Displaying publications 1 - 20 of 995 in total

Abstract:
Sort:
  1. Che Azmi NA, Mohd Apandi N, A Rashid AS
    Environ Sci Pollut Res Int, 2021 Apr;28(14):16948-16961.
    PMID: 33641100 DOI: 10.1007/s11356-021-12886-x
    Peat fires in tropical peatland release a substantial amount of carbon into the environment and cause significant harm to peatlands and the ecology, resulting in climate change, biodiversity loss, and the alteration of the ecosystem. It is essential to understand peat fires and to develop more effective methods for controlling them. To estimate carbon emissions and monitor fires, the depth of burning can measure the overall burnt down the volume, which is proportional to the carbon emissions that are emitted to the environment. The first step is to understand the technique of measuring the depth of the burn. However, there is a lack of integrated information regarding the burning depth for peat fires. This review paper discusses the techniques used to measure the burning depth, with particular attention given to quantifying carbon emissions. The article also provides information on the types of methods used to determine the burning depths. This research contributes to the field of peat fire by providing a readily available reference for practitioners and researchers on the current state of knowledge on peat fire monitoring systems.
    Matched MeSH terms: Ecosystem
  2. TSIA MUN KAIK, AQILAH MOHAMMAD
    MyJurnal
    Studies on fungal taxonomy and fungal diversity are crucial for a better understanding of the interactions between fungi and their habitats. To date, there is no published record on macrofungal diversity in Pulau Bidong, Terengganu. Therefore, this study aimed to identify macrofungi species found with their respective substrates and to determine the macrofungal diversity in the island. The study was conducted at two different occasions and comprised of two trails near Universiti Malaysia Terengganu Research Station in Pulau Bidong, Terengganu. Collectionof fresh macrofungi was made and additional data including host information, distinctive features of each fungal sample and several environmental parameters was also recorded. Fresh specimens were later observed and identified before being dried prior to storage. Overall, 65 macrofungal species with 2 unidentified species belonging to 21 families and 34 genera were recorded. Trail A and trail B recorded diversity index of2.67 and 3.14 for Shannon Index while Simpson index recorded 0.90 and 0.94 respectively. The macrofungal diversity was dominated by family Polyporaceae while rare species discovered were from family of Tricholomataceae, Hericiaceae, Stereaceae, Schizophyllaceae, Sclerodermataceae, Dacrymycetaceae, Tremellaceae, Russulaceae and Clavulinaceae. The most common macrofungal substrates was decayed branches while other macrofungal substrates found were decayed trunks and leaves, soil,termite mounds, and living tree. In conclusion, the macrofungal species were randomlydistributed with high diversity in both trails. Therefore, it is recommended that anincrease in sampling trips, sampling efforts and areas covered be provided to increase the number of macrofungal species discovered and accuracy of diversity studies in the future.
    Matched MeSH terms: Ecosystem
  3. Zainordin 'F, Ab Hamid S
    Trop Life Sci Res, 2017 Jul;28(2):9-29.
    PMID: 28890758 MyJurnal DOI: 10.21315/tlsr2017.28.2.2
    Stable isotope analysis has been used extensively to establish trophic relationships in many ecosystems. Present study utilised stable isotope signatures of carbon and nitrogen to identify trophic structure of aquatic food web in river and rice field ecosystems in Perak, northern peninsular Malaysia. The mean δ(13)C values of all producers ranged from -35.29 ± 0.21 to -26.00 ± 0.050‰. The greatest δ(15)N values noted was in zenarchopterid fish with 9.68 ± 0.020‰. The δ(15)N values of aquatic insects ranged between 2.59 ± 0.107 in Elmidae (Coleoptera) and 8.11 ± 0.022‰ in Nepidae (Hemiptera). Correspondingly, with all the δ(13)C and δ(15)N values recorded, it can be deduced that there are four trophic levels existed in the freshwater ecosystems which started with the producer (plants), followed by primary consumer (aquatic insects and non-predatory fish), secondary consumer (invertebrate predators) and lastly tertiary consumer (vertebrate predators).
