histopathology of hematoxylin and eosin staining, immunohistochemistry of cyclooxygenase 2 (COX-2), and nitric oxide synthase (iNOS). Stomach homogenates were evaluated for oxidative stress parameters and prostaglandin E2 (PGE2). Gene expression was performed for gastric tumor necrosis factor alpha (TNF-α) and nuclear factor kappa of B cells (NF-kB). QB and QG recorded the highest DPPH scavengers compared to QF and QP. The gastroprotective potential of QB was comparable to that of OMP, followed by QF, then QG, and QP as confirmed by the histopathology, immunohistochemistry, and gene expression assessments. In conclusion, differently processed red quinoa seeds revealed variable antioxidant capacity and gastroprotective potential, while the bacterial fermented seeds (QB) showed the highest potential compared to the other processing techniques. These results might offer promising new therapy in the treatment of acute gastric injury.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  7. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  8. Mohd Aluwi MF, Rullah K, Yamin BM, Leong SW, Abdul Bahari MN, Lim SJ, et al.
    Bioorg Med Chem Lett, 2016 05 15;26(10):2531-8.
    PMID: 27040659 DOI: 10.1016/j.bmcl.2016.03.092
    The syntheses and bioactivities of symmetrical curcumin and its analogues have been the subject of interest by many medicinal chemists and pharmacologists over the years. To improve our understanding, we have synthesized a series of unsymmetrical monocarbonyl curcumin analogues and evaluated their effects on prostaglandin E2 production in lipopolysaccharide-induced RAW264.7 and U937 cells. Initially, compounds 8b and 8c exhibited strong inhibition on the production of PGE2 in both LPS-stimulated RAW264.7 (8b, IC50=12.01μM and 8c, IC50=4.86μM) and U937 (8b, IC50=3.44μM and 8c, IC50=1.65μM) cells. Placing vanillin at position Ar2 further improved the potency when both compounds 15a and 15b significantly lowered the PGE2 secretion level (RAW264.7: 15a, IC50=0.78μM and 15b, IC50=1.9μM while U937: 15a, IC50=0.95μM and 15b, IC50=0.92μM). Further experiment showed that compounds 8b, 8c, 15a and 15b did not target the activity of downstream inflammatory COX-2 mediator. Finally, docking simulation on protein targets COX-2, IKK-β, ERK, JNK2, p38α and p38β were performed using the conformation of 15a determined by single-crystal XRD.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  9. Saad N, Esa NM, Ithnin H
    Asian Pac J Cancer Prev, 2013;14(5):3093-9.
    PMID: 23803085
    BACKGROUND: Phytic acid (PA) is a polyphosphorylated carbohydrate that can be found in high amounts in most cereals, legumes, nut oil, seeds and soy beans. It has been suggested to play a significant role in inhibition of colorectal cancer. This study was conducted to investigate expression changes of β-catenin and cyclooxygenase-2 (COX-2) and cell proliferation in the adenoma-carcinoma sequence after treatment with rice bran PA by immunocytochemistry.

    MATERIALS AND METHODS: Seventy-two male Sprague-Dawley rats were divided into 6 equal groups with 12 rats in each group. For cancer induction two intraperitoneal injections of azoxymethane (AOM) were given at 15 mg/kg bodyweight over a 2-weeks period. During the post initiation phase, two different concentrations of PA, 0.2% (w/v) and 0.5% (w/v) were administered in the diet.

    RESULTS: Results of β-catenin, COX-2 expressions and cell proliferation of Ki-67 showed a significant contribution in colonic cancer progression. For β-catenin and COX-2 expression, there was a significant difference between groups at p<0.05. With Ki-67, there was a statistically significant lowering the proliferating index as compared to AOM alone (p<0.05). A significant positive correlation (p=0.01) was noted between COX-2 expression and proliferation. Total β-catenin also demonstrated a significant positive linear relationship with total COX-2 (p=0.044).

    CONCLUSIONS: This study indicated potential value of PA extracted from rice bran in reducing colonic cancer risk in rats.

