Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Al-Makramani BM, Razak AA, Abu-Hassan MI
    J Contemp Dent Pract, 2008;9(2):33-40.
    PMID: 18264523
    The objective of this study is to investigate the effect of different luting agents on the fracture strength of Turkom-Cera all-ceramic copings.
    Matched MeSH terms: Dental Stress Analysis
  2. Razak AA, Abu-Hassan MI, Al-Makramani BM, Al-Sanabani FA, Al-Shami IZ, Almansour HM
    J Contemp Dent Pract, 2016 Nov 01;17(11):920-925.
    PMID: 27965501
    AIM: The aim of this study was to evaluate the effect of surface treatments on shear bond strength (SBS) of Turkom-Cera (Turkom-Ceramic (M) Sdn. Bhd., Puchong, Malaysia) all-ceramic material cemented with resin cement Panavia-F (Kuraray Medical Inc., Okayama, Japan).

    MATERIALS AND METHODS: Forty Turkom-Cera ceramic disks (10 mm × 3 mm) were prepared and randomly divided into four groups. The disks were wet ground to 1000-grit and subjected to four surface treatments: (1) No treatment (Control), (2) sandblasting, (3) silane application, and (4) sandblasting + silane. The four groups of 10 specimens each were bonded with Panavia-F resin cement according to manufacturer's recommendations. The SBS was determined using the universal testing machine (Instron) at 0.5 mm/min crosshead speed. Failure modes were recorded and a qualitative micromorphologic examination of different surface treatments was performed. The data were analyzed using the one-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests.

    RESULTS: The SBS of the control, sandblasting, silane, and sandblasting + silane groups were: 10.8 ± 1.5, 16.4 ± 3.4, 16.2 ± 2.5, and 19.1 ± 2.4 MPa respectively. According to the Tukey HSD test, only the mean SBS of the control group was significantly different from the other three groups. There was no significant difference between sandblasting, silane, and sandblasting + silane groups.

    CONCLUSION: In this study, the three surface treatments used improved the bond strength of resin cement to Turkom-Cera disks.

    CLINICAL SIGNIFICANCE: The surface treatments used in this study appeared to be suitable methods for the cementation of glass infiltrated all-ceramic restorations.

    Matched MeSH terms: Dental Stress Analysis
  3. Mustafa AA, Matinlinna JP, Saidin S, Kadir MR
    J Prosthet Dent, 2014 Dec;112(6):1498-506.
    PMID: 24993375 DOI: 10.1016/j.prosdent.2014.05.011
    STATEMENT OF PROBLEM: The inconsistency of dentin bonding affects retention and microleakage.

    PURPOSE: The purpose of this laboratory and finite element analysis study was to investigate the effects on the formation of a hybrid layer of an experimental silane coupling agent containing primer solutions composed of different percentages of hydroxyethyl methacrylate.

    MATERIAL AND METHODS: A total of 125 sound human premolars were restored in vitro. Simple class I cavities were formed on each tooth, followed by the application of different compositions of experimental silane primers (0%, 5%, 25%, and 50% of hydroxyethyl methacrylate), bonding agents, and dental composite resins. Bond strength tests and scanning electron microscopy analyses were performed. The laboratory experimental results were validated with finite element analysis to determine the pattern of stress distribution. Simulations were conducted by placing the restorative composite resin in a premolar tooth by imitating simple class I cavities. The laboratory and finite element analysis data were significantly different from each other, as determined by 1-way ANOVA. A post hoc analysis was conducted on the bond strength data to further clarify the effects of silane primers.

    RESULTS: The strongest bond of hybrid layer (16.96 MPa) was found in the primer with 25% hydroxyethyl methacrylate, suggesting a barely visible hybrid layer barrier. The control specimens without the application of the primer and the primer specimens with no hydroxyethyl methacrylate exhibited the lowest strength values (8.30 MPa and 11.78 MPa) with intermittent and low visibility of the hybrid layer. These results were supported by finite element analysis that suggested an evenly distributed stress on the model with 25% hydroxyethyl methacrylate.

    CONCLUSIONS: Different compositions of experimental silane primers affected the formation of the hybrid layer and its resulting bond strength.