    Matched MeSH terms: Ecosystem
  4. Haruna Ahmed O, Aainaa Hasbullah N, Ab Majid NM
    ScientificWorldJournal, 2010 Oct 12;10:1988-95.
    PMID: 20953548 DOI: 10.1100/tsw.2010.196
    The world's tropical rainforests are decreasing at an alarming rate as they are converted to agricultural land, pasture, and plantations. Decreasing tropical forests affect global warming. As a result, afforestation progams have been suggested to mitigate this problem. The objective of this study was to determine the carbon and phosphorus accumulation of a rehabilitated forest of different ages. The size of the study area was 47.5 ha. Soil samples were collected from the 0-, 6-, 12-, and 17-year-old rehabilitated forest. Twenty samples were taken randomly with a soil auger at depths of 0-20 and 20-40 cm. The procedures outlined in the Materials and Methods section were used to analyze the soil samples for pH, total C, organic matter, total P, C/P ratio, yield of humic acid (HA), and cation exchange capacity (CEC). The soil pH decreased significantly with increasing age of forest rehabilitation regardless of depth. Age did not affect CEC of the rehabilitated forest. Soil organic matter (SOM), total C, and total P contents increased with age. However, C/P ratio decreased with time at 0-20 cm. Accumulation of HA with time and soil depth was not consistent. The rehabilitated forest has shown signs of being a C and P sink.
    Matched MeSH terms: Ecosystem
  5. Azis MN, Abas A
    Environ Monit Assess, 2021 Jun 08;193(7):394.
    PMID: 34101049 DOI: 10.1007/s10661-021-09196-7
    The determinant factors for macroinvertebrate assemblages in river ecosystems are varied and are unique and specific to the type of macroinvertebrate family. This study aims to assess the determinant factors for macroinvertebrate assemblages in a recreational river. The study was conducted on the Ulu Bendul River, Negeri Sembilan, Malaysia. A total of ten sampling stations were selected. The research methodology included (1) water quality measurement, (2) habitat characterization, and (3) macroinvertebrate identification and distribution analysis. The statistical analysis used in this study was canonical correspondence analysis (CCA) to represent the relationship between the environmental factors and macroinvertebrate assemblages in the recreational river. This study found that most of the families of macroinvertebrates were very dependent on the temperature, DO, NH3-N, type of riverbed, etc. All of these factors are important for the survival of the particular type of macroinvertebrate, plus they are also important for selecting egg-laying areas and providing suitable conditions for the larvae to grow. This study advises that improved landscape design for watershed management be implemented in order to enhance water quality and physical habitats, and hence the protection and recovery of the macroinvertebrate biodiversity.
    Matched MeSH terms: Ecosystem*
  6. Ismanto A, Hadibarata T, Kristanti RA, Sugianto DN, Widada S, Atmodjo W, et al.
    Mar Pollut Bull, 2023 Nov;196:115563.
    PMID: 37797535 DOI: 10.1016/j.marpolbul.2023.115563
    This study aimed to address the pressing issue of plastic pollution in aquatic ecosystems by assessing the prevalence and distribution of microplastics (MPs) in water and riverbank sediments of the Pekalongan River, a vital water source in Indonesia. From the present findings, MP concentrations in water ranged from 45.2 to 99.1 particles/L, while sediment concentrations ranged from 0.77 to 1.01 particles/g. This study revealed that fragment and film MPs constituted 30.1 % and 25.4 % of the total, respectively, with MPs measuring <1 mm and constituting 51.4 % of the total. Colored MPs, particularly blue and black MPs, accounted for 34 % of the total. The primary polymer components, as determined via Fourier transform infrared spectroscopy, were identified as polystyrene, polyester, and polyamide. In response to the escalating plastic waste crisis caused by single-use plastics, Pekalongan's local government implemented refuse segregation and recycling programs as part of its efforts to transition toward zero-waste practices.