    Matched MeSH terms: Cyclooxygenase 2/metabolism
  10. Shafie NH, Mohd Esa N, Ithnin H, Md Akim A, Saad N, Pandurangan AK
    Biomed Res Int, 2013;2013:681027.
    PMID: 24260743 DOI: 10.1155/2013/681027
    Nutritional or dietary factors have drawn attention due to their potential as an effective chemopreventive agent, which is considered a more rational strategy in cancer treatment. This study was designed to evaluate the effect of IP₆ extracted from rice bran on azoxymethane- (AOM-) induced colorectal cancer (CRC) in rats. Initially, male Sprague Dawley rats were divided into 5 groups, with 6 rats in each group. The rats received two intraperitoneal (i.p.) injections of AOM in saline (15 mg/kg body weight) over a 2-week period to induce CRC. IP₆ was given in three concentrations, 0.2% (w/v), 0.5% (w/v), and 1.0% (w/v), via drinking water for 16 weeks. The deregulation of the Wnt/β-catenin signaling pathway and the expression of cyclooxygenase (COX)-2 have been implicated in colorectal tumorigenesis. β-Catenin and COX-2 expressions were analysed using the quantitative RT-PCR and Western blotting. Herein, we reported that the administration of IP₆ markedly suppressed the incidence of tumors when compared to the control. Interestingly, the administration of IP₆ had also markedly decreased β-catenin and COX-2 in colon tumors. Thus, the downregulation of β-catenin and COX-2 could play a role in inhibiting the CRC development induced by IP₆ and thereby act as a potent anticancer agent.
    Matched MeSH terms: Cyclooxygenase 2/metabolism*
  11. Baskaran A, Chua KH, Sabaratnam V, Ravishankar Ram M, Kuppusamy UR
    BMC Complement Altern Med, 2017 Jan 13;17(1):40.
    PMID: 28086773 DOI: 10.1186/s12906-016-1546-6
    Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) and combination of LPS and hydrogen peroxide (H2O2)-induced inflammation on RAW 264.7 macrophages was investigated.
    Matched MeSH terms: Cyclooxygenase 2/metabolism*
  12. Abdelgawad MA, Musa A, Almalki AH, Alzarea SI, Mostafa EM, Hegazy MM, et al.
    Drug Des Devel Ther, 2021;15:2325-2337.
    PMID: 34103896 DOI: 10.2147/DDDT.S310820
    Introduction: Epidermal growth factor receptor (EGFR) inhibition is an imperative therapeutic approach targeting various types of cancer including colorectal, lung, breast, and pancreatic cancer types. Moreover, cyclooxygenase-2 (COX-2) is frequently overexpressed in different types of cancers and has a role in the promotion of malignancy, apoptosis inhibition, and metastasis of tumor cells. Combination therapy has been emerged to improve the therapeutic benefit against cancer and curb intrinsic and acquired resistance.

    Methods: Three semi-synthetic series of compounds (C1-4, P1-4, and G1-4) were prepared and evaluated biologically as potential dual epidermal growth factor receptor (EGFR) and COX-2 inhibitors. The main phenolic constituents of Amaranthus spinosus L. (p-coumaric, caffeic and gallic) acids have been isolated and subsequently subjected to diazo coupling with various amines to get novel three chemical scaffolds with potential anticancer activities.

    Results: Compounds C4 and G4 showed superior inhibitory activity against EGFR (IC50: 0.9 and 0.5 µM, respectively) and displayed good COX-2 inhibition (IC50: 4.35 and 2.47 µM, respectively). Moreover, the final compounds were further evaluated for their cytotoxic activity against human colon cancer (HT-29), pancreatic cancer (PaCa-2), human malignant melanoma (A375), lung cancer (H-460), and pancreatic ductal cancer (Panc-1) cell lines. Interestingly, compounds C4 and G4 exhibited the highest cytotoxic activity with average IC50 values of 1.5 µM and 2.8 µM against H-460 and Panc-1, respectively. The virtual docking study was conducted to gain proper understandings of the plausible-binding modes of target compounds within EGFR and COX-2 binding sites.