    Matched MeSH terms: Dental Stress Analysis/instrumentation
  4. Ahmad R, Morgano SM, Wu BM, Giordano RA
    J Prosthet Dent, 2005 Nov;94(5):421-9.
    PMID: 16275301
    Many studies on the strengthening effects of grinding and polishing, as well as heat treatment on ceramics, are not well standardized or use commercially available industrial polishing systems. The reported effectiveness of these strengthening mechanisms on ceramics may not be applicable to clinical dentistry.
    Matched MeSH terms: Dental Stress Analysis
  5. Sulong MZ, Aziz RA
    J Prosthet Dent, 1990 Mar;63(3):342-9.
    PMID: 2407832
    This is a review of the literature concerning wear related to the following materials used in dentistry: dental amalgam, composite resins, and glass-ionomer cements, as well as natural tooth substance. Discussions are included on both in vivo and in vitro studies in which various methods were used to help determine wear resistance.
    Matched MeSH terms: Dental Stress Analysis
  6. Sulong MZ, Setchell DJ
    J Prosthet Dent, 1991 Dec;66(6):743-7.
    PMID: 1805022
    Adhesive bond strength studies for the tray adhesive of an addition vinyl polysiloxane (President) impression material were conducted with an acrylic resin, chromium-plated brass, and plastic trays. Tensile and shear stress studies were performed on the Instron Universal testing machine. Acrylic resin specimens roughened with 80-grit silicon carbide paper exhibited appreciably higher bond strengths compared with different types of tray material and methods of surface preparation.
    Matched MeSH terms: Dental Stress Analysis
  7. Patil PG, Seow LL, Uddanwadikar R, Ukey PD
    J Prosthet Dent, 2021 Jan;125(1):138.e1-138.e8.
    PMID: 33393474 DOI: 10.1016/j.prosdent.2020.09.015
    STATEMENT OF PROBLEM: Mini implants (<3 mm in diameter) are being used as an alternative to standard implants for implant-retained mandibular overdentures; however, they may exhibit higher stresses at the crestal level.

    PURPOSE: The purpose of this finite element analysis study was to evaluate the biomechanical behavior (stress distribution pattern) in the mandibular overdenture, mucosa, bone, and implants when retained with 2 standard implants or 2 mini implants under unilateral or bilateral loading conditions.

    MATERIAL AND METHODS: A patient with edentulous mandible and his denture was scanned with cone beam computed tomography (CBCT), and a 3D mandibular model was created in the Mimics software program by using the CBCT digital imaging and communications in medicine (DICOM) images. The model was transferred to the 3Matics software program to form a 2-mm-thick mucosal layer and to assemble the denture DICOM file. A 12-mm-long standard implant (Ø3.5 mm) and a mini dental implant (Ø2.5 mm) along with the LOCATOR male attachments (height 4 mm) were designed by using the SOLIDWORKS software program. Two standard or 2 mini implants in the canine region were embedded separately in the 3D assembled model. The base of the mandible was fixed, and vertical compressive loads of 100 N were applied unilaterally and bilaterally in the first molar region. The material properties for acrylic resin (denture), titanium (implants), mucosa (tissue), and bone (mandible) were allocated. Maximum von Mises stress and strain values were obtained and analyzed.

    RESULTS: Maximum stresses of 9.78 MPa (bilaterally) and 11.98 MPa (unilaterally) were observed in 2 mini implants as compared with 3.12 MPa (bilaterally) and 3.81 MPa (unilaterally) in 2 standard implants. The stress values in the mandible were observed to be almost double the mini implants as compared with the standard implants. The stresses in the denture were in the range of 3.21 MPa and 3.83 MPa and in the mucosa of 0.68 MPa and 0.7 MPa for 2 implants under unilateral and bilateral loading conditions. The strain values shown similar trends with both implant types under bilateral and unilateral loading.

    CONCLUSIONS: Two mini implants generated an average of 68.15% more stress than standard implants. The 2 standard implant-retained overdenture showed less stress concentration in and around implants than mini implant-retained overdentures.

    Matched MeSH terms: Dental Stress Analysis
  8. Patil PG, Seow LL, Uddanwadikar R, Pau A, Ukey PD
    J Prosthet Dent, 2024 Feb;131(2):281.e1-281.e9.
    PMID: 37985307 DOI: 10.1016/j.prosdent.2023.10.023
    STATEMENT OF PROBLEM: The 2-implant mandibular overdenture (2IMO) is a popular treatment for patients with mandibular edentulism. However, information on the influence of implant positions on crestal strain is lacking.

    PURPOSE: The purpose of this in vitro study was to evaluate the crestal strain around 2 implants to support mandibular overdentures when placed at different positions.