    Matched MeSH terms: Ecosystem
  7. Arai T, Abdul Kadir SR
    Sci Rep, 2017 08 08;7(1):7593.
    PMID: 28790355 DOI: 10.1038/s41598-017-07837-x
    Along with the mysteries of their ecology, freshwater eels have fascinated biologists for centuries. However, information concerning species diversity, geographic distribution, and life histories of the tropical anguillid eels in the Indo-Pacific region are highly limited. Comprehensive research on the species composition, distribution and habitat use among tropical anguillid eels in the Peninsular Malaysia were conducted for four years. A total of 463 specimens were collected in the northwestern peninsular area. The dominant species was A. bicolor bicolor constituting of 88.1% of the total eels, the second one was A. bengalensis bengalensis at 11.7%, while A. marmorata was the least abundant at 0.2%. A. bicolor bicolor was widely distributed from upstream to downstream areas of the rivers. In comparison, A. bengalensis bengalensis preferred to reside from the upstream to midstream areas with no tidal zones, cooler water temperatures and higher elevation areas. The habitat preference might be different between sites due to inter-species interactions and intra-specific plasticity to local environmental conditions. These results suggest that habitat use in the tropical anguillid eels might be more influenced by ambient environmental factors, such as salinity, temperature, elevation, river size and carrying capacity, than ecological competition, such as interspecific competition.
    Matched MeSH terms: Ecosystem
  8. Zaidi Farouk MIH, Jamil Z, Abdul Latip MF
    Environ Res, 2023 Dec 01;238(Pt 1):117147.
    PMID: 37716398 DOI: 10.1016/j.envres.2023.117147
    The exponential growth of human population and anthropogenic activities have led to the increase of global surface water contamination especially in river, lakes and ocean. Safe and clean surface water sources are crucial to human health and well-being, aquatic ecosystem, environment and economy. Thus, water monitoring is vital to ensure minimal and controllable contamination in the water sources. The conventional surface water monitoring method involves collecting samples on site and then testing them in the laboratory, which is time-consuming and not able to provide real-time water quality data. In addition, it involves many manpower and resources, costly and lack of integration. These make surface water quality monitoring more challenging. The incorporation of Internet of Things (IoT) and smart technology has contributed to the improvement of monitoring system. There are different approaches in the development and implementation of online surface water quality monitoring system to provide real-time data collection with lower operating cost. This paper reviews the sensors and system developed for the online surface water quality monitoring system in the previous studies. The calibration and validation of the sensors, and challenges in the design and development of online surface water quality monitoring system are also discussed.
    Matched MeSH terms: Ecosystem*
  9. Ishadi NA, Rawi CS, Ahmad AH, Abdul NH
    Trop Life Sci Res, 2014 Dec;25(2):61-79.
    PMID: 27073600 MyJurnal
    The hemipteran (Insecta) diversity in the upper part of the Kerian River Basin was low with only 8 families and 16 genera recorded at 4 study sites from 3 rivers. Water bug composition varied among sampling sites (Kruskal-Wallis χ (2) = 0.00, p<0.05) but was not affected by wet-dry seasons (Z = 0.00, p>0.05). All recorded water parameters were weakly associated with generic abundance but the biochemical oxygen demand (BOD), chemical oxygen demand (COD), Water Quality Index (WQI) and heavy metals (zinc and manganese) showed relatively strong positive or negative relations with hemipteran diversity and richness (H' and R2). Within the ranges of measured water parameters, the WQI was negatively associated with hemipteran diversity and richness, implying the tolerance of the water bugs to the level of pollution encountered in the river basin. Based on its highest abundance and occurrence (ISI), Rhagovelia was the most important genus and along with Rheumatogonus and Paraplea, these genera were common at all study sites. In conclusion, habitat availability and suitability together with some environmental parameters influenced the abundance and composition of hemipterans in this river basin.
