Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Lee CW, Ng AY, Bong CW, Narayanan K, Sim EU, Ng CC
    Water Res, 2011 Feb;45(4):1561-70.
    PMID: 21146847 DOI: 10.1016/j.watres.2010.11.025
    Using the size fractionation method, we measured the decay rates of Escherichia coli, Salmonella Typhi and Vibrio parahaemolyticus in the coastal waters of Peninsular Malaysia. The size fractions were total or unfiltered, <250 μm, <20 μm, <2 μm, <0.7 μm, <0.2 μm and <0.02 μm. We also carried out abiotic (inorganic nutrients) and biotic (bacterial abundance, production and protistan bacterivory) measurements at Port Dickson, Klang and Kuantan. Klang had highest nutrient concentrations whereas both bacterial production and protistan bacterivory rates were highest at Kuantan. We observed signs of protist-bacteria coupling via the following correlations: Protistan bacterivory-Bacterial Production: r = 0.773, df = 11, p < 0.01; Protist-Bacteria: r = 0.586, df = 12, p < 0.05. However none of the bacterial decay rates were correlated with the biotic variables measured. E. coli and Salmonella decay rates were generally higher in the larger fraction (>0.7 μm) than in the smaller fraction (<0.7 μm) suggesting the more important role played by protists. E. coli and Salmonella also decreased in the <0.02 μm fraction and suggested that these non-halophilic bacteria did not survive well in seawater. In contrast, Vibrio grew well in seawater. There was usually an increase in Vibrio after one day incubation. Our results confirmed that decay or loss rates of E. coli did not match that of Vibrio, and also did not correlate with Salmonella decay rates. However E. coli showed persistence where its decay rates were generally lower than Salmonella.
    Matched MeSH terms: Escherichia coli/growth & development
  2. Nathan S
    Virulence, 2014 Apr 1;5(3):371-4.
    PMID: 24569500 DOI: 10.4161/viru.28338
    Matched MeSH terms: Escherichia coli/growth & development*
  3. Rosli N, Sumathy V, Vikneswaran M, Sreeramanan S
    Trop Biomed, 2014 Dec;31(4):871-9.
    PMID: 25776614 MyJurnal
    Hymenocallis littoralis (Jacq.) Salisb (Melong kecil) commonly known as 'Spider Lily' is an herbaceous plant from the family Amaryllidaceae. Study was carried out to determine the effect of H. littoralis leaf extract on the growth and morphogenesis of two pathogenic microbes, Candida albicans and Escherichia coli. The leaf extract displayed favourable anticandidal and antibacterial activity with a minimum inhibition concentration (MIC) of 6.25 mg/mL. Time kill study showed both microbes were completely killed after treated with leaf extract at 20 h. Both microbes' cell walls were heavily ruptured based on scanning electron microscopy (SEM) analysis. The significant anticandidal and antibacterial activities showed by H. littoralis leaf extract suggested the potential antimicrobial agent against C. albicans and E. coli.
    Matched MeSH terms: Escherichia coli/growth & development
  4. Lum CL, Jeyanthi S, Prepageran N, Vadivelu J, Raman R
    J Laryngol Otol, 2009 Apr;123(4):375-8.
    PMID: 18694532 DOI: 10.1017/S0022215108003307
    To assess the antibacterial and antifungal properties of human cerumen by studying its effect on the growth of Staphylococcus aureus, Esherichia coli, Pseudomonas aeruginosa and Candida albicans.
    Matched MeSH terms: Escherichia coli/growth & development*
  5. Philpot CR, McDonald PJ, Chai KH
    J Hyg (Lond), 1980 Oct;85(2):205-10.
    PMID: 7005325
    Pharyngeal micro-organisms of 131 Australian and Malaysian children and adults were compared by analysis of aerobic culture of throat swab specimens. Enteric Gram-negative bacilli were commonly isolated in small numbers from Malaysian adults whether they had sore throats (28%) or not (36%), but were detected in only 9% of Australian adults without sore throats and in only 12% and 4% of Malaysian children with and without sore throats respectively. In other respects microbiological findings were similar in the different groups of subjects studied. It is concluded that the pharyngeal carriage rate of enteric Gram-negative bacilli may differ substantially between different groups of normal individuals. Our findings also suggest that these micro-organisms do not have a pathogenic role in pharyngitis.