    Discussion: The NMR of prepared compounds showed characteristic peaks that confirmed the structure of the target compounds. The synthesized benzoxazolyl scaffold containing compounds showed inhibitory activities for both COXs and EGFR which are consistent with the virtual docking study.

    Matched MeSH terms: Cyclooxygenase 2/metabolism
  13. Abdelgawad MA, Bakr RB, Ahmad W, Al-Sanea MM, Elshemy HAH
    Bioorg Chem, 2019 11;92:103218.
    PMID: 31536956 DOI: 10.1016/j.bioorg.2019.103218
    To enhance the cytotoxicity of benzimidazole and/or benzoxazole core, the benzimidazole/benzoxazole azo-pyrimidine were synthesized through diazo-coupling of 3-aminophenybenzimidazole (6a) or 3-aminophenylbenzoxazole (6b) with diethyl malonate. The new azo-molanates 6a&b mixed with urea in sodium ethoxide to afford the benzimidazolo/benzoxazolopyrimidine 7a&b. The structure elucidation of new synthesized targets was proved using spectroscopic techniques NMR, IR and elemental analysis. The cytoxicity screening had been carried out against five cancer cell lines: prostate cancer (PC-3), lung cancer (A-549), breast cancer (MCF-7), pancreas cancer (PaCa-2) and colon cancer (HT-29). Furthermore, the antioxidant activity, phospholipase A2-V and cyclooxygenases inhibitory activities of the target compounds 7a&b were evaluated and the new compounds showed potent activity (cytotoxicity IC50 range from 4.3 to 9.2 µm, antioxidant activity from 40% to 80%, COXs or LOX inhibitory activity from 1.92 µM to 8.21 µM). The docking of 7a&b was made to confirm the mechanism of action.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  14. Utar Z, Majid MI, Adenan MI, Jamil MF, Lan TM
    J Ethnopharmacol, 2011 Jun 14;136(1):75-82.
    PMID: 21513785 DOI: 10.1016/j.jep.2011.04.011
    ETHNOPHARMACOLOGICAL RELEVANCE: [corrected] Mitragyna speciosa Korth (Rubiaceae) is one of the medicinal plants used traditionally to treat various types of diseases especially in Thailand and Malaysia. Its anti-inflammatory and analgesic properties in its crude form are well documented. In this study, the cellular mechanism involved in the anti-inflammatory effects of mitragynine, the major bioactive constituent, was investigated.

    MATERIALS AND METHODS: The effects of mitragynine on the mRNA and protein expression of COX-1 and COX-2 and the production of prostaglandin E(2) (PGE(2)) were investigated in LPS-treated RAW264.7 macrophage cells. Quantitative RT-PCR was used to assess the mRNA expression of COX-1 and COX-2. Protein expression of COX-1 and COX-2 were assessed using Western blot analysis and the level of PGE(2) production was quantified using Parameter™ PGE(2) Assay (R&D Systems).

    RESULTS: Mitragynine produced a significant inhibition on the mRNA expression of COX-2 induced by LPS, in a dose dependent manner and this was followed by the reduction of PGE(2) production. On the other hand, the effects of mitragynine on COX-1 mRNA expression were found to be insignificant as compared to the control cells. However, the effect of mitragynine on COX-1 protein expression is dependent on concentration, with higher concentration of mitragynine producing a further reduction of COX-1 expression in LPS-treated cells.

    CONCLUSIONS: These findings suggest that mitragynine suppressed PGE(2) production by inhibiting COX-2 expression in LPS-stimulated RAW264.7 macrophage cells. Mitragynine may be useful for the treatment of inflammatory conditions.