    Matched MeSH terms: Ecosystem
  10. Fakhrul-Hatta SNN, Nelson BR, Shafie NJ, Zahidin MA, Abdullah MT
    Data Brief, 2018 Dec;21:2089-2094.
    PMID: 30533456 DOI: 10.1016/j.dib.2018.11.058
    This data article informs about Chiropteran diversity, new records, ecosystem services and possible pathogen carriers in fragmented forests (sub-divided by utility corridors, man-made structures, untouched and secondary plantations) within districts Setiu (Setiu Research Station), Hulu Terengganu (Saok and Lasir waterfalls) and Besut (Gunung Tebu Forest Reserve) of state Terengganu, Peninsular Malaysia. These bats were captured using harp traps and mist nets that were set 10 m apart across flyways, streams and less cluttered trees in the 50 m × 50 m transect zones (identified at each site). All animals were distinguished by morphology and gender before their release at the site of capture. The data comprise of five bat family groups Hipposideridae, Megadermatidae, Pteropodidae, Rhinolophidae and Vespertilionidae. It is interesting to note that untouched Saok Waterfalls is home to wide variety of bats listed (68.8%), followed by secondary forests of Gunung Tebu Forest Reserve (24.8%), untouched Lasir Waterfalls (4.8%) and lastly, Setiu Research Station as least favored (1.6%). Chiroptera like Cynopterus brachyotis (n = 23, 37.7%), Hipposideros bicolor (n = 6, 9.8%) and Scotophilus kuhli (n = 6, 9.8%) were most dominant in the checklist whereas Hipposideros armiger, Murina suilla and Scotophilus kuhlii are new data records in the fragmented forests of Terengganu. The data were interpret into Shannon, Simpson, Margalef, Menhinik and Evenness indices to individually or collectively distinguish chiropteran variety in Terengganu State whereas weight-forearm length (W/FA) informs about chiropteran Body Condition Index (-0.25 to 0.25). The function of bats were also identified to distinguish service providers (pollination and forests regeneration) and zoonotic pathogen carriers (in particular to Leptospira bacteria, Nipah virus and Sindbis virus).
    Matched MeSH terms: Ecosystem
  11. Zahidin MA, Jalil NA, Naharuddin NM, Abd Rahman MR, Gani M, Abdullah MT
    Data Brief, 2019 Aug;25:104133.
    PMID: 31321260 DOI: 10.1016/j.dib.2019.104133
    Tarsier is an endangered nocturnal primate in the family Tarsiidae and is an endemic to Sundaic islands of Philippine (Carlito syrichta), Sulawesi (Tarsius tarsier-complex) and Borneo (Cephalopachus bancanus). Recent records indicated that most molecular studies were done on the Eastern Tarsier and little information for the other group of tarsiers. Here, we present a partial cytochrome b data set of C. bancanus in Sarawak, Malaysian Borneo. Standard mist nets were deployed at strategic locations in various habitat types. A total of 18 individuals were caught, measured and weighed. Approximately, 2 × 2 mm of tissue samples were taken and preserved in molecular grade alcohol. Out of 18, only 11 samples were screened with partial mtDNA (cytochrome b) and the DNA sequences were registered in the GenBank (accession numbers: KY794797-KY794807). Phylogenetic trees were constructed with 20 additional mtDNA sequences downloaded from GenBank. The data are valuable for the management authorities to regulate the type of management units for the metapopulation to sustain population genetics integrity of tarsiers in the range countries across the Sunda Shelf.
    Matched MeSH terms: Ecosystem
  12. Ten DCY, Jani R, Hashim NH, Saaban S, Abu Hashim AK, Abdullah MT
    Animals (Basel), 2021 Apr 06;11(4).
