Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Aliyu AB, Saleha AA, Jalila A, Zunita Z
    BMC Public Health, 2016 08 02;16:699.
    PMID: 27484086 DOI: 10.1186/s12889-016-3377-2
    BACKGROUND: The significant role of retail poultry meat as an important exposure pathway for the acquisition and transmission of extended spectrum β-lactamase-producing Escherichia coli (ESBL-EC) into the human population warrants understanding concerning those operational practices associated with dissemination of ESBL-EC in poultry meat retailing. Hence, the objective of this study was to determine the prevalence, spatial distribution and potential risk factors associated with the dissemination of ESBL-EC in poultry meat retail at wet-markets in Selangor, Malaysia.

    METHODS: Poultry meat (breast, wing, thigh, and keel) as well as the contact surfaces of weighing scales and cutting boards were sampled to detect ESBL-EC by using culture and disk combination methods and polymerase chain reaction assays. Besides, questionnaire was used to obtain data and information pertaining to those operational practices that may possibly explain the occurrence of ESBL-EC. The data were analysed using logistic regression analysis at 95 % CI.

    RESULTS: The overall prevalence of ESBL-EC was 48.8 % (95 % CI, 42 - 55 %). Among the risk factors that were explored, type of countertop, sanitation of the stall environment, source of cleaning water, and type of cutting board were found to be significantly associated with the presence of ESBL-EC.

    CONCLUSIONS: Thus, in order to prevent or reduce the presence of ESBL-EC and other contaminants at the retail-outlet, there is a need to design a process control system based on the current prevailing practices in order to reduce cross contamination, as well as to improve food safety and consumer health.

    Matched MeSH terms: Escherichia coli/growth & development*
  2. Chan YW, Siow KS, Ng PY, Gires U, Yeop Majlis B
    Mater Sci Eng C Mater Biol Appl, 2016 Nov 01;68:861-871.
    PMID: 27524089 DOI: 10.1016/j.msec.2016.07.040
    Antibacterial coating is important to prevent the colonization of medical devices by biofilm forming bacteria that would cause infection and sepsis in patients. Current coating techniques such as immobilization of antimicrobial compounds, time-releasing antibiotic agents and silver nanoparticles, require multiple processing steps, and they have low efficacy and low stability. We proposed a single-step plasma polymerization of an essential oil known as carvone to produce a moderately hydrophobic antibacterial coating (ppCar) with an average roughness of <1nm. ppCar had a static water contact angle of 78°, even after 10days of air aging and it maintained its stability throughout 24h of LB broth immersion. ppCar showed promising results in the live-dead fluorescence assay and crystal violet assay. The biofilm assay showed an effective reduction of E. coli and S. aureus bacteria by 86% and 84% respectively. ppCar is also shown to rupture the bacteria membrane for its bactericidal effects. The cytotoxicity test indicated that the coating is not cytotoxic to the human cell line. This study would be of interest to researcher keen on producing a bacteria-resistance and biocompatible coating on different substrates in a cost-effective manner.
    Matched MeSH terms: Escherichia coli/growth & development*
  3. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Escherichia coli/growth & development
  4. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Wren AW, et al.
    J Mater Sci Mater Med, 2016 Jan;27(1):18.
    PMID: 26676864 DOI: 10.1007/s10856-015-5620-2
    Bioactive glasses may function as antimicrobial delivery systems through the incorporation and subsequent release of therapeutic ions. The aim of this study was to evaluate the antimicrobial properties of a series of composite scaffolds composed of poly(octanediol citrate) with increased loads of a bioactive glass that releases zinc (Zn(2+)) and gallium (Ga(3+)) ions in a controlled manner. The antibacterial activity of these scaffolds was investigated against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The ability of the scaffolds to release ions and the subsequent ingress of these ions into hard tissue was evaluated using a bovine bone model. Scaffolds containing bioactive glass exhibited antibacterial activity and this increased in vitro with higher bioactive glass loads; viable cells decreased to about 20 % for the composite scaffold containing 30 % bioactive glass. The Ga(3+) release rate increased as a function of time and Zn(2+) was shown to incorporate into the surrounding bone.