    MATERIAL AND METHODS: Edentulous mandibles were 3-dimensionally (3D) designed separately with 2 holes for implant placement at similar distances of 5, 10, 15, and 20 mm from the midline, resulting in 4 study conditions. The complete denture models were 3D designed and printed from digital imaging and communications in medicine (DICOM) images after scanning the patient's denture. Two 4.3×12-mm dummy implants were placed in the preplanned holes. Two linear strain gauges were attached on the crest of the mesial and distal side of each implant (CH1, CH2, CH3, and CH4) and connected to a computer to record the electrical signals. Male LOCATOR attachments were attached, the mucosal layer simulated, and the denture picked up with pink female nylon caps. A unilateral and bilateral force of 100 N was maintained for 10 seconds for each model in a universal testing machine while recording the maximum strains in the DCS-100A KYOWA computer software program. Data were analyzed by using 1-way analysis of variance, the Tukey post hoc test, and the paired t test (α=.05).

    RESULTS: Under bilateral loading, the strain values indicated a trend with increasing distance between the implants with both right and left distal strain gauges (CH4 and CH1). The negative (-ve) values indicated the compressive force, and the positive (+ve) values indicated the tensile force being applied on the strain gauges. The strain values for CH4 ranged between -166.08 for the 5-mm and -251.58 for the 20-mm position; and for CH1 between -168.08 for the 5-mm and -297.83 for the 20-mm position. The remaining 2 mesial strain gauges for all 4 implant positions remained lower than for CH4 and CH1. Under unilateral-right loading, only the right-side distal strain gauge CH4 indicated the increasing trend in the strain values with -147.5 for the 5-mm, -157.17 for the 10-mm, -209.33 for the 15-mm, and -234.75 for the 20 mm position. The remaining 3 strain gauges CH3, CH2, and CH1 ranged between -28.33 and -107.17. For each position for both implants, significantly higher (Pstress values progressively increased from 5 to 10 mm to 15 to 20 mm from midline, represented as lateral incisor, canine, and premolar positions. The distal side of the implants exhibits higher strains than the mesial side of the implants.

    Matched MeSH terms: Dental Stress Analysis/methods
  9. Patil PG, Seow LL, Uddanwadikar R, Pau A, Ukey PD
    J Prosthet Dent, 2024 Apr;131(4):675-682.
    PMID: 35667890 DOI: 10.1016/j.prosdent.2022.04.018
    STATEMENT OF PROBLEM: The edentulous mandible is commonly treated with a 2-implant overdenture. A change in diameter of the implants may affect the biomechanical behavior of the overdenture, but information on these effects is lacking.

    PURPOSE: The purpose of this 3D finite element analysis study was to evaluate the biomechanical behavior of 2-implant mandibular overdentures (2IMO) and their individual components by using implants of different diameters.

    MATERIAL AND METHODS: A 3D mandibular model was obtained from the cone beam computed tomography (CBCT) images of a 59-year-old edentulous man, and a 3D denture model was developed from intraoral scanning files in the Mimics software program. A 3D model of different diameters of implants (2.5 mm, 3.0 mm, 3.5 mm, and 4.0 mm) with a LOCATOR attachment was developed in the Solidworks software program. Two same-sized implants were inserted in the mandibular model at 10 mm from the midline in the 3Matics software program. A vertical load of 100 N was applied on the first molar region on the right side or both sides in the ANSYS software program. The maximum von Mises stresses and strains were recorded and analyzed.

    RESULTS: Stresses within the implants decreased with an increase in diameter (from 2.5 mm to 3 mm, 3.5 mm, and 4.0 mm) of the implants. The highest stresses were observed with 2.5-mm-diameter implants (0.949 MPa under unilateral and 0.915 MPa under bilateral loading) and the lowest with Ø4-mm implants (0.710 MPa under unilateral and 0.703 MPa under bilateral loading). The strains on the implants ranged between 0.0000056 and 0.0000097, and those on the mandible ranged between 0.0000513 and 0.0000566 across all diameters of the implants without following a specific trend.

    CONCLUSIONS: In 2IMO, the stresses in the implants and mandible decreased with an increase in the diameter of the implants. The implants of lesser diameter (2.5 mm) exhibited the highest stresses and strains, and the implants of the largest diameter (4 mm) exhibited the lowest stresses and strains under unilateral and bilateral loading conditions.