    Matched MeSH terms: Escherichia coli/growth & development
  6. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al.
    J Antimicrob Chemother, 2017 10 01;72(10):2729-2736.
    PMID: 29091192 DOI: 10.1093/jac/dkx204
    Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.

    Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.

    Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.

    Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

    Matched MeSH terms: Uropathogenic Escherichia coli/growth & development
  7. Lim CL, Nogawa T, Uramoto M, Okano A, Hongo Y, Nakamura T, et al.
    J Antibiot (Tokyo), 2014 Apr;67(4):323-9.
    PMID: 24496142 DOI: 10.1038/ja.2013.144
    Two novel quinomycin derivatives, RK-1355A (1) and B (2), and one known quinomycin derivative, UK-63,598 (3), were isolated from a microbial metabolites fraction library of Streptomyces sp. RK88-1355 based on Natural Products Plot screening. The structural elucidation of 1 and 2 was established through two-dimensional NMR and mass spectrometric measurements. They belong to a class of quinomycin antibiotics family having 3-hydroxyquinaldic acid and a sulfoxide moiety. They are the first examples for natural products as a quinoline type quinomycin having a sulfoxide on the intramolecular cross-linkage. They showed potent antiproliferative activities against various cancer cell lines and they were also found to exhibit moderate antibacterial activity.
    Matched MeSH terms: Escherichia coli/growth & development
  8. Govindasamy GA, Mydin RBSMN, Sreekantan S, Harun NH
    Sci Rep, 2021 01 08;11(1):99.
    PMID: 33420110 DOI: 10.1038/s41598-020-79547-w
    Calotropis gigantea (C. gigantea) extract with an ecofriendly nanotechnology approach could provide promising antimicrobial activity against skin pathogens. This study investigates the antimicrobial capability of green synthesized binary ZnO-CuO nanocomposites from C. gigantea against non-MDR (Staphylococcus aureus and Escherichia coli) and MDR (Klebsiella pneumoniae, Pseudomonas aeruginosa and methicillin-resistant S. aureus) skin pathogens. Scanning electron microscopy and transmission electron microscopy revealed the size and shape of B3Z1C sample. Results of X-ray powder diffraction, energy-dispersive spectroscopy, FTIR and UV-Vis spectroscopy analyses confirmed the presence of mixed nanoparticles (i.e., zinc oxide, copper oxide, carbon and calcium) and the stabilising phytochemical agents of plant (i.e., phenol and carbonyl). Antimicrobial results showed that carbon and calcium decorated binary ZnO-CuO nanocomposites with compositions of 75 wt% of ZnO and 25 wt% CuO (B3Z1C) was a strong bactericidal agent with the MBC/MIC ratio of ≤ 4 and ≤ 2 for non-MDR and MDR pathogens, respectively. A significant non-MDR zone of inhibitions were observed for BZC by Kirby-Bauer disc-diffusion test. Further time-kill observation revealed significant fourfold reduction in non-MDR pathogen viable count after 12 h study period. Further molecular studies are needed to explain the biocidal mechanism underlying B3Z1C potential.
    Matched MeSH terms: Escherichia coli/growth & development
  9. Ng WK, Lim TS, Lai NS
    Protein Expr. Purif., 2016 11;127:73-80.