    Matched MeSH terms: Escherichia coli/growth & development
  5. Chew FN, Tan WS, Boo HC, Tey BT
    Prep Biochem Biotechnol, 2012;42(6):535-50.
    PMID: 23030465 DOI: 10.1080/10826068.2012.660903
    An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box-Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD(600nm)) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.
    Matched MeSH terms: Escherichia coli/growth & development
  6. Ng MY, Tan WS, Abdullah N, Ling TC, Tey BT
    J Biotechnol, 2008 Nov 25;138(3-4):74-9.
    PMID: 18786579 DOI: 10.1016/j.jbiotec.2008.08.004
    Expanded bed adsorption chromatography (EBAC) is a single pass operation that has been used as primary capture step in various protein purifications. The most common problem in EBAC is often associated with successful formation of a stable fluidized bed during the absorption stage, which is critically dependent on parameters such as liquid velocity, bed height, particle (adsorbent) size and density as well as design of column and type of flow distributor. In this study, residence time distribution (RTD) test using acetone as non-binding tracer acetone was performed to evaluate liquid dispersion characteristics of the EBAC system. A high B(o) number was obtained indicating the liquid dispersion in the system employed is very minimal and the liquid flow within the bed was close to plug flow, which mimics a packed bed chromatography system. Evaluation on the effect of flow velocities and bed height on the performance of Streamline DEAE using feedstock containing heat-treated crude Escherichia coli homogenate of different biomass concentrations was carried out in this study. The advantages and disadvantages as well as the problems encountered during recovery of HBcAg with aforementioned parameters are also discussed in this paper.
    Matched MeSH terms: Escherichia coli/growth & development
  7. Rosli N, Sumathy V, Vikneswaran M, Sreeramanan S
    Trop Biomed, 2014 Dec;31(4):871-9.
    PMID: 25776614 MyJurnal
    Hymenocallis littoralis (Jacq.) Salisb (Melong kecil) commonly known as 'Spider Lily' is an herbaceous plant from the family Amaryllidaceae. Study was carried out to determine the effect of H. littoralis leaf extract on the growth and morphogenesis of two pathogenic microbes, Candida albicans and Escherichia coli. The leaf extract displayed favourable anticandidal and antibacterial activity with a minimum inhibition concentration (MIC) of 6.25 mg/mL. Time kill study showed both microbes were completely killed after treated with leaf extract at 20 h. Both microbes' cell walls were heavily ruptured based on scanning electron microscopy (SEM) analysis. The significant anticandidal and antibacterial activities showed by H. littoralis leaf extract suggested the potential antimicrobial agent against C. albicans and E. coli.
    Matched MeSH terms: Escherichia coli/growth & development
  8. Rehman A, Siddiqa A, Abbasi MA, Siddiqui SZ, Khan SG, Rasool S, et al.
    Pak J Pharm Sci, 2018 Sep;31(5):1783-1790.
    PMID: 30150171
    A number of novel 5-substituted-2-((6-bromo-3,4-methylenedioxybenzyl)thio)-1,3,4-Oxadiazole derivatives (6a-l) have been synthesized to evaluate their antibacterial activity. Using aryl/aralkyl carboxylic acids (1a-l) as precursors, 5-substituted-1,3,4-Oxadiazol-2-thiols (4a-l) were yielded in good amounts. The derivatives, 4a-l, were subjected to electrophilic substitution reaction on stirring with 6-bromo-3,4-methylenedioxybenzyl chloride (5) in DMF to synthesize the required compounds. All the synthesized molecules were well characterized by IR, 1H-NMR, 13C-NMR and EIMS spectral data and evaluated for antibacterial activity against some bacterial strains of Gram-bacteria. The molecule, 6d, demonstrated the best activity among all the synthesized molecules exhibiting weak to moderate inhibition potential.
    Matched MeSH terms: Escherichia coli/growth & development
  9. Phan MD, Nhu NTK, Achard MES, Forde BM, Hong KW, Chong TM, et al.
    J Antimicrob Chemother, 2017 10 01;72(10):2729-2736.
    PMID: 29091192 DOI: 10.1093/jac/dkx204
    Objectives: Polymyxins remain one of the last-resort drugs to treat infections caused by MDR Gram-negative pathogens. Here, we determined the mechanisms by which chromosomally encoded resistance to colistin and polymyxin B can arise in the MDR uropathogenic Escherichia coli ST131 reference strain EC958.