    Matched MeSH terms: Dental Stress Analysis/methods
  10. Ishak MI, Kadir MR, Sulaiman E, Kasim NH
    Int J Oral Maxillofac Implants, 2013 May-Jun;28(3):e151-60.
    PMID: 23748334 DOI: 10.11607/jomi.2304
    To compare the extramaxillary approach with the widely used intrasinus approach via finite element method.
    Matched MeSH terms: Dental Stress Analysis/methods*
  11. Siar CH, Pua CK, Toh CG, Romanos G, Ng KH
    Oral Surg Oral Med Oral Pathol Oral Radiol, 2012 Nov;114(5 Suppl):S46-53.
    PMID: 23083955 DOI: 10.1016/j.tripleo.2011.07.049
    The objective of this study was to investigate the cementum status in natural teeth opposing implant-supported bridgework.
    Matched MeSH terms: Dental Stress Analysis
  12. Madfa AA, Kadir MR, Kashani J, Saidin S, Sulaiman E, Marhazlinda J, et al.
    Med Eng Phys, 2014 Jul;36(7):962-7.
    PMID: 24834856 DOI: 10.1016/j.medengphy.2014.03.018
    Different dental post designs and materials affect the stability of restoration of a tooth. This study aimed to analyse and compare the stability of two shapes of dental posts (parallel-sided and tapered) made of five different materials (titanium, zirconia, carbon fibre and glass fibre) by investigating their stress transfer through the finite element (FE) method. Ten three-dimensional (3D) FE models of a maxillary central incisor restored with two different designs and five different materials were constructed. An oblique loading of 100 N was applied to each 3D model. Analyses along the centre of the post, the crown-cement/core and the post-cement/dentine interfaces were computed, and the means were calculated. One-way ANOVAs followed by post hoc tests were used to evaluate the effectiveness of the post materials and designs (p=0.05). For post designs, the tapered posts introduced significantly higher stress compared with the parallel-sided post (p<0.05), especially along the centre of the post. Of the materials, the highest level of stress was found for stainless steel, followed by zirconia, titanium, glass fibre and carbon fibre posts (p<0.05). The carbon and glass fibre posts reduced the stress distribution at the middle and apical part of the posts compared with the stainless steel, zirconia and titanium posts. The opposite results were observed at the crown-cement/core interface.
    Matched MeSH terms: Dental Stress Analysis/methods*
  13. Razali MF, Mahmud AS, Mokhtar N
    J Mech Behav Biomed Mater, 2018 Jan;77:234-241.
    PMID: 28954242 DOI: 10.1016/j.jmbbm.2017.09.021
    NiTi arch wires are used widely in orthodontic treatment due to its superelastic and biocompatibility properties. In brackets configuration, the force released from the arch wire is influenced by the sliding resistances developed on the arch wire-bracket contact. This study investigated the evolution of the forces released by a rectangular NiTi arch wire towards possible intraoral temperature and deflection changes. A three dimensional finite element model was developed to measure the force-deflection behavior of superelastic arch wire. Finite element analysis was used to distinguish the martensite fraction and phase state of arch wire microstructure in relation to the magnitude of wire deflection. The predicted tensile and bending results from the numerical model showed a good agreement with the experimental results. As contact developed between the wire and bracket, binding influenced the force-deflection curve by changing the martensitic transformation plateau into a slope. The arch wire recovered from greater magnitude of deflection released lower force than one recovered from smaller deflection. In contrast, it was observed that the plateau slope increased from 0.66N/mm to 1.1N/mm when the temperature was increased from 26°C to 46°C.
    Matched MeSH terms: Dental Stress Analysis*
  14. Naji GA, Omar RA, Yahya R
    J Mech Behav Biomed Mater, 2017 03;67:135-143.
    PMID: 28006713 DOI: 10.1016/j.jmbbm.2016.12.007