    PMID: 33917373 DOI: 10.3390/ani11041032
    The critically endangered Malayan tiger (Panthera tigris jacksoni), with an estimated population of less than 200 individuals left in isolated rainforest habitats in Malaysia, is in an intermediate population crash leading to extinction in the next decade. The population has decreased significantly by illegal poaching, environmental perturbation, roadkill, and being captured during human-wildlife conflicts. Forty-five or more individuals were extracted from the wild (four animals captured due to conflict, one death due to canine distemper, one roadkilled, and 39 poached) in the 12 years between 2008-2019. The Malayan tigers are the first wildlife species to test positive for COVID-19 and are subject to the Canine Distemper Virus. These anthropogenic disturbances (poaching and human-tiger conflict) and environmental perturbation (decreasing habitat coverage and quality) have long been identified as impending extinction factors. Roadkill and infectious diseases have emerged recently as new confounding factors threatening Malayan tiger extinction in the near future. Peninsular Malaysia has an existing Malayan tiger conservation management plan; however, to enhance the protection and conservation of Malayan tigers from potential extinction, the authority should reassess the existing legislation, regulation, and management plan and realign them to prevent further population decline, and to better enable preparedness and readiness for the ongoing pandemic and future threats.
    Matched MeSH terms: Ecosystem
  13. Voon PJ, Lai WH, Bustaman RS, Siu LL, Razak ARA, Yusof A, et al.
    Asia Pac J Clin Oncol, 2023 Jun;19(3):296-304.
    PMID: 36305522 DOI: 10.1111/ajco.13886
    Historically, the majority of oncology clinical trials are conducted in Western Europe and North America. Globalization of drug development has resulted in sponsors shifting their focus to the Asia-Pacific region. In Malaysia, implementation of various government policies to promote clinical trials has been initiated over a decade ago and includes the establishment of Clinical Research Malaysia, which functions as a facilitator and enabler of industry-sponsored clinical trials on a nationwide basis. Although oncology clinical trials in Malaysia have seen promising growth, there are still only a limited number of early phase oncology studies being conducted. Hence, the Phase 1 Realization Project was initiated to develop Malaysia's early phase clinical trial capabilities. In addition, the adaptation of good practices from other countries contribute to the effective implementation of existing initiatives to drive progress in the development of early phase drug development set up in Malaysia. Furthermore, holistic approaches with emphasis in training and education, infrastructure capacities, strategic alliances, reinforcement of upstream activities in the value chain of drug development, enhanced patient advocacy, coupled with continued commitment from policy makers are imperative in nurturing a resilient clinical research ecosystem in Malaysia.
    Matched MeSH terms: Ecosystem*
  14. Abdullah SA
    J Environ Sci (China), 2003 Mar;15(2):267-70.
    PMID: 12765270
    This paper presents the pattern and changes of fragmented forest in relation with changes of total forest cover in the state of Selangor in three decades. In this study, inventoried forest cover maps of Selangor in 1971/1972, 1981/1982 and 1991/1992 produced by the Forestry Department of Peninsular Malaysia were digitized to examine the changes in area and number of fragmented forest. Results showed that in 1971/1972, 16 fragmented forests were identified in Selangor. All fragmented forests were identified as dipterocarp forest. A decade later the number of fragmented forests increased by approximately 44% (23). Of the 23 fragmented forests, two were peat swamp forests whereas the remaining were dipterocarp forests. In 1991/1992 the number of fragmented forests (12) was reduced by 47.8%. Two of the fragmented forests were identified as peat swamp forest, seven dipterocarp forest and the other three was mixed of dipterocarp forests and plantation forests. Fragmentation of both dipterocarp and peat swamp forests occurred profoundly during the period between 1971/1972 and 1981/1982, which consequently increased the number of fragmented forests compared with before the period of 1971/1972 where fragmentation happened only at dipterocarp forests. However, many fragmented forests vanished between the 1981/1982 and 1991/1992 periods.