    PMID: 27412717 DOI: 10.1016/j.pep.2016.07.004
    Neonatal Fc-receptor (FcRn) with its affinity to immunoglobulin G (IgG) has been the subject of many pharmacokinetic studies in the past century. This protein is well known for its unique feature in maintaining the circulating IgG from degradation in blood plasma. FcRn is formed by non-covalent association between the α-chain with the β-2-microglobulin (β2m). Many studies have been conducted to produce FcRn in the laboratory, mainly using mammalian tissue culture as host for recombinant protein expression. In this study, we demonstrate a novel strategy to express the α-chain of FcRn using Escherichia coli as the expression host. The expression vector that carries the cDNA of the α-chain was transformed into expression host, Rosetta-gami 2 strain for inducible expression. The bacterial culture was grown in a modified growth medium which constitutes of terrific broth, sodium chloride (NaCl), glucose and betaine. A brief heat shock at 45 °C was carried out after induction, before the temperature for expression was reduced to 22 °C and grown for 16 h. The soluble form of the α-chain of FcRn expressed was tested in the ELISA and dot blot immunoassay to confirm its native functionality. The results implied that the α-chain of FcRn expressed using this method is functional and retains its pH-dependent affinity to IgG. Our study significantly suggests that the activity of human FcRn remain active and functional in the absence of β2m.
    Matched MeSH terms: Escherichia coli/growth & development*
  10. Chew FN, Tan WS, Boo HC, Tey BT
    Prep Biochem Biotechnol, 2012;42(6):535-50.
    PMID: 23030465 DOI: 10.1080/10826068.2012.660903
    An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box-Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD(600nm)) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.
    Matched MeSH terms: Escherichia coli/growth & development
  11. Tee LK, Ling CS, Chua MJ, Abdullah S, Rosli R, Chowdhury EH
    Plasmid, 2011 Oct;66(1):38-46.
    PMID: 21419794 DOI: 10.1016/j.plasmid.2011.03.001
    Plasmid DNA is one of the indispensable components in molecular biology research and a potential biomaterial for gene therapy and DNA vaccination. Both quality and quantity of extracted plasmid DNA are of the great interests in cloning and subsequent expression of genes in vitro and in vivo for basic research and therapeutic interventions. Bacteria with extremely short generation times are the valuable source of plasmid DNA that can be isolated through a number of existing techniques. However, the current methods have some limitations in isolating high quality plasmid DNA since the multimeric plasmid which is believed to be more efficiently transcribed by RNA polymerase than the monomeric form, is almost lost during the extraction process. Recently, we developed a rapid isolation technique for multimeric plasmid based on generation of a 'protein aggregate' using a zwitterionic detergent and alkali. Here we have investigated the roles of different parameters in the whole extraction process to optimise the production of high quality multimeric plasmid DNA. Moreover, we have showed the advantageous effects of nanoparticles to effectively sediment the 'protein aggregate' for smooth elution of multimeric plasmid DNA from it. Finally, quality assessment study has revealed that the isolated multimeric DNA is at least 10 times more transcriptionally active than the monomeric form isolated by the commercially available Qiaget kit.
    Matched MeSH terms: Escherichia coli/growth & development
  12. Baerson SR, Rodriguez DJ, Tran M, Feng Y, Biest NA, Dill GM
    Plant Physiol, 2002 Jul;129(3):1265-75.
    PMID: 12114580
    The spontaneous occurrence of resistance to the herbicide glyphosate in weed species has been an extremely infrequent event, despite over 20 years of extensive use. Recently, a glyphosate-resistant biotype of goosegrass (Eleusine indica) was identified in Malaysia exhibiting an LD(50) value approximately 2- to 4-fold greater than the sensitive biotype collected from the same region. A comparison of the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity by glyphosate in extracts prepared from the resistant (R) and sensitive (S) biotypes revealed an approximately 5-fold higher IC(50)(glyphosate) for the (R) biotype. Sequence comparisons of the predicted EPSPS mature protein coding regions from both biotypes revealed four single-nucleotide differences, two of which result in amino acid changes. One of these changes, a proline to serine substitution at position 106 in the (R) biotype, corresponds to a substitution previously identified in a glyphosate-insensitive EPSPS enzyme from Salmonella typhimurium. Kinetic data generated for the recombinant enzymes suggests that the second substitution identified in the (R) EPSPS does not contribute significantly to its reduced glyphosate sensitivity. Escherichia coli aroA- (EPSPS deficient) strains expressing the mature EPSPS enzyme from the (R) biotype exhibited an approximately 3-fold increase in glyphosate tolerance relative to strains expressing the mature EPSPS from the (S) biotype. These results provide the first evidence for an altered EPSPS enzyme as an underlying component of evolved glyphosate resistance in any plant species.