    In all-ceramic systems, a high incidence of veneer chip-off has been reported in clinical studies. Coefficient of thermal expansion (CTE) behaviour is one of the factors that may increase residual stress in the interface and influence the veneer/core bond strength. Therefore, this study aimed to evaluate the effect of sodalite zeolite-infiltration on the CTE behaviour and bond strength of different all-ceramic prostheses. The case-study groups were synthesized sodalite zeolite-infiltrated alumina (IA-SOD) and synthesized sodalite zeolite-infiltrated zirconia-toughened alumina (ZTA) (IZ-SOD), while the control groups were glass-infiltrated alumina (IA-glass) and glass-infiltrated ZTA (IZ-glass). Forty cylindrical-shaped samples measuring 5 mm in diameter and 10 mm in height were tested for CTE using a thermo-mechanical analyser machine, and forty disc-shaped ceramic samples measuring 12 mm in diameter and 1.2 ± 0.2 mm in thickness were prepared using specially designed stainless steel split mould and veneered by cylinder-shaped (2 mm high × 2 mm diameter) low-fusing porcelain (Vita VM7). The veneer/core samples were sintered and tested for shear bond strength using a high precision universal testing machine. Scanning electron microscope, stereo microscope, atomic force microscope, and energy-dispersive X-ray spectroscopy were used to investigate the structural characteristics of samples at the fracture surface. The collected data were analyzed with a one-way ANOVA and Tukey HSD test (α=.05). IZ-SOD revealed highest CTE and shear bond strength values, while the IA-glass revealed the lowest values than the other groups. There was no significant difference in CTE and bond strength among IZ-SOD, IA-SOD and IZ-glass samples (p>0.05). The experimental SOD zeolite-infiltrated samples revealed higher CTE mismatch and bond strength along with a more favourable mode of failure than did the commercial glass-infiltrated samples. Sandblast technique is considered as effective conditioning procedure for enhancing the surface roughness of SOD zeolite-infiltrated frameworks which subsequently improving the bond strength.
    Matched MeSH terms: Dental Stress Analysis
  15. Teng WS, Yew HZ, Jamadon NH, Qamaruz Zaman J, Meor Ahmad MI, Muchtar A
    J Mech Behav Biomed Mater, 2024 Mar;151:106361.
    PMID: 38176199 DOI: 10.1016/j.jmbbm.2023.106361
    The use of all porcelain materials in dentistry has significantly increased in recent years. However, chipping has remained a common problem that affects bilayered zirconia restorations. Bonding between porcelain and the underlying zirconia framework is crucial to the success of the restoration. The bond strength may be affected by such factors as residual thermal stress and the veneering technique. This research focuses on investigating the potential and constraints of materials through an examination of the porcelain veneering technique, particularly hand-layering and heat-pressing. Forty-two cylindrical disc samples of zirconia (n = 7/group) were fabricated in the dimensions of 10 × 1.2 mm (diameter [D] × height [H]). The zirconia specimens were milled from IPS e.max® ZirCad [Z] block and Luxen Zr [L] block (n = 21/zirconia). The zirconia cores were layered with IPS e.max® Zirliner and heat-pressed with IPS e.max® ZirPress to produce a final veneer dimension of 5 × 3 mm (D × H). Conventional layering was performed for the rest of the zirconia cores using IPS e.max® Ceram and Shofu Vintage Zr. The final study groups were Luxen-Vintage (LV), Luxen-Ceram (LC), Luxen Zirpress (LP), ZirCad-Vintage (ZV), ZirCad-Ceram (ZC) and ZirCad-Zirpress (ZP). Five samples were subjected to shear bond testing (SBS) with a universal testing machine with a 5 kN load cell and 0.5 mm/min crosshead speed (n = 5/group). A sample underwent nanoindentation, and another was sectioned using Isomet machine to study the bonding interface. One-way ANOVA was used to run the statistical analyses of the SBS test. Statistical differences were found between ZV with LC and LP (p stress is estimated to be higher in the middle of the porcelain compared with that on the surface and the interface. FESEM imaging reveals portions of visible bare zirconia on Luxen zirconia, whilst crack propagation occurred through voids in all hand-layered groups. Heat-pressed veneering showed comparable but not superior results to conventional hand-layered veneering. Heat-pressed veneering produced similar stress distribution profiles compared with hand-layered veneering.
    Matched MeSH terms: Dental Stress Analysis
  16. AL-Makramani BM, Razak AA, Abu-Hassan MI
    J Prosthodont, 2009 Aug;18(6):484-8.
    PMID: 19694015
    PURPOSE: This study investigated the occlusal fracture resistance of Turkom-Cerafused alumina compared to Procera AllCeram and In-Ceram all-ceramic restorations.