    Matched MeSH terms: Ecosystem*
  15. Ismail BS, Ngan CK, Cheah UB, Abdullah WY
    Bull Environ Contam Toxicol, 2004 Apr;72(4):836-43.
    PMID: 15200001 DOI: 10.1007/s00128-004-0320-5
    Matched MeSH terms: Ecosystem
  16. Al-Madani MHM, Fernando Y, Tseng ML, Abideen AZ
    Environ Sci Pollut Res Int, 2023 Mar;30(13):38616-38633.
    PMID: 36585587 DOI: 10.1007/s11356-022-24973-8
    This study aims to identify current and future research trends in sustainable bioenergy production. The systematic review is conducted using a social network analysis method. The data were collected from the Web of Science and Scopus database (2010-2021). Out of the 1747 articles reviewed, 100 were found to be relevant for thematic analysis. The results uncovered four domains of palm oil biodiesel production for sustainable energy management: (1) renewable energy, (2) biodiesel, (3) bioenergy, and (4) life cycle assessment. This study has proposed a sustainable bioenergy production framework based on the four main domains. The framework sheds light on the future of sustainable bioenergy production. The findings indicate the potential growth of the research topic, including sustainable bioenergy, palm oil biodiesel, energy management, and carbon emissions reduction. Future research must incorporate the energy management framework to design a sustainable energy management ecosystem strategy. In addition, the industry must comply with the international sustainability standard and sustainable development goals to manage the energy supply chain and consistency of palm oil biodiesel production.
    Matched MeSH terms: Ecosystem*
  17. Muhammad T, Ismail S, Ikhwanuddin M, Abol-Munafi AB
    Data Brief, 2019 Aug;25:104205.
    PMID: 31338400 DOI: 10.1016/j.dib.2019.104205
    The data collected in the present work correspond to the behavioral, Hepatosomatic Index (HSI), Gonadosomatic Index (GSI) and total lipid analysis between male and female mud crabs, Scylla olivacea at different water velocities. A total of 56 immature male and female crabs were used in this data article. The important criteria for estimating the selective habitat facing by S. olivacea is a considerate of (1) the behavioral range in response to abiotic factors (and how it adapt ontogenetically) and (2) the movement of the crab under wild velocities situations. This work purposes to recognize the performance, locomotion rate and escaping capability of S. olivacea under stagnant and flowing water situations and to discuss the significance of horizontal walking to habitat choice. The collective outcomes clearly show that the locomotor activities and escaping capabilities of S. olivacea were influenced by water flow in the mangrove habitats. For the HSI data, velocities of 20 cm/s were the highest increased mean HSI percentage and highest mean HSI percentage in males and females was recorded on the end of the experiment. For GSI percentage of male and female crabs, 20 cm/s dominates the highest increases mean GSI, followed by 60, 40 and 0 cm/s. For total lipid percentage, the results showed that, the mean total lipid of hepatopancrease, muscle and gonad were increased at the beginning and decreased at the final in each water velocities except for 20 cm/s over a culture period of 60 days. Velocities of 20 cm/s were the highest increased mean total lipid percentage followed by 40, 60, and lastly 0 cm/s. The high flow velocities inhibit the production of hepatopancrease and gonad, in terms of nutrients from food used to endeavor the stress condition faced.
    Matched MeSH terms: Ecosystem
  18. Taufik M, Shahrul I, Mohd Nordin AR, Ikhwanuddin M, Abol-Munafi AB
    Trop Life Sci Res, 2020 Jul;31(2):79-105.