    Methods: Two complementary approaches, saturated transposon mutagenesis and spontaneous mutation induction with high concentrations of colistin and polymyxin B, were employed to select for mutations associated with resistance to polymyxins. Mutants were identified using transposon-directed insertion-site sequencing or Illumina WGS. A resistance phenotype was confirmed by MIC and further investigated using RT-PCR. Competitive growth assays were used to measure fitness cost.

    Results: A transposon insertion at nucleotide 41 of the pmrB gene (EC958pmrB41-Tn5) enhanced its transcript level, resulting in a 64- and 32-fold increased MIC of colistin and polymyxin B, respectively. Three spontaneous mutations, also located within the pmrB gene, conferred resistance to both colistin and polymyxin B with a corresponding increase in transcription of the pmrCAB genes. All three mutations incurred a fitness cost in the absence of colistin and polymyxin B.

    Conclusions: This study identified the pmrB gene as the main chromosomal target for induction of colistin and polymyxin B resistance in E. coli.

    Matched MeSH terms: Uropathogenic Escherichia coli/growth & development
  10. Shah FLA, Ramzi AB, Baharum SN, Noor NM, Goh HH, Leow TC, et al.
    Mol Biol Rep, 2019 Dec;46(6):6647-6659.
    PMID: 31535322 DOI: 10.1007/s11033-019-05066-1
    Flavonoids are polyphenols that are important organic chemicals in plants. The health benefits of flavonoids that result in high commercial values make them attractive targets for large-scale production through bioengineering. Strategies such as engineering a flavonoid biosynthetic pathway in microbial hosts provide an alternative way to produce these beneficial compounds. Escherichia coli, Saccharomyces cerevisiae and Streptomyces sp. are among the expression systems used to produce recombinant products, as well as for the production of flavonoid compounds through various bioengineering approaches including clustered regularly interspaced short palindromic repeats (CRISPR)-based genome engineering and genetically encoded biosensors to detect flavonoid biosynthesis. In this study, we review the recent advances in engineering model microbial hosts as being the factory to produce targeted flavonoid compounds.
    Matched MeSH terms: Escherichia coli/growth & development
  11. Cheng KK, Lee BS, Masuda T, Ito T, Ikeda K, Hirayama A, et al.
    Nat Commun, 2014;5:3233.
    PMID: 24481126 DOI: 10.1038/ncomms4233
    Comparative whole-genome sequencing enables the identification of specific mutations during adaptation of bacteria to new environments and allelic replacement can establish their causality. However, the mechanisms of action are hard to decipher and little has been achieved for epistatic mutations, especially at the metabolic level. Here we show that a strain of Escherichia coli carrying mutations in the rpoC and glpK genes, derived from adaptation in glycerol, uses two distinct metabolic strategies to gain growth advantage. A 27-bp deletion in the rpoC gene first increases metabolic efficiency. Then, a point mutation in the glpK gene promotes growth by improving glycerol utilization but results in increased carbon wasting as overflow metabolism. In a strain carrying both mutations, these contrasting carbon/energy saving and wasting mechanisms work together to give an 89% increase in growth rate. This study provides insight into metabolic reprogramming during adaptive laboratory evolution for fast cellular growth.
    Matched MeSH terms: Escherichia coli/growth & development
  12. Ismail NA, Amin KAM, Majid FAA, Razali MH
    Mater Sci Eng C Mater Biol Appl, 2019 Oct;103:109770.