    Matched MeSH terms: Cyclooxygenase 2/metabolism*
  15. Iqbal MA, Umar MI, Haque RA, Khadeer Ahamed MB, Asmawi MZ, Majid AM
    J Inorg Biochem, 2015 May;146:1-13.
    PMID: 25699476 DOI: 10.1016/j.jinorgbio.2015.02.001
    Chronic inflammation intensifies the risk for malignant neoplasm, indicating that curbing inflammation could be a valid strategy to prevent or cure cancer. Cancer and inflammation are inter-related diseases and many anti-inflammatory agents are also used in chemotherapy. Earlier, we have reported a series of novel ligands and respective binuclear Ag(I)-NHC complexes (NHC=N-heterocyclic carbene) with potential anticancer activity. In the present study, a newly synthesized salt (II) and respective Ag(I)-NHC complex (III) of comparable molecular framework were prepared for a further detailed study. Preliminarily, II and III were screened against HCT-116 and PC-3 cells, wherein III showed better results than II. Both the compounds showed negligible toxicity against normal CCD-18Co cells. In FAM-FLICA caspase assay, III remarkably induced caspase-3/7 in HCT-116 cells most probably by tumor necrosis factor-alpha (TNF-α) independent intrinsic pathway and significantly inhibited in vitro synthesis of cytokines, interleukin-1 (IL-1) and TNF-α in human macrophages (U937 cells). In a cell-free system, both the compounds inhibited cyclooxygenase (COX) activities, with III being more selective towards COX-2. The results revealed that III has strong antiproliferative property selectively against colorectal tumor cells which could be attributed to its pro-apoptotic and anti-inflammatory abilities.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  16. Rullah K, Mohd Aluwi MF, Yamin BM, Abdul Bahari MN, Wei LS, Ahmad S, et al.
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3826-34.
    PMID: 25027933 DOI: 10.1016/j.bmcl.2014.06.061
    The discovery of potent inhibitors of prostaglandin E2 (PGE2) synthesis in recent years has been proven to be an important game changer in pharmaceutical industry. It is known that excessive production of PGE2 triggers a vast array of biological signals and physiological events that contributes to inflammatory diseases such as rheumatoid arthritis, atherosclerosis, cancer, and pain. In this Letter, we report the synthesis of a series of minor prenylated chalcones and flavonoids which was found to be significantly active in suppressing the PGE2 production secreted by lipopolysaccharide-induced mouse macrophage cells (RAW 264.7). Among the compounds tested, 14b showed a dose-response inhibition of PGE2 production with an IC50 value of 2.1 μM. The suppression upon PGE2 secretion was not due to cell death since 14b did not reduce the cell viability in close proximity to the PGE2 inhibition concentration. The obtained atomic coordinates for the single-crystal XRD of 14b was then applied in the docking simulation to determine the potential important binding interactions with murine COX-2 and mPGES-1 putative binding sites.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  17. Nordin NA, Lawai V, Ngaini Z, Abd Halim AN, Hwang SS, Linton RE, et al.
    Nat Prod Res, 2020 Jun;34(11):1505-1514.
    PMID: 30507306 DOI: 10.1080/14786419.2018.1517120
    In searching for drugs from natural product scaffolds has gained interest among researchers. In this study, a series of twelve halogenated thiourea (ATX 1-12)via chemical modification of aspirin (a natural product derivative) and evaluated for cytotoxic activity against nasopharyngeal carcinoma (NPC) cell lines, HK-1 via MTS-based colorimetric assay. The cytotoxicity studies demonstrated that halogens at meta position of ATX showed promising activity against HK-1 cells (IC50 value ≤15 µM) in comparison to cisplatin, a positive cytotoxic drug (IC50 value =8.9 ± 1.9 µM). ATX 11, bearing iodine at meta position, showed robust cytotoxicity against HK-1 cells with an IC50 value of 4.7 ± 0.7 µM. Molecular docking interactions between ATX 11 and cyclooxygenase-2 demonstrated a robust binding affinity value of -8.1 kcal/mol as compared to aspirin's binding affinity value of -6.4 kcal/mol. The findings represent a promising lead molecule from natural product with excellent cytotoxic activity against NPC cell lines.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
  18. Malik A, Arooj M, Butt TT, Zahid S, Zahid F, Jafar TH, et al.
    Drug Des Devel Ther, 2018;12:1431-1443.
    PMID: 29872266 DOI: 10.2147/DDDT.S154169
    Background: The present study investigates the hepato- and DNA-protective effects of standardized extracts of Cleome brachycarpa (cabralealactone), Solanum incanum (solasodin), and Salvadora oleioides (salvadorin) in rats.