    Matched MeSH terms: Escherichia coli/growth & development
  13. Rehman A, Siddiqa A, Abbasi MA, Siddiqui SZ, Khan SG, Rasool S, et al.
    Pak J Pharm Sci, 2018 Sep;31(5):1783-1790.
    PMID: 30150171
    A number of novel 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole derivatives (6a-l) have been synthesized to evaluate their antibacterial activity. Using aryl/aralkyl carboxylic acids (1a-l) as precursors, 5-substituted-1,3,4-Oxadiazol-2-thiols (4a-l) were yielded in good amounts. The derivatives, 4a-l, were subjected to electrophilic substitution reaction on stirring with 6-bromo-3,4-methylenedioxybenzyl chloride (5) in DMF to synthesize the required compounds. All the synthesized molecules were well characterized by IR, 1H-NMR, 13C-NMR and EIMS spectral data and evaluated for antibacterial activity against some bacterial strains of Gram-bacteria. The molecule, 6d, demonstrated the best activity among all the synthesized molecules exhibiting weak to moderate inhibition potential.
    Matched MeSH terms: Escherichia coli/growth & development
  14. Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, et al.
    Nat Commun, 2014;5:3233.
    PMID: 24481126 DOI: 10.1038/ncomms4233
    Comparative whole-genome sequencing enables the identification of specific mutations during adaptation of bacteria to new environments and allelic replacement can establish their causality. However, the mechanisms of action are hard to decipher and little has been achieved for epistatic mutations, especially at the metabolic level. Here we show that a strain of Escherichia coli carrying mutations in the rpoC and glpK genes, derived from adaptation in glycerol, uses two distinct metabolic strategies to gain growth advantage. A 27-bp deletion in the rpoC gene first increases metabolic efficiency. Then, a point mutation in the glpK gene promotes growth by improving glycerol utilization but results in increased carbon wasting as overflow metabolism. In a strain carrying both mutations, these contrasting carbon/energy saving and wasting mechanisms work together to give an 89% increase in growth rate. This study provides insight into metabolic reprogramming during adaptive laboratory evolution for fast cellular growth.
    Matched MeSH terms: Escherichia coli/growth & development
  15. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Escherichia coli/growth & development
  16. Wibawa PJ, Nur M, Asy'ari M, Wijanarka W, Susanto H, Sutanto H, et al.
    Molecules, 2021 Jun 22;26(13).
    PMID: 34206375 DOI: 10.3390/molecules26133790
    This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs-ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis's spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).
    Matched MeSH terms: Escherichia coli/growth & development*
  17. Shah FLA, Ramzi AB, Baharum SN, Noor NM, Goh HH, Leow TC, et al.
    Mol Biol Rep, 2019 Dec;46(6):6647-6659.
    PMID: 31535322 DOI: 10.1007/s11033-019-05066-1
    Flavonoids are polyphenols that are important organic chemicals in plants. The health benefits of flavonoids that result in high commercial values make them attractive targets for large-scale production through bioengineering. Strategies such as engineering a flavonoid biosynthetic pathway in microbial hosts provide an alternative way to produce these beneficial compounds. Escherichia coli, Saccharomyces cerevisiae and Streptomyces sp. are among the expression systems used to produce recombinant products, as well as for the production of flavonoid compounds through various bioengineering approaches including clustered regularly interspaced short palindromic repeats (CRISPR)-based genome engineering and genetically encoded biosensors to detect flavonoid biosynthesis. In this study, we review the recent advances in engineering model microbial hosts as being the factory to produce targeted flavonoid compounds.