    MATERIALS AND METHODS: Sixmaster dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Ten copings of 0.6 mm thickness were fabricated from each type of ceramic, for a total of thirty copings. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented with resin luting cement Panavia F according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.

    RESULTS: The results of the present study showed the following mean loads at fracture: Turkom-Cera (2184 +/- 164 N), In-Ceram (2042 +/- 200 N), and Procera AllCeram (1954 +/- 211 N). ANOVA and Scheffe's post hoc test showed that the mean load at fracture of Turkom-Cera was significantly different from Procera AllCeram (p < 0.05). Scheffe's post hoc test showed no significant difference between the mean load at fracture of Turkom-Cera and In-Ceram or between the mean load at fracture of In-Ceram and Procera AllCeram.

    CONCLUSION: Because Turkom-Cera demonstrated equal to or higher loads at fracture than currently accepted all-ceramic materials, it would seem to be acceptable for fabrication of anterior and posterior ceramic crowns.

    Matched MeSH terms: Dental Stress Analysis/methods
  17. Ahmad F, Dent M, Yunus N
    J Prosthodont, 2009 Oct;18(7):596-602.
    PMID: 19515166 DOI: 10.1111/j.1532-849X.2009.00481.x
    This study evaluated the shear bond strengths of light-polymerized urethane dimethacrylate (Eclipse) and heat-polymerized polymethylmethacrylate (Meliodent) denture base polymers to intraoral and laboratory-processed reline materials.
    Matched MeSH terms: Dental Stress Analysis
  18. Ali IL, Yunus N, Abu-Hassan MI
    J Prosthodont, 2008 Oct;17(7):545-9.
    PMID: 18761582 DOI: 10.1111/j.1532-849X.2008.00357.x
    This study compared the surface hardness, flexural strength, and flexural modulus of a light- and heat-cured urethane dimethacrylate (UDMA) to two conventional polymethyl methacrylate (PMMA) denture base resins. The effect of less-than-optimal processing condition on the hardness of internal and external surfaces of UDMA specimens was also investigated.
    Matched MeSH terms: Dental Stress Analysis*
  19. Shankargouda SB, Sidhu P, Kardalkar S, Desai PM
    J Prosthodont, 2017 Feb;26(2):168-171.
    PMID: 26479878 DOI: 10.1111/jopr.12385
    Residual ridge resorption is a rapid, progressive, irreversible, and inevitable process of bone resorption. Long-standing teeth and implants have been shown to have maintained the bone around them without resorption. Thus, overdenture therapy has been proven to be beneficial in situations where few remaining teeth are present. In addition to the various advantages seen with tooth-supported telescopic overdentures, a few shortcomings can also be expected, including unseating of the overdenture, increased bulk of the prosthesis, secondary caries, etc. The precise transfer of the secondary telescopic copings to maintain the spatial relationship, without any micromovement, remains the most critical step in ensuring the success of the tooth-supported telescopic prosthesis. Thus, a simple and innovative technique of splinting the secondary copings was devised to prevent distortion and micromovement and maintain its spatial relationship.
    Matched MeSH terms: Dental Stress Analysis
  20. Alsrouji MS, Ahmad R, Abdul Razak NH, Shuib S, Kuntjoro W, Baba NZ
    J Prosthodont, 2019 Feb;28(2):e764-e770.
    PMID: 30044033 DOI: 10.1111/jopr.12954
    PURPOSE: To relate the principal stress, strain, and total deformation in the premaxilla region beneath a complete denture to the pattern of premaxilla bone resorption when opposed by a conventional complete denture (CD) or by a two-implant-retained overdenture (IOD) using finite element analysis (FEA).

    MATERIALS AND METHODS: Three-dimensional solid models of the maxilla, mucosa, and denture of a selected edentulous patient were created using Mimics and CATIA software. The FEA model was created and duplicated in ANSYS 16.0 to perform two simulations for the IOD and the CD models. The values of maximum stress and strain and total deformation were obtained and compared to the outcomes of premaxilla resorption from a parallel clinical study.

    RESULTS: The maximum principal stress in the premaxilla in the IOD model ranged from 0.019 to 0.336 MPa, while it ranged from 0.011 to 0.193 MPa in the CD model. The maximum principal strain in the IOD model was 1.75 times greater than that in the CD model. Total deformation was 1.8 times higher in the IOD model. Greater bone resorption was observed in regions of higher stress, which were on the occlusal and buccal sides of the premaxilla residual ridge.

    CONCLUSION: Stress, strain, and total deformation values present in the premaxilla area beneath a CD were approximately two times greater in a comparison between an opposing mandibular two-IOD and an opposing mandibular CD. The results were consistent with a parallel clinical study in which the rate of premaxilla bone resorption was almost three times greater in the IOD group.

    Matched MeSH terms: Dental Stress Analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links