    PMID: 31349525 DOI: 10.1016/j.msec.2019.109770
    In this work, the potential of titanium dioxide nanoparticles incorporated gellan gum (GG + TiO2-NPs) biofilm as wound dressing material was investigated. The GG + TiO2-NPs biofilm was prepared via evaporative casting technique and was characterized using FTIR, XRD, and SEM to study their physiochemical properties. The mechanical properties, swelling and water vapor transmission rate (WVTR) of biofilm was determined to comply with an ideal wound dressing material. In vitro and in vivo wound healing studies was carried out to evaluate the performance of GG + TiO2-NPs biofilm. In vitro wound healing was studied on 3 T3 mouse fibroblast cells for cell viability, cell proliferation, and scratch assay. The acridine orange/propidium iodide (AO/PI) staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were used to evaluate the viability of cell and cell proliferation. Cell migration assay was analyzed using Essen BioScience IncuCyteTM Zoom system. In vivo wound healing via open excision wounds model on Sprague Dawley rat was studied within 14 days. The FT-IR spectra of GG + TiO2-NPs biofilm show main bands assigned to OH stretching, OH deformation, and TiO stretching modes. XRD pattern of GG + TiO2-NPs biofilm suggesting that TiO2-NPs was successfully incorporated in biofilm and well distributed on the surface as proved by SEM analysis. The GG + TiO2-NPs biofilm shows higher mechanical strength and swelling (3.76 ± 0.11 MPa and 1061 ± 6%) as compared to pure GG film (3.32 ± 0.08 Mpa and 902 ± 6%), respectively. GG + TiO2-NPs biofilm shows good antibacterial properties as 9 ± 0.25 mm and 11 ± 0.06 mm exhibition zone was observed against Staphylococcus aureus and Escherichia coli bacteria, respectively. While no exhibition zone was obtained for pure GG biofilm. GG + TiO2-NPs biofilm also demonstrated better cell-to-cell interaction properties, as it's promoted cell proliferation and cell migration to accelerate open excision wound healing on Sprague Dawley rat. The wound treated with GG + TiO2-NPs biofilm was healed within 14 days, on the other hand, the wound is still can be seen when it was treated with GG. However, GG and GG + TiO2-NPs biofilm show no cytotoxicity effects on mouse fibroblast cells.
    Matched MeSH terms: Escherichia coli/growth & development*
  13. Lum CL, Jeyanthi S, Prepageran N, Vadivelu J, Raman R
    J Laryngol Otol, 2009 Apr;123(4):375-8.
    PMID: 18694532 DOI: 10.1017/S0022215108003307
    To assess the antibacterial and antifungal properties of human cerumen by studying its effect on the growth of Staphylococcus aureus, Esherichia coli, Pseudomonas aeruginosa and Candida albicans.
    Matched MeSH terms: Escherichia coli/growth & development*
  14. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Feb;95:1064-1071.
    PMID: 27984140 DOI: 10.1016/j.ijbiomac.2016.09.114
    In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu2O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.
    Matched MeSH terms: Escherichia coli/growth & development
  15. Nathan SA, Qvist R, Puthucheary SD
    FEMS Immunol. Med. Microbiol., 2005 Feb 1;43(2):177-83.
    PMID: 15681148
    The oxidative response of Burkholderia pseudomallei and Escherichia coli infected macrophages from normal and melioidosis subjects was determined by measuring the production of nitric oxide which is one of the reactive nitrogen intermediates, and the activation state of these macrophages was determined by measuring the generation of 8-iso-PGF(2alpha), a bioactive product of free radical induced lipid peroxidation. Macrophages obtained from the melioidosis patients generated significantly lower levels of nitric oxide and 8-iso-PGF(2alpha) compared to macrophages obtained from the normal subjects (P<0.001). The reduced efficiency of the oxygen dependent microbicidal mechanism in macrophages of melioidosis patients may be one of the survival strategies developed by B. pseudomallei to remain viable intracellularly.
    Matched MeSH terms: Escherichia coli/growth & development*
  16. Lim CL, Nogawa T, Uramoto M, Okano A, Hongo Y, Nakamura T, et al.
    J Antibiot (Tokyo), 2014 Apr;67(4):323-9.
    PMID: 24496142 DOI: 10.1038/ja.2013.144
    Two novel quinomycin derivatives, RK-1355A (1) and B (2), and one known quinomycin derivative, UK-63,598 (3), were isolated from a microbial metabolites fraction library of Streptomyces sp. RK88-1355 based on Natural Products Plot screening. The structural elucidation of 1 and 2 was established through two-dimensional NMR and mass spectrometric measurements. They belong to a class of quinomycin antibiotics family having 3-hydroxyquinaldic acid and a sulfoxide moiety. They are the first examples for natural products as a quinoline type quinomycin having a sulfoxide on the intramolecular cross-linkage. They showed potent antiproliferative activities against various cancer cell lines and they were also found to exhibit moderate antibacterial activity.