    PMID: 32922670 DOI: 10.21315/tlsr2020.31.2.5
    Nutritional quality of the hepatopancreas and gonads of orange portunid mud crab, Scylla olivacea was evaluated for each gender under four treatment of different water velocities (0, 20, 40 and 60 cm s-1), in terms of nutrient reserve and nutrient for reproduction. About 56 crabs were used in this study in which fatty acids composition was analysed using gas chromatography mass-spectrometry (GC-MS). For hepatopancreas analysis, monounsaturated fatty acids (MUFAs) were present in the highest fatty acids concentration, followed by polyunsaturated fatty acids (PUFAs) and, saturated fatty acids (SFAs). However, long-chain polyunsaturated fatty acids (LC-PUFAs) were displayed in low concentration in the hepatopancreas. Total fatty acid (TFAs) composition was significantly higher at moderate velocity of 20 cm s-1 compared to other water velocity treatments. For gonad analysis, 20 cm s-1 showed the highest TFA concentration of 93.34 mg g-1 while, the lowest concentration of 3.90 mg g-1 occurred at 0 cm s-1. There were significant differences in male and female crab's fatty acids contents of gonads at all flow velocities challenged (p < 0.05). PUFAs and MUFAs were dominant while, SFAs were observed at low concentration. This study revealed that, concentration of PUFAs increased as gonad maturation increased. The decreasing concentration of hepatopancreas fatty acids over the culture period indicated that nutrient was shifted from the hepatopancreas, to be used as energy reserved to gonads for further growth of eggs and offspring. The linkages between water flow strength, hepatopancreas, and gonad fatty acids concentrations, is fundamental knowledge useful in establishing efficient habitat velocities selection which will improve aquaculture production of mud crabs with high quality broodstock.
    Matched MeSH terms: Ecosystem
  19. Mohamed AH, Noorhisham NA, Yahaya N, Mohamad S, Kamaruzzaman S, Osman H, et al.
    Crit Rev Anal Chem, 2023;53(4):906-927.
    PMID: 34693833 DOI: 10.1080/10408347.2021.1992262
    Despite organophosphorus pesticides (OPPs) benefits in controlling vector-borne diseases and noxious insects, the bioaccumulation and persistence in the soil system may metamorphose into new substances which could pose a serious threat to the ecosystems and human health. The generally low levels of OPPs residues and often the complexity of the soil matrix are the issues that researcher must deal with. Thus, it is essential to isolate and preconcentrate the OPPs from the matrix to reduce interference effects to obtain a reliable detection. Researchers have reported sample preparation techniques as a promising approach to improve analytical measurement of merits including recovery, precision, linearity, limit of detection, and limit of quantification. Under the selected conditions, limits of detection range between 0.001 and 143 ng/mL, and extraction recovery range between 5 and 154% were obtained. This review evaluates the challenges and opportunities, emphasizes the prospects of sampling techniques and various (micro)extraction coupled with chromatographic methods in different soil samples. Based on the finding, the extraction efficiency depended largely on the interaction between OPPs and extraction media. The fate, migration, toxicity impact, sampling procedure, and storage which influenced the sample preparation were comprehensively discussed.
    Matched MeSH terms: Ecosystem
  20. Alebraheem J, Abu-Hassan Y
    J Math Biol, 2023 Apr 27;86(5):84.
    PMID: 37103566 DOI: 10.1007/s00285-023-01914-8
    A characteristic of ecosystems is the existence of manifold of independencies which are highly complex. Various mathematical models have made considerable contributions in gaining a better understanding of the predator-prey interactions. The main components of any predator-prey models are, firstly, how the different population classes grow and secondly, how the prey and predator interacts. In this paper, the two populations' growth rates obey the logistic law and the carrying capacity of the predator depends on the available number of prey are considered. Our aim is to clarify the relationship between models and Holling types functional and numerical responses in order to gain insights into predator interferences and to answer an important question how competition is carried out. We consider a predator-prey model and a two-predator one-prey model to explain the idea. The novel approach is explained for the mechanism measurement of predator interference through depending on numerical response. Our approach gives good correspondence between an important real data and computer simulations.
    Matched MeSH terms: Ecosystem*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links