    Matched MeSH terms: Escherichia coli/growth & development
  18. Toh YS, Yeoh SL, Yap IKS, Teh CSJ, Win TT, Thong KL, et al.
    Med Microbiol Immunol, 2019 Dec;208(6):793-809.
    PMID: 31263955 DOI: 10.1007/s00430-019-00628-3
    Cholera is an acute diarrheal illness caused by the Gram-negative bacterium Vibrio cholerae. The pathogen is known for its ability to form biofilm that confers protection against harsh environmental condition and as part of the colonisation process during infection. Coaggregation is a process that facilitates the formation of biofilm. In a preliminary in vitro study, high coaggregation index and biofilm production were found between V. cholerae with human commensals namely Escherichia coli and Enterobacter cloacae. Building upon these results, the effects of coaggregation were further evaluated using adult BALB/c mouse model. The animal study showed no significant differences in mortality and fluid accumulation ratio between treatment groups infected with V. cholerae alone and those infected with coaggregation partnership (V. cholerae with E. coli or V. cholerae with E. cloacae). However, mild inflammation was detected in both partnering pairs. Higher density of V. cholerae was recovered from faecal samples of mice co-infected with E. coli and V. cholerae in comparison with other groups at 24 h post-infection. This partnership also elicited slightly higher levels of interleukin-5 (IL-5) and interleukin-10 (IL-10). Nonetheless, the involvement of autoinducer-2 (AI-2) as the signalling molecules in quorum sensing system is not evident in this study. Since E. coli is one of the common commensals, our result may suggest the involvement of commensals in cholera development.
    Matched MeSH terms: Escherichia coli/growth & development
  19. Salim MM, Malek NANN
    PMID: 26652350 DOI: 10.1016/j.msec.2015.09.099
    The antibacterial activity of regenerated NaY zeolite (thermal treatment from cetyltrimethyl ammonium bromide (CTAB)-modified NaY zeolite and pretreatment with Na ions) loaded with silver ions were examined using the broth dilution minimum inhibitory concentration (MIC) method against Escherichia coli (E. coli ATCC 11229) and Staphylococcus aureus (S. aureus ATCC 6538). X-ray diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and chemical elemental analyses were used to characterize the regenerated NaY and AgY zeolites. The XRD patterns indicated that the calcination and addition of silver ions on regenerated NaY zeolite did not affect the structure of the regenerated NaY zeolite as the characteristic peaks of the NaY zeolite were retained, and no new peaks were observed. The regenerated AgY zeolite showed good antibacterial activity against both bacteria strains in distilled water, and the antibacterial activity of the samples increased with increasing Ag loaded on the regenerated AgY zeolite; the regenerated AgY zeolite was more effective against E. coli than S. aureus. However, the antibacterial activity of the regenerated AgY was not effective in saline solution for both bacteria. The study showed that CTAB-modified NaY zeolite materials could be regenerated to NaY zeolite using thermal treatment (550°C, 5h) and this material has excellent performance as an antibacterial agent after silver ions loading.
    Matched MeSH terms: Escherichia coli/growth & development*
  20. Almasi D, Sadeghi M, Lau WJ, Roozbahani F, Iqbal N
    Mater Sci Eng C Mater Biol Appl, 2016 Jul 01;64:102-107.
    PMID: 27127033 DOI: 10.1016/j.msec.2016.03.053
    The present work reviews the current fabrication methods of the functionally graded polymeric material (FGPM) and introduces a novel fabrication method that is versatile in applications as compared to those of existing used methods. For the first time electrophoresis was used to control the distribution of the tetracycline hydrochloride (TC) in a film made of polylactic acid (PLA), aiming to induce antimicrobial effect on the film prepared. The elemental analysis on the film surface showed that by employing electrophoresis force, higher amount of TC was detected near the top surface of the film. Results also showed that the FGPM samples with higher percentage of the TC on the film surface were highly effective to minimize the growth of Escherichia coli. These findings are useful and important to improve dispersion quality of the particles in the composite material and further enhance its antibacterial property.
    Matched MeSH terms: Escherichia coli/growth & development*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links