    Matched MeSH terms: Escherichia coli/growth & development
  17. Chang JS, Strunk J, Chong MN, Poh PE, Ocon JD
    J Hazard Mater, 2020 01 05;381:120958.
    PMID: 31416043 DOI: 10.1016/j.jhazmat.2019.120958
    While bulk zinc oxide (ZnO) is of non-toxic in nature, ZnO nanoarchitectures could potentially induce the macroscopic characteristics of oxidative, lethality and toxicity in the water environment. Here we report a systematic study through state-of-the-art controllable synthesis of multi-dimensional ZnO nanoarchitectures (i.e. 0D-nanoparticle, 1D-nanorod, 2D-nanosheet, and 3D-nanoflowers), and subsequent in-depth understanding on the fundamental factor that determines their photoactivities. The photoactivities of resultant ZnO nanoarchitectures were interpreted in terms of the photodegradation of salicylic acid as well as inactivation of Bacillus subtilis and Escherichia coli under UV-A irradiation. Photodegradation results showed that 1D-ZnO nanorods demonstrated the highest salicylic acid photodegradation efficiency (99.4%) with a rate constant of 0.0364 min-1. 1D-ZnO nanorods also exhibited the highest log reductions of B. subtilis and E. coli of 3.5 and 4.2, respectively. Through physicochemical properties standardisation, an intermittent higher k value for pore diameter (0.00097 min-1 per mm), the highest k values for crystallite size (0.00171 min-1 per nm) and specific surface area (0.00339 min-1 per m2/g) contributed to the exceptional photodegradation performance of nanorods. Whereas, the average normalised log reduction against the physicochemical properties of nanorods (i.e. low crystallite size, high specific surface area and pore diameter) caused the strongest bactericidal effect.
    Matched MeSH terms: Escherichia coli/growth & development
  18. Wibawa PJ, Nur M, Asy'ari M, Wijanarka W, Susanto H, Sutanto H, et al.
    Molecules, 2021 Jun 22;26(13).
    PMID: 34206375 DOI: 10.3390/molecules26133790
    This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs-ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis's spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).
    Matched MeSH terms: Escherichia coli/growth & development*
  19. Lee CW, Ng AY, Bong CW, Narayanan K, Sim EU, Ng CC
    Water Res, 2011 Feb;45(4):1561-70.
    PMID: 21146847 DOI: 10.1016/j.watres.2010.11.025
    Using the size fractionation method, we measured the decay rates of Escherichia coli, Salmonella Typhi and Vibrio parahaemolyticus in the coastal waters of Peninsular Malaysia. The size fractions were total or unfiltered, <250 μm, <20 μm, <2 μm, <0.7 μm, <0.2 μm and <0.02 μm. We also carried out abiotic (inorganic nutrients) and biotic (bacterial abundance, production and protistan bacterivory) measurements at Port Dickson, Klang and Kuantan. Klang had highest nutrient concentrations whereas both bacterial production and protistan bacterivory rates were highest at Kuantan. We observed signs of protist-bacteria coupling via the following correlations: Protistan bacterivory-Bacterial Production: r = 0.773, df = 11, p < 0.01; Protist-Bacteria: r = 0.586, df = 12, p < 0.05. However none of the bacterial decay rates were correlated with the biotic variables measured. E. coli and Salmonella decay rates were generally higher in the larger fraction (>0.7 μm) than in the smaller fraction (<0.7 μm) suggesting the more important role played by protists. E. coli and Salmonella also decreased in the <0.02 μm fraction and suggested that these non-halophilic bacteria did not survive well in seawater. In contrast, Vibrio grew well in seawater. There was usually an increase in Vibrio after one day incubation. Our results confirmed that decay or loss rates of E. coli did not match that of Vibrio, and also did not correlate with Salmonella decay rates. However E. coli showed persistence where its decay rates were generally lower than Salmonella.
    Matched MeSH terms: Escherichia coli/growth & development
  20. Nathan S
    Virulence, 2014 Apr 1;5(3):371-4.
    PMID: 24569500 DOI: 10.4161/viru.28338
    Matched MeSH terms: Escherichia coli/growth & development*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links