    Materials and methods: Hepatotoxicity was induced with intraperitoneal injection of carbon tetrachloride (CCl4) (1 mL/kg b.wt.) once a week for 12 weeks. The hepato- and DNA protective effects of the extracts in different combinations were compared with that of a standard drug Clavazin (200 mg/kg b.wt.). Tissue alanine aminotransferase, alpha-fetoprotein, tumor necrosis factor alpha (TNF-α), isoprostanes-2α, malondialdehyde, and 8-hydroxydeoxyguanosine, the significant hallmarks of oxidative stress, were studied.

    Results: Histopathological findings of the liver sections from the rat group which received CCl4+cabralealactone, solasodin, and salvadorin demonstrated improved centrilobular hepatocyte regeneration with moderate areas of congestion and infiltration comparable with Clavazin. For in silico study, the identified compounds were subjected to molecular docking with cyclooxygenase-2 and TNF-α followed by a molecular dynamics study, which indicated their potential as anti-inflammatory agents.

    Conclusion: Cabralealactone, solasodin, and salvadorin confer some hepatoprotective and DNA-damage protective effects against CCl4-induced toxicity. They successfully restored the normal architecture of hepatocytes and have the potential to be used as inhibitor to main culprits, that is, cyclooxygenase-2 and TNF-α. They can combat oxidative stress and liver injuries both as mono and combinational therapies. However, combination therapy has more ameliorating effects.

    Matched MeSH terms: Cyclooxygenase 2/metabolism
  19. Pang KL, Chin KY, Nirwana SI
    PMID: 36597600 DOI: 10.2174/1871530323666230103153134
    BACKGROUND: The immunomodulatory effects of plants have been utilised to enhance the immunity of humans against infections. However, evidence of such effects of agarwood leaves is very limited despite the long tradition of consuming the leaves as tea.

    OBJECTIVE: This study aimed to investigate the immuno-modulatory effects of agarwood leaf extract (ALE) derived from Aquilaria malaccensis using RAW264.7 murine macrophages.

    METHODS: In this study, RAW264.7 macrophages were incubated with ALE alone for 26 hours or ALE for 2 hours, followed by bacterial lipopolysaccharide for 24 hours. The nitrite and cytokine production (tumour necrosis factor-alpha (TNFα), interleukin (IL)-1β, IL-6, and IL-10), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) expression in the macrophages were assayed.

    RESULTS: The study showed that ALE alone was immunostimulatory on the macrophages by increasing the nitrite, TNFα, and IL-6 production and COX2 expression (p<0.05 vs. untreated unstimulated cells). Pre-treatment of ALE suppressed nitrite level and iNOS expression but enhanced TNFα and IL-6 production and COX2 expression (p<0.05 vs. untreated lipopolysaccharides (LPS)-stimulated cells). ALE also increased IL-10 production regardless of LPS stimulation (p<0.05 vs. untreated cells).

    CONCLUSION: ALE was able to promote the immune response of macrophages by upregulating pro-inflammatory cytokine levels and COX2 expression. It also regulated the extent of the inflammation by reducing iNOS expression and increasing IL-10 levels. Thus, ALE may have a role in enhancing the innate immune system against infection; however, its validation from in vivo studies is still pending.

    Matched MeSH terms: Cyclooxygenase 2/metabolism
  20. Hussein SZ, Mohd Yusoff K, Makpol S, Mohd Yusof YA
    PLoS One, 2013;8(8):e72365.
    PMID: 24015236 DOI: 10.1371/journal.pone.0072365
    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α.
    Matched MeSH terms: Cyclooxygenase 